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Highlights
• Simple target-point detection in real time using only a stereo camera.
• Sturdiness ensured through the simple feedback system based on the same camera.
• Automated boom-tip control and log grasping successfully tested on full-sized forwarder.
• A step toward semi-automation (operator support) or autonomous forwarding.

Abstract
The forest industry is constantly striving to increase productivity and cut costs, and many research 
and innovation projects are currently focusing on semi-automated or autonomous systems. A 
key element, with several possible solutions, is automated log grasping, where researchers and 
manufacturers are looking for efficient and sturdy ways to solve the task in real-time forwarding 
operations. This study presents a simple method for automated log grasping using only a single 
stereo camera for object detection (log and grapple) and a simple controller moving the boom, with 
feedback from the camera as boom-tip control. The accuracy, precision, and repeatability of the 
method was tested on a full-scale forwarder. Boom movements were examined from two different 
start positions in relation to the target position, with the log placed at three different angles. The 
overall log-grasping success was also evaluated. The tests were performed in a full-scale, real-
time operation, without hand-eye calibration or other sensor data from the machine. The method 
was precise, with high repeatability, but the grasping point showed a minor systematic offset, 
depending on log angle. However, the deviation in accuracy was too small to affect the success 
rate. In practice, the most difficult log angles can be avoided by moving the machine slightly. The 
log grasping method may become part of an autonomous forwarding system or could provide 
operator support in semi-automated systems.
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1 Introduction

The forest industry is constantly striving to increase productivity and cut costs. The wage of a 
forwarder operator is generally 30–40% of the hourly rate of the forwarding cost (Hellström et al. 
2009). In the quest for greater cost efficiency in forestry, new research and innovation projects are 
focusing on semi-automated or autonomous systems (Lindroos et al. 2017, 2019; Lundbäck 2022). 
Autonomous forwarding by shuttles was seen as a first step towards full automation in forestry 
already 25 years ago (Hallonborg 1997; Ringdahl 2011). Visser and Obi (2021) concluded that wood 
extraction and transportation are likely to be the first robotic operations in forestry. According to 
Lundbäck (2022), autonomous loading has a higher economic potential than autonomous driving 
during forwarding work, since loading is the most time consuming work element. Another advan-
tage of autonomous systems in forestry is the potential to increase safety, by reducing dangerous 
tasks performed by human operators of heavy machinery (Abdelsalam et al. 2022).

Today, harvester and forwarder production data, as well as GNSS (Global Navigation Satellite 
System) tracking, is collected by the machines in a standardised way through StanForD2010 (2021). 
An updated version of the standard (v. 4.0) is currently implemented that includes information 
not only about the harvester position and boom angle, but also of the felling head position when 
felling the tree, as well as the position of the bucking cut and even the centre position of all logs 
on the ground. An upgrade in the machines to Real Time Kinematic Positioning (RTK)-GNSS 
receivers means that sub-metre accuracy is now possible in the forest (Noordermeer et al. 2021). 
This is sufficient for identification of individual logs from the harvester data, thereby enabling 
very precise planning of the forwarding operations. Using the harvester data in a decision sup-
port tool such as GoForward (Hansson et al. 2022) for creating efficient routes, and co-loading 
different assortments in the bunk without making unloading difficult, opens up for automated 
forwarding operations.

Previous studies have demonstrated the potential of autonomous full-scale, real-time, off-
road driving with forwarders (Gelin et al. 2021; La Hera et al. 2024). In simulations, reinforcement 
learning methods have been tested for loading one or more logs (Andersson et al. 2021; Wallin et 
al. 2024). Methods for detecting and positioning logs have been tested and evaluated by, e.g., Fortin 
et al. (2022) and Li and Lideskog (2023). Recently, studies on full-scale, real-time experiments 
of autonomous log grasping have been published. In 2021, La Hera et al. (2024) demonstrated 
autonomous forwarding in a simplified outdoor environment in Sweden. In a full-scale, log-loading 
test-bed in Canada, Ayoub et al. (2023) used a method where logs are identified and then replicated 
in a virtual environment, with grasp planning carried out using a convolutional neural network 
and a virtual depth camera, followed by loading in the real world. In Austria, Weiss et al. (2020) 
and Gietler et al. (2022) used a 1:5 model of a forestry industrial crane, and the latter presented an 
approach where learning-based visual grasp detection was used together with a hydraulic actuated 
log-crane converted into a robotic device by adding various external and internal sensors.

A forwarder with RTK-GNSS can put the grapple in roughly the right position by using 
the coordinates of the logs given by the production data of a state-of-the art harvester updated 
with StanForD 4.0. The remaining problem is to pick up the logs, as this requires more accurate 
information about the log position and orientation than is available from the harvester data, i.e. log 
angle and target point for grappling. Previous studies have used stereo cameras or LiDAR (light 
detecting and ranging) for this task (Weiss et al. 2020; Gietler et al. 2022; Ayoub et al. 2023; Li and 
Lideskog 2023). When the log has been identified/positioned, Weiss et al. (2020) propose accurate 
hand-eye calibration between the camera and crane to enable correct log grasping in space. This, 
however, requires high precision internal sensors, which is difficult to achieve in hydraulic systems 
such as forwarder booms. It also assumes that the camera is sturdily mounted, and that the method 
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has high repeatability, since such a system will have a static transform with no feedback between 
the camera view and how the boom moves.

This study presents and tests a novel, simple method for positioning the grapple to a usable 
target point and grasping logs using a single stereo camera. The test is performed in a full-scale, 
real-time operation, without hand-eye calibration or other sensor data from the machine.

The accuracy, precision, and repeatability of the method are tested in two field tests with a 
full-scale forwarder. The aims were to:

1. test accuracy, precision, and repeatability of the system by repeating the boom movement 
from two different start positions relative to the pick-up position, with the log placed at three dif-
ferent angles.

2. evaluate the extent to which the system picks up logs successfully, when the log is placed 
in three different log angles at three different locations in relation to the camera view.

Finally, the application of the method and need for further development in a future automated 
system is discussed.

2 Material and methods

2.1 Experimental site and equipment

The tests were carried out in the Troëdsson teleoperation laboratory outside Uppsala (WGS84 
59°54’38.7”N 17°42’7.8”E) 26–27 January and 7 February 2023. The laboratory consists of a 
crew shed equipped for teleoperation and a forwarder (Hansson et al. 2021). The forwarder is 
the Extractor XT28 six-wheeled pendulum-arm forwarder (Dell’ Amico et al. 2015; Gelin and 
Björheden 2020; Gelin et al. 2020), equipped with a Loglift 91F boom, a double swing damper 
(Indexator Dual swing damper 80–80-45 HD) and 0.35 m2-grapple from Loglift (FX 36). The 
forwarder has ROS (Robot Operating System, Stanford Artificial Intelligence Laboratory et al. 
2018) implemented as a control system. The machine can be fully operated by computer or by 
teleoperation over a wireless network using ROS nodes.

For this study, a single stereo camera (Stereolabs ZED 2) was used, placed roughly in line 
with the boom base, and offset towards the side to improve the line of sight to the log (Fig. 1). The 

Fig. 1. The XT28 Forwarder and the mounting position of the stereo camera (green circle, 
close-up to the right).
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Fig. 2. Flow chart of the control system logic. Input and outputs are orange, detected objects (rectangles) or 
calculated targets (ovals) are green, terms are red, actual detected boom positions are grey, movement is yellow. 
A detected log and positioned rotator give a calculated movement vector.
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functionality for detecting and positioning objects with the ZED 2 camera is based on the Stereolab 
Python API (https://www.stereolabs.com/) which uses YOLOv5 (You Only Look Once-v5). The 
computer used for image analyses in the study was a gaming laptop with Intel i7-10875 @ 2.3 
GHz x 16, Nvidia GeForce RTX2080, and 32 GiB RAM.

2.2 Development of the log-grasping node and model training

A novel boom control node was developed using the information from the stereo camera and logic 
to send control signals to the boom (explained below). Fig. 2 summarises the control system logics 
in a flow chart, and examples of log grasping are shown in the Supplementary file S1, available at 
https://doi.org/10.14214/sf.23062.

To train the model, around 500 images were tagged with five objects: the two shank-bolts 
on the grapple, the rotator, the log end, the grapple, and the log (Fig. 3). Images were sampled 
over a year in different weather conditions and seasons. The tests were mainly carried out on a 
gravel-covered car park.

The system calculates the position of the log by determining the median value from 50 
samples of the bounding-box centre obtained from the ZED-2 camera. Similarly, the median value 
from 50 samples of the bounding-box centre of the log-end is used to determine its position. If 
multiple objects are detected, the program chooses the log closest to the grapple and the log end 
closest to the log. The control node moves the rotator to 2 m above the desired target point (directly 

Fig. 3. Five objects, two shank-bolts on the grapple, the rotator, logs, and visible log ends were 
tagged in approximately 500 images to train object detection.

https://www.stereolabs.com/
https://doi.org/10.14214/sf.23062
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above the log position, Fig. 4), rotates the grapple so that the vector between the two shank-bolts 
is perpendicular (+/– 0.02 rad) to the vector between the log and the log end, then lowers the rota-
tor to 0.95 m above the log and closes the grapple. If the program cannot detect the shank-bolts, 
it slowly rotates the grapple until both bolts are visible.

The control program gives input to the boom equivalent to that of a human operating the 
joysticks. The system assumes that the inner boom changes the height of the grapple (Z direc-
tion in the ZED camera coordinate system), the outer boom changes the distance to the grapple 
(Y direction), and the slew changes the distance sideways (X direction). Fig. 4 demonstrates how 
the vector (ACi,j,k) for boom movement between present position and the position above the log is 
calculated. The actual positions of the identified objects are of less importance as the rotator and 
log are seen in relation to each other and the direction of movement is given from their relative 
positions in the same coordinate system of the ZED-2 camera.

A proportional controller is used to obtain a smooth arrival at the target, where the distance 
between the object and desired boom-tip position is used for scaling the signals. A distance of over 
one metre generates 100% signal amplitude. From one metre, the signal is scaled down proportion-
ally, with the distance in centimetres as a percentage of maximum signal amplitude.

To handle noise produced by the ZED camera, the control signal is smoothed by only allow-
ing it to change the signal by 0.05 per cycle, acting as a simple low-pass filter. The total amplitude 
of the signal is –1 to 1.

In some situations, the rotator is hard to identify through image analysis. To make the con-
troller more reliable when the rotator cannot be detected, the rotator position is calculated from the 
centre position between the shank-bolts by adding a fixed offset of 0.2 m to the side and 0.33 m in 
height. The accuracy of the calculated rotator position is in line with the noise of the camera, i.e., 
it is decided by the general precision of the method.

Log grasping will fail if the grapple is too high for the grapple shanks to reach beneath the 
log. This situation is detected by the camera: if the log end is not elevated at least 20 cm after the 
grapple has been closed, the system deems it as a failed attempt, opens the grapple and lowers the 
boom-tip to 85 cm over the log, then retries the pick-up. If the log end still does not move, the 
system sends a signal for failed pick-up and aborts the operation.

Fig. 4. The centre point of the rotator (a, orange), the log centre (b, purple), and the target position 2 m above the log 
(c, yellow). AC(i,j,k) is the vector of the boom movement based on the present position and used as control signals to the 
boom where component i goes to slew, component j goes to the outer boom and component k goes to the inner boom.
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2.3 Experimental field test

2.3.1 Test 1

The purpose of Test 1 was to measure accuracy and precision/repeatability of the system. The 
grapple started from two different locations and reached a position directly above the log. The log 
used in the test was 4.87 m long, with end diameters of 0.34 m and 0.27 m. The tests were car-
ried out with the small end closest to the machine. The weather was cloudy and humid with an air 
temperature of 3 °C. The ground was partly covered with snow.

The camera, the log, and the stationary part of the rotator were all measured with a GNSS-
receiver (ArduSimple, ublox F9p) with RTK-correction from the Swedish Land Survey Authority 
(Lantmäteriet). During the test the GNSS-receiver was mounted on the rotator.

Three log angles (1 = 11°, 2 = 129° and 3 = 94°) were tested with the log centre (i.e., the 
boom-tip target point) remaining in the same position (Fig. 5). The test was repeated 10 times for 
each starting position and log angle, except for angles 2 and 3 where only 9 datapoints from start 
position 2 were recorded (n = 58). All positions were corrected for the offset (140 mm) of the rotator 
centre to the GNSS-antenna in the data analysis. For each log angle, the arithmetic mean value of 
all positions was calculated, and both the distance from the mean position to the log centre point 
and the shortest distance to the centreline of the log were calculated. The average distance from 
the mean point to each recorded point was also calculated.

Fig. 5. Set up of Test 1 with start positions of the grapple (points) and different log angles 
(lines). The logs are placed in front of the camera on the left side of the machine. Angle 1 = 11°, 
Angle 2 = 129° and Angle 3 = 94°.
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2.3.2 Test 2

The purpose of Test 2 was to establish the success rate of log grasping with the log placed in three 
different locations, with three different log angles at each location (Fig. 6). Angle A was 53°, 53°, 
and 43° for position 1, 2, and 3, respectively. Angle B was 92°, 88°, and 91° and angle C was 118°, 
120° and 134° for position 1, 2 and 3, respectively. All angles are given counterclockwise from 
the positive x-axis in the coordinate systems of Figs. 5–9.

The weather during the day of Test 2 was sunny with a temperature of 3 °C, with the sun at a 
low angle, almost directly from the left in relation to the camera. The same log as in Test 1 was used.

The grapple was positioned at the starting position (orange dot, Fig. 6) and a command to 
pick up the log was given. Five attempts were made for each log position and angle (n = 45).

The criteria for a successful grasping were:
• Position: The centre of the grapple must be at least 25% from either of the log ends.
• Height: The grapple jaws should be closed under the log, not pinching the log with the 

tips. If the first try fails and the system detects it as a failure, one more attempt is allowed 
before the grasp is deemed a failure (as described above).

The camera, the log and log angles were all positioned with the same GNSS-receiver as in 
Test 1.

3 Results

3.1 Test 1

The recorded grasping positions are displayed in Figs. 7–9, and the mean distance from the final 
grapple position to the log centre in Table 1. Generally, the repeatability of finding the log centre 
was high, with an average distance for the different repetitions to the mean point of repetitions 
less than 10 cm (Table 1). However, the cluster of pick-up positions was slightly skewed to the 
side of the log, depending on the angle. The mean point of the trials was closest to the log centre 
for angle 1 and farthest away for angle 3 (Table 1, Figs. 6–8). All points, except one, lay within 
the jaws of the grapple (Fig. 9).

Table 1. Results of Test 1 – repeatability. Number of trials (n) of movements from two different starting positions to 
estimated log centre when the log is placed in three different angles, distance (cm) from the arithmetic mean point of 
individual pick-up positions to log centre, standard deviation (STDAV (cm)), minimum/maximum distance from mean 
point to pick-up points (cm), and distance (cm) from the arithmetic mean point to log centreline.

 n Mean point to log 
centre (cm)

STDAV 
(cm)

Min/Max distance from 
mean point (cm)

Mean point to log 
centreline (cm)

Angle 1 (11°) 20 24 7.3 2/16 21
Angle 2 (129°) 19 73 9.6 4/14 36
Angle 3 (94°) 19 83 8.5 3/42 16
Angle 3 deviating point excluded 18 84 6.6 3/15 18
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Fig. 8. Test 1, angle 2. Log and grapple positions. The axes show distance in metres to the camera. The starting posi-
tions are represented by large symbols and the end positions with small symbols. The log outline is represented by a 
dashed line.

Fig. 9. Test 1, angle 3. Log and grapple positions. The axes show distance in metres to the camera. The starting posi-
tions are represented by large symbols and the end positions with small symbols. The log outline is represented by a 
dashed line.
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3.2 Test 2

The system successfully grasped the logs in 37 of the 45 attempts, achieving a success rate of 
82% (Table 2). Five of those succeeded at the first attempt and 32 at the second (Table 2). Failures 
during the initial attempt were attributed to various causes. Specifically, in two instances at position 
1, angle A, the system failed to determine the log’s position, causing the grapple to move out of 
the camera’s field of view. After two consecutive failures, the program was restarted, successfully 
resolving the issue. The last attempt at position 1, angle B, also failed, as the grapple, although 
near the correct position above the log, did not meet the system’s criteria. The subsequent trial, the 
first attempt at position 1, angle C, also failed, leading to a system restart. All subsequent attempts 
were successful, except at position 3, angle C, where the system managed to pick up the log only 
once. On the unsuccessful attempts, the grapple was correctly positioned but continuously rotated 
without initiating the log pickup.

4 Discussion

The results indicate that one stereo camera may suffice for object recognition and grapple posi-
tioning to grasp logs autonomously with a full-scale forwarder. In 82% of the trials the system 
successfully identified and picked up the log (Table 2) and, in another 9%, the failures were solved 
by restarting the program, indicating other problems than the method itself. In the remaining 
failures (9%), the grapple was close to or at the position above the log, but the system was never 
satisfied with the position and the grapple was rotating. A limitation of the present system is when 
the grapple is rotated towards the camera centre-point. The system measures the grapple angle by 
detecting the bolts on the grapple and, when those cannot be detected, the system cannot measure 
the angle. This is what happened in Test 2, location 3, angle C. There are several possibilities to 
overcome this issue. A simple fix may be to look at the bounding box of the grapple and adjust the 
angle until the smallest width is reached. However, in real-life, the machine can be repositioned 
by driving forwards or backwards to avoid this situation. An easy way to increase the success rate 
of the first attempt is to set the reference height of the rotator 10 cm lower above the log directly 
(0.85 m instead of 0.95 m). However, this would also involve grasping a significant amount of 
gravel/soil, which is undesirable. Another option, applicable to a hard smooth surface as in the 
tests presented here, is to detect the log diameter at the log end and automatically adjust the refer-
ence height above the log in relation to the diameter of the log end. However, in real conditions 
on the soft forest ground with mosses, small bushes (Ericaceace spp.), and harvest residues, it is 
challenging to detect the entire log end, which might result in an incorrect reference height. On 
the other hand, an advantage of the soft organic layer is that the grapple can be positioned lower 
than on a hard surface without grasping mineral soil.

Table 2. Results of Test 2 – pick-up success. The number of attempts that succeeded at first or second trials are pre-
sented, as well as the failures for each position and angle. Angle A was 53°, 53°, and 43° for position 1, 2, and 3, 
respectively. Angle B was 92°, 88°, and 91° and Angle C was 118°, 120° and 134° for position 1, 2 and 3, respectively. 

Angle A Angle B Angle C
 Success  

1st attempt
Success

2nd attempt
Failures Success  

1st attempt
Success

2nd attempt
Failures Success  

1st attempt
Success

2nd attempt
Failures

Position 1 1 2 2 0 4 1 0 4 1
Position 2 0 5 0 0 5 0 1 4 0
Position 3 2 3 0 1 4 0 0 1 4
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The system demonstrated high repeatability/precision, as shown in Test 1 (Table 1, Figs. 7–9). 
However, depending on the angle of the log towards the camera, the system estimates the log 
centre differently. The best estimate is for angle 1 (Table 1, Fig. 7). The system has more difficul-
ties when the log is positioned with the end towards the camera, making the log look shorter than 
it is, resulting in a centre position estimate closer to the camera. If the logs are in an unfavourable 
position/angle, one possibility is to use a slower but more precise detection method for the ini-
tial measurement of the log to get a good position and angle, such as the semantic segmentation 
methods used by Fortin et al. (2022). The boom could then be moved to the desired position using 
the faster method in this article. Semantic segmentation is probably also better when it comes to 
grasping a pile of logs, instead of one at a time. As can be observed in Figs. 7–9, the target point 
identification seems to include a systematic offset, depending on the log angle. The offset, how-
ever, was too small to influence the success rate of log grasping. The reason for the skewed target 
identification is that the centre of the two-dimensional bounding box is used for calculating the 
three-dimensional target coordinate. When the log ends are at a different distance from the camera, 
the bounding-box centre will represent a point closer to the nearest log end. As the skewedness is 
systematic with high precision and repeatability, it is easy to adjust in future trials.

Fast object identification and positioning is key for the suggested method. A regular gaming 
laptop can run the detection and positioning at a speed of ~24 Hz, sufficiently fast to satisfy the 
machine’s minimum requirement for control signal frequency. This is also fast enough to compen-
sate for the non-independent and non-linear control used. As an example, when the system wants 
the grapple to go straight in the Z direction it will send a signal to the inner boom. When the inner 
boom is changed, the grapple will also travel in the Y direction. That change is detected, and the 
system then sends a signal to change the outer boom to get the Y-value of the grapple back to the 
desired value.

The suggested method is simpler compared to the approaches used in previous studies, where 
the camera is used to position the log in the coordinate system of the boom (Gietler et al. 2022; 
Ayoub et al. 2023; Li and Lideskog 2023; La Hera et al. 2024). Since our study served as an initial 
test of a new method, we have not assessed the accuracy of YOLOv5 itself in determining the correct 
coordinates from image data. Others, such as Li and Lideskog (2021), have conducted evaluations 
on the precision of positioning stumps and stones in a clear-cut forest environment using a similar 
system. Their findings indicate that, within 1–10 m from the camera, objects could, on average, 
be positioned within 0.33 m of their true coordinates. In another study (Li and Lideskog 2023), 
they positioned logs with a 0.27 m mean error from its true location and angle mean error of less 
than 3°. An advantage of our suggested method is that the system identifies the relative position 
between the objects, not the absolute position relative to the camera. This makes the control less 
reliant on the accuracy of the camera and the absolute position of the camera relative to the boom 
given by the YOLO-model.

Today, most forwarders lack a sensor for the rotation of the grapple, which makes it impos-
sible to operate the boom autonomously without retrofitting the boom with some kind of rotator 
angle sensor. The system used in this study could be mounted on almost any forwarder, and only 
needs calibration of the boom control signals.

A limitation of the suggested system is that it only uses three degrees of freedom for the 
boom. To utilise more degrees of freedom, i.e., the extension boom, a system with better knowledge 
about its parts from, for example, internal sensors must be used, or a boom with a more advanced 
control system, such as boom-tip control. The current control system relies only on system speed 
to adjust for motion errors. One way to make the control system smoother is to implement a self-
learning control algorithm to give the system an ability to think ahead. A skilled operator works 
in this way, and moves multiple axes at once to get the desired movement of the grapple instead 
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of only reacting to unwanted changes. A first step would be to prioritise motions in certain situ-
ations where the boom is likely to hit the ground with the current control strategy. Future work 
also includes expanding the image analysis training dataset, to enable the controller to identify 
the objects with higher precision. For this, open datasets, such as TimberSeg1 (Fortin et al. 2022), 
could be used as a complement.

The method also requires evaluation under various ambient light conditions and sun angles 
before conducting full operational tests. Additionally, it is essential to ensure that the method 
functions effectively in low-light or dark conditions, with support from the forwarder headlights.

Controlling robots with only cameras and interceptive sensors (cylinder pressures, positions, 
engine load, etc) is an interesting approach, as almost all the information used by an operator is 
available, and the cost of sensors is low. Other data from, e.g., LiDAR, radar, and ultrasound could 
sometimes be used to improve accuracy of the information, but then the information overlap needs 
to be managed.

The method described in this study could be a part of an automated system. One possible 
setup is that both the harvester and forwarder are equipped with RTK-GNSS receivers with very 
high accuracy and precision. The forwarder follows the route suggested by the decision support 
tool GoForward (Hansson et al. 2022), either manually, teleoperated, or by autonomous driving. 
The input data to GoForward comprises various kinds of geodata and the harvested production 
(hpr) files from the harvested site. It is important that v4.0 of StanForD2010 (2021) is implemented 
to ensure that log positions are given. Based on the GoForward route, the forwarder positions 
itself with the camera facing the logs to grasp. The log grasping is carried out as described in this 
study and when the log is lifted above the ground, the boom’s internal sensors are used to follow 
a programmed path to place the logs in the bunk. There are several different methods for placing 
the logs in the bunk autonomously (Westerberg 2014; La Hera et al. 2021). From the harvested 
production file, the system is aware of the number of logs spread out in a specific area. If multiple 
logs are visible in the same image, the system selects the one closest to the camera and can also 
indicate if multiple logs are observed on the ground. The loading cycle could be repeated until no 
more logs are visible. The system could then compare this information with the harvested produc-
tion data for the same area to ensure that all logs within reach of the forwarder are loaded into the 
bunk. Then, the forwarder moves along the route proposed by the GoForward tool and repeats the 
log-grasping and loading. To prevent situations where the system comes to a standstill because 
logs that should be present are not recognized by the image system, the machine could prompt the 
operator to intervene. The operator could swiftly teleoperate the machine, identify the logs, and 
manoeuvre the grapple accordingly. This poses no issue if the majority of the logs are detected by 
the system, and the operator can monitor multiple machines simultaneously.

To conclude, this study presents simple target-point detection and log grasping in real time 
using only one stereo camera. The sturdiness of the method is ensured through the simple feedback 
system based on positioning both the log and the grapple with the same camera so that no calibra-
tion or sensor fusion is needed. The presented system provides a method for achieving automated 
boom-tip control with a standard boom, designed without boom-tip control. The log grasping was 
successful when tested on a full-sized forwarder in real time, but needs to be adjusted to grasp 
more than one log at a time. The method may become part of an autonomous forwarding system 
or could provide operator support in semi-autonomised systems.
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