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Highlights
•	 We propose a stochastic version of the tree growth model LIGNUM for producing tree 

structures consistent with detailed terrestrial laser scanning data, and we provide the proof-
of-concept by using model-based simulations and real laser scanning data.

•	 Trees produced with the data-based model resemble the trees of the dataset, and are statisti-
cally similar but not copies of each other; the number of such synthetic trees is not limited.

Abstract
We introduce a general procedure to match a stochastic functional-structural tree model (here 
LIGNUM augmented with stochastic rules) with real tree structures depicted by quantitative 
structure models (QSMs) based on terrestrial laser scanning. The matching is done by iteratively 
finding	 the	maximum	correspondence	between	 the	measured	 tree	structure	and	 the	stochastic	
choices of the algorithm. First, we analyze the match to synthetic data (generated by the model 
itself), where the target values of the parameters to be estimated are known in advance, and show 
that the algorithm converges properly. We then carry out the procedure on real data obtaining a 
realistic model. We thus conclude that the proposed stochastic structure model (SSM) approach 
is a viable solution for formulating realistic plant models based on data and accounting for the 
stochastic	influences.
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1 Introduction

Readily available algorithms for producing realistic and accurately data-calibrated synthetic tree 
forms would have numerous applications in botany and ecology. Thus far, studies of tree forms have 
focused either on data representations, with models used only to reconstruct a particular tree (stand) 
(Pfeifer et al. 2004; Rutzinger et al. 2011; Raumonen et al. 2013, 2015), or on theoretical models 
with estimated real conditions used for parameter values (De Reffye et al. 1988; Prusinkiewicz 
and Lindenmayer, 1990; Weber and Penn 1995; Perttunen et al. 1996). Our aim is to bridge this 
gap between data and theory. We use a stochastic tree growth model whose structural properties 
are	iteratively	fitted	to	the	data	to	produce	tree	forms	(not	limited	in	number)	that	are	statistically	
similar to the data tree or trees, but are not copies of each other.

To obtain computationally feasible growth models, we must make a twofold hypothesis in 
this study. First, we propose that a model can capture the variation of tree forms by a combina-
tion of simple deterministic processes and stochastic choices representable by low-dimensional 
probability distribution functions p. The model can thus reproduce tree shapes even if it is not 
exactly	correct	 in	the	biological	or	probabilistic	sense.	Second,	we	assume	that	tree	forms	can	
be represented by sets of low-dimensional spaces with abstract coordinates u in which the occur-
rence of various geometric features can be depicted, and that the model p can be determined 
from	field-data	 sets	U containing a number of observed u-points when both p and u are well 
chosen. Note that p operates in the space of model parameters q, whereas u represents the space 
of observables.

We thus need to create both forward and inverse mappings

p q( )→Umodel , Udata → p(q) (1)

Once	the	former	is	defined,	the	latter	is	obtained	by	iteratively	minimizing	a	distance	meas-
ure Ds(Umodel, Udata). The principle of introducing stochastic variation to the parameter values q 
when the growth of a model is simulated can be applied to virtually any model: recursive (Honda 
1971; Prusinkiewicz et al. 2001) or self-organizing (Ulam 1962; Bornhofen and Lattaud 2009); 
functional (Mäkelä and Hari 1986) or structural (Prusinkiewicz and Lindenmayer 1990; Fisher 
1992), or any other.

2 Methods

The overall diagram of the method is depicted in Fig. 1. The main building blocks are: a quantitative 
structure model (QSM) containing all the geometric and hierarchical information about a tree, a 
stochastic functional-structural plant model (FSPM), a measure of distance between the structural 
data of the QSM and FSPM given in some u-spaces, and an optimization algorithm minimizing 
the distance (e.g., a genetic algorithm). The choices for the technical representations of any of 
the building blocks are not unique; these, in particular the choice of the distance measure and the 
u-spaces, will be discussed in greater detail elsewhere.

2.1 Data

All structural data can be obtained from a QSM derived from terrestrial laser scanning (TLS) 
measurements.	We	used	the	algorithm	described	in	detail	in	Raumonen	et	al.	(2013)	to	extract	
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a	QSM	from	the	TLS	point	cloud	data.	The	field	data	used	here	were	obtained	at	a	plot	of	Scots	
pines in Ruotsinkylä, Finland in 2014 (mean height: 13.2 m, mean breast height diameter: 13.2 cm, 
stand density: 1932.8 trees·ha–1, total volume: 196.9 m3·ha–1). Results reported here are based on 
a single QSM derived from the plot.

2.2 Model

As a FSPM to match the data tree structure, we use LIGNUM (Perttunen et al. 1996, 1998, 2001; 
Lu et al. 2011). Structurally the model consists of cylindrical segments. At each iteration of the 
model growth, the calculated overall carbon balance (photosynthetic production vs. respiration 
needs) and the light conditions determine how much biomass is allocated in the consecutive 
iteration.

The full radiation model implemented in LIGNUM (Perttunen et al. 1998) would be com-
putationally	expensive	given	the	large	number	of	iterative	simulations	necessary	in	our	approach.	
Therefore,	we	have	modified	the	radiation	model	using	the	shadow	propagation	method	(Palubicki	
et	al.	2009).	We	divide	 the	space	 into	a	grid	of	voxels	each	with	 the	associated	shadow	value	
S(x,y,z).	Each	segment	is	ascribed	to	a	particular	voxel	creating	a	pyramidal	penumbra	at	the	voxels	
underneath. Shadow propagation length SL	and	voxel	edge	size	VS	determine,	how	many	voxel	
layers	the	shadow	propagates	down	(Table	1;	Palubicki	et	al.	2009).	At	the	top	voxel	S(x,y,z) = 
Smax, whereas at the bottom S(x,y,z) = 0 (linear interpolation between).

All segments are sequentially processed, producing a 3D grid of accumulated shadow values 
S(x,y,z). The radiation intercepted by a segment occupying the (x,y,z)	voxel	is

I(x, y,z) = max 0,R − S(x, y,z)⎡⎣ ⎤⎦ (2)

Fig. 1. An overall diagram of the fundamental components of the procedure. The main novelty of this study comprises 
the	orange	circle	depicting	the	iterative	optimization	procedure	fitting	LIGNUM	structural	data	to	those	of	the	field-data	
Quantitative Structural Model (QSM) that was obtained from the Terrestrial Laser Scanning (TLS) point cloud.
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and the photosynthetic light ratio is

I p (x, y,z) = I(x, y,z) / R, (3)

where R	is	the	photosynthetically	active	radiation	in	the	fully	exposed	conditions	(Table	1).	These	
determine the growth rate (Perttunen et al. 1996, 1998). Also, branches are not allowed to grow 
further than a radius Renv away from the tree stem, nor intersect other branches or the ground.

Branches with no foliage and no child branches are shed (Sievänen et al. 2008). Since real 
pine trees contain dead branches, which cannot be effectively distinguished from the live ones in 
the TLS set-up, we have introduced a delay factor: the youngest segment must be Tsh iterations old 
for the shedding to occur. Additionally, real trees might have branches shed only partially leaving 
the dead remnants due to accidental branch break, so we have introduced a Poisson random vari-
able (parameter µsh) determining the number of the tip segments (thinner and thus easier to break 
than the base) that will be shed while the rest will stay (Table 1).

2.3	 Tree	form	description	and	model	fitting

We determine several quantitative characteristics describing the tree shape, and plot their values 
as sets U in each chosen abstract plane of coordinates u as shown in Figs. 2 and 3. The variations 
of the density of the points in u	are	taken	to	be	the	QSM	characteristics	reflecting	the	stochastic	
nature of real tree growth.

The original LIGNUM parameters can be changed into and augmented with probability 
distributions (here simple Gaussian or Poisson ones; see Tables 1 and 2) to catch the stochastic-
ity of growth. As the model tree grows, the effective LIGNUM parameter values q are repeated 
samples drawn from these distributions p	defined	by	some	parameters	w.

Using the point plots (Figs. 2 and 3), we compare the characteristic Udata and Umodel of QSM 
and LIGNUM, respectively. The measure of structural distance Ds[Udata, Umodel (w)] between the 

Table 1. The	LIGNUM	parameters	used	in	this	study.	Parameters	fixed	during	simulations	are	reported;	the	varied	(-)	
and not used (NA) parameters are omitted. Other parameters are from Perttunen et al. (1998) for the synthetic simula-
tion (Section 3.1) and Sievänen et al. (2008) for the real case study (Section 3.2). 

Parameter Description Synthetic Real

R full	exposure	radiation	for	a	tree	segment,	relative 30.0 60.0
Smax maximum	shadow	induced	by	a	tree	segment,	relative 10.0 -
S L shadow propagation distance, [m] 0.55 -
VS linear	voxel	size,	[m] 0.02 0.02
Renv radius of the circular boundary around the tree stem that the branches are not 

allowed to cross, [m]
1.33 -

LR ratio between the radius and length of a tree segment, dimensionless - -
Q apical	dominance	parameter,	varied	between	0	(no	dominance)	and	1	(maxi-

mum dominance), dimensionless
- -

βinit , βmax initial	and	maximal	inclination	angles,	respectively:	angles	between	the	first	
branch segment and the segment it emanates from, [degree]

- , 95 -

∆β inclination angle increment, [degree] - -
∆ζ,	∆γ intensity of the white noise added to the vertical (∆ζ) and horizontal (∆γ) 

orientations of the segments, [degree]
- , 5 -

T number of iterations/years of simulation - -
Tsh when shedding a branch, the lower age limit for the branch segments NA -
μsh parameter to the Poisson variable determining number of the tip segments to 

shed
NA -
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Fig. 2. Sets of points describing the stochastic structure of a tree: a) the simulated LIGNUM tree, source for the data 
sets; b) the branching/inclination angles of all branches of the 2nd order, (1D set) and c) 1st order tapering, the local 
cross-section area radius of a branch against the distance from the base of the branch, gathered from all branches of 
order 1 (2D set). Order is the Gravelius order of a tree such that the lowest order (tree stem) equals to zero.
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Fig. 3. Model	SSM	tree	shape	fitting	the	emulated	QSM	“data”,	using	8-parameter	estimation.	Two	datasets	were	used	
in optimization: 1st order tapering (see also Fig. 2) and spatial curvature, described with two spatial angles (in the 
horizontal	(γ)	and	vertical	(ζ)	planes)	between	consecutive	segments	as	functions	of	the	relative	length	along	branch.	
The 2D projections of the datasets for the data and the optimized tree are shown in the lower panel.

two is minimized by adjusting the parameters w, as well as the deterministic LIGNUM parameters, 
in an iterative optimization procedure (here a genetic algorithm to enable global optimization). 
The Ds measures the difference between the local densities of the data and model points U in the 
chosen plot planes. Here its construction is based on Kaasalainen (2008) (cf. Sect. 5 and Eq. (32) 
therein), but this (or the u-spaces adopted here) is by no means a unique or optimal choice. For 
example,	if	we	have	a	large	number	of	u-points from a plot of clones or trees otherwise labeled 
similar, we can divide the u-space into cells, and minimize the model vs. data difference of the 
relative density of occupation numbers in each cell.

We	call	the	set	of	resulting	best-fit	stochastic	FSPM	parameters	a	stochastic	structure	model	
(SSM).	Note	that	this	is	not	a	fixed	tree	form:	its	computer	realizations	have	each	time	different	
details but they share a statistically similar appearance.
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3 Results

We report two cases, based on the synthetic (generated by stochastic LIGNUM) and real data, 
respectively. The former demonstrates the possibility of the algorithm to converge to the target tree 
form and the target parameter values that are known in advance. Additionally, it reveals practical 
aspects of the algorithm performance and assesses sensitivity of the parameters. Thus, the actual 
values	of	the	parameters	play	no	significant	role	in	this	case.

We opted for the 8-parameter estimation, which was found to be a compromise between the 
complexity	and	number	of	parameters	to	converge:	as	the	number	of	parameters	grows	the	pos-
sibility of various parametric solutions producing similar tree structures increases. The real data 
case has no such limitations.

3.1 Model-based synthetic data

As	an	initial	consistency	check	and	a	test	of	our	basic	modeling	principle,	we	fit	the	model	to	simu-
lated QSM data generated by the same model (since the model is stochastic, we do not commit an 
“inverse	crime”;	i.e.,	the	optimized	SSM	tree	cannot	look	exactly	like	the	original	one).	Here	we	
select	eight	parameters	(Table	2)	to	be	estimated	and	fix	others	as	in	Perttunen	et	al.	(1998).	We	set	
the parameter variation ranges for the optimization routine from 50% to 150% of the target value 
for every parameter, which helps us to assess the parameter estimation accuracy. The coordinates u 
in	which	the	fitting	is	depicted	are	obtained	from	the	branches	of	the	1st	Gravelius	order	(the	stem	
is of order 0): we choose tapering and spatial curvature of the branches. The former couples the 
local radius of the branch and the distance from its base. The latter relates the two spatial angles 
(in horizontal and vertical planes) between the consecutive segments of a branch to the relative 
distance from its base. The sets U are rendered as scatter plots by considering all branches of the 
given order. The results are shown in Fig. 3 and Table 2.

As Fig. 3 shows, the structure and shape characteristics of the data and model trees match 
well. Model characteristics such as tree height, trunk width, and crown branch distribution are 
close	to	those	of	the	original	simulated	tree.	Note	that	the	model	is	not	supposed	to	look	exactly	
like the original tree, rather, to be consistent with it and share its main structural tendencies and 
stochasticity. Comparing the original and iterated parameter values, we can check whether the 

Table 2. Parameter	estimation	in	the	emulated	“data”	case.	The	tree	shapes	and	fitted	structural	data	
sets are shown in Fig. 3. Parameters LR and Q follow the normal distribution having two parameters: 
mean and standard deviation (std). Other LIGNUM parameters are from Perttunen et al. (1998) and 
R = 30.0, Smax = 10.0, SL = 0.55 m, VS = 0.02 m, Renv	=	1.33	m,	βmax	=	95	degree,	∆γ	=	5	degree,	
and	original	shedding	options	(Sievänen	et	al.	2008).	See	Table	1	for	the	parameter	definitions.	The	
genetic algorithm has stopped after 22 full iterations/generations, each generation consisted of 40 
parameter sets.

Parameter name Data value Model value (estimated) Relative error, %

LR, mean 0.009 0.0094 4.65
LR, std 0.001 0.0009 6.95
Q, mean 0.2 0.2058 2.88
Q, std 0.03 0.0213 28.88
T 15 16 6.67
∆β 10.0 9.7665 2.33
∆ζ 5.0 4.3708 12.58
βinit 35.0 40.4649 15.61
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optimization indeed implies that the inverse relation Ds	≈	0	=>	pmodel	≈	pdata (uniqueness and sta-
bility of the inverse problem) holds.

Most	 of	 the	 fitted	 parameters	 converged	 closely	 to	 the	 corresponding	 target	 values	 as	
assessed by the relative error. However, the parameters std Q (standard deviation of the normally 
distributed parameter Q),	βinit ,	and	∆ζ	have	errors	of	estimation	larger	than	10%	(Table	2).	This	can	
occur because of several reasons. First, it can be poor performance of the optimization algorithm. 
Second, it can be due to the low sensitivity of the chosen characteristic u to the parameter variation 
so	that	the	overall	progress	of	the	fitting	does	not	strongly	depend	on	the	changes	in	these	param-
eter values (i.e., the inverse problem is unstable). This, perhaps, occurs for std Q, which affects 
the tree branches of order higher than 1 for the given value ranges. Finally, some parameters can 
compensate	for	changes	in	others.	For	example,	the	initial	inclination	angle	βinit can be partially 
mimicked	by	higher	randomness	in	the	vertical	orientation	of	the	segments	∆ζ.	All	these	factors	
contribute to the poorer convergence of the aforementioned parameters.

However, poorer parameter convergence does not necessarily mean a poorer result: what 
we want is a close match between Umodel and Udata, and it is possible that this can be achieved with 
nonunique LIGNUM parameter combinations. This is even more probable with a model with many 
parameters, and has also biological grounds: the processes leading to a particular appearance or 
structure	of	a	complex	organism	are	probably	not	unique.	Simulations	with	16	parameters	to	estimate	
are also in favor of this argument (data not shown). The real test is not so much the closeness of 
the original and iterated parameters, but the similarity of the data and model U-distributions shown 
in Fig. 3 and, ultimately, the visible similarity of the data and model trees. Further study is needed 
to develop criteria for the best parameter and u-plot plane choice of the model to be estimated.

3.2 Real data

Next,	we	perform	a	 similar	optimization	procedure	on	 real	 tree	data	 rendered	as	 a	QSM. The 
structure of the data tree is shown in Fig. 4a (leftmost). The LIGNUM parameters for modeling 
were chosen as in Sievänen et al. (2008), with 16 free parameters to be estimated. Additionally, the 
model	included	the	stochastic	shedding	properties	defined	by	the	parameters	Tsh and µsh (Table 1). 
The target u plots were the tapering, the spatial curvature, and the branching angle, all for the 1st 
order branches. The results of this study are shown in Fig. 4.

First, we can see that there are certain drawbacks in the data, e.g., gaps between cylinders. 
Additionally, due to occlusion and distance effects the apical part of the crown is not fully captured 
by TLS; i.e., the crown appears to have fewer branches than in reality. Because of this, the coarse-
ness of the model, and lack of the u plots representing the trunk information, the tree height was 
underestimated (error is about 7%), whereas the crown branch density and the trunk base diameter 
were overestimated (error for the breast height diameter estimation is about 55%). Nevertheless, 
the structure of the crown was decently captured, indicating that the choice of u, the parameters 
to	estimate,	and	the	model	are	sufficient	for	the	purpose.	Note	also	five	different	sample	“clone”	
trees	all	simulated	with	the	same	best-fit	parameters.	The	trees	represent	similar	overall	structure	
with varying details of organization emulating the intra-species diversity (Fig. 4a).

The	dead	branches	are	also	present	in	the	model,	and	their	length	profile	corresponds	to	that	
of the real tree. This is due to the ad hoc stochastic shedding rules included in LIGNUM (Tsh and 
µsh). Although the measurements cannot provide for the foliage distribution in the tree, the model 
indicates that the foliage is spread at the upper part of the crown (Fig. 4b), which is plausible, given 
the natural conditions of this tree corresponding to the high-density tree stand.
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4 Discussion

We have introduced the concept of Stochastic Structure Models (SSMs), based on the QSMs of real 
trees, and provided the proof-of-concept by simulations and real data. To make the SSM procedure 
capable	of	producing	realistic	general	models	of	tree	growth,	the	next	steps	will	be	to	calibrate	
the models with a number of QSMs of trees of varying ages, include stochastic versions of fully 
synthetic	(rather	than	biologically-based)	flexible	algorithms	of	structure	formation	such	as	those	
in	Palubicki	et	al.	(2009),	experiment	with	various	ways	of	introducing	stochastic	distributions	
in the synthetic or FSPM models, model various tree species, and include the effects of inter-tree 
competition	required	for	the	construction	of	the	SSMs	of	entire	forests.	For	example,	the	choices	
of Ds, the stochastic model parameters, and the coordinate planes u are not unique and may depend 
on	the	species	(and	are	in	any	case	somewhat	simplified	in	this	 initial	study).	Also,	controlled	
experiments	should	be	carried	out	to	test	the	hypotheses	and	assumptions	behind	Ds, u, and p. For 
example,	one	could	expect	that	cloned	trees	grown	in	similar	circumstances	should	have	smaller	
mutual Ds than others, and the Ds of clones should correlate with environmental variation (e.g., 
provenance studies).

We	have	introduced	our	concept	to	initiate	an	extensive	program	that	requires	a	considerable	
amount	of	experimenting	by	a	sizable	collaboration	network.	For	this	purpose,	our	source	code	is	
downloadable from SSMLignumSF (2015). We emphasize that the technical choices in the code 
and	the	examples	here	are	just	one	sample	of	a	large	number	of	options.	To	speed	up	the	computa-
tions, parallel computing is highly recommended: this is easy to carry out, e.g., for the members of 
the trial populations used in the genetic algorithm. The optimization can take tens of hours of CPU 
time, so a cluster or cloud implementation reduces the real-time computational cost considerably.

The program code used in this work is available at: http://github.com/inuritdino/SFennica-
Lignum-SSM.

Fig. 4. The 16-parameter optimization of the stochastic LIGNUM model against a real pine tree (Data): a) tree shapes 
of	the	data	tree	(leftmost)	and	five	realizations	of	the	stochastic	LIGNUM	trees	fitted	to	the	data,	and	b)	a	LIGNUM	
tree	sample	with	foliage.	The	data	do	not	include	information	on	foliage.	The	five	“cloned”	stochastic	tree	models	all	
resemble each other in form, but differ in details. The optimal LIGNUM parameters estimated: LR = N(0.01,0.002), 
Q = N(0.11,0.03), T = 32, SL = 0.87 m, Smax = 72.4, Renv	=	N(0.83,0.23)	m,	βinit	=	34.6	degree,	∆β	=	5.5	degree,	∆ζ	=	
8.9	degree,	βmax	=	77.1	degree,	∆γ	=	7.6	degree,	Tsh = 12, µsh	=	5.2,	where	N(x,y)	denotes	the	normal	distribution	with	
mean x and standard deviation y. Other LIGNUM parameters are from Sievänen et al. (2008) and R = 60.0, VS = 0.02 m. 
See	the	parameter	definitions	in	Table	1.	The	genetic	algorithm	has	stopped	after	24	full	iterations/generations,	where	
each generation consisted of 50 parameter sets.

http://github.com/inuritdino/SFennica-Lignum-SSM
http://github.com/inuritdino/SFennica-Lignum-SSM
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