ACTA FORESTALIA FENNICA

Vol. 117, 1971

Protection of Spruce Stumps against Fomes annosus (Fr.) Cooke by some Wood-inhabiting Fungi

Kuusen kantojen maannousemasieni-infektion estäminen muutamia puussa kasvavia sieniä käyttäen

Tauno Kallio

TO RESTATION

SUOMEN METSÄTIETEELLINEN SEURA

Suomen Metsätieteellisen Seuran julkaisusarjat

- ACTA FORESTALIA FENNICA. Sisältää etupäässä Suomen metsätaloutta ja sen perusteita käsitteleviä tieteellisiä tutkimuksia. Ilmestyy epäsäännöllisin väliajoin niteinä, joista kukin käsittää yhden tutkimuksen.
- SILVA FENNICA. Sisältää etupäässä Suomen metsätaloutta ja sen perusteita käsitteleviä kirjoitelmia ja lyhyehköjä tutkimuksia. Ilmestyy neljästi vuodessa.

Tilaukset ja julkaisuja koskevat tiedustelut osoitetaan Seuran toimistoon, Unioninkatu 40 B, Helsinki 17.

Publications of the Society of Forestry in Finland

- ACTA FORESTALIA FENNICA. Contains scientific treatises mainly dealing with Finnish forestry and its foundations. The volumes, which appear at irregular intervals, contain one treatise each.
- SILVA FENNICA. Contains essays and short investigations mainly on Finnish forestry and its foundations. Published four times annually.

Orders for back issues of the publications of the Society, subscriptions, and exchange inquiries can be addressed to the office: Unioninkatu 40 B, Helsinki 17, Finland.

PROTECTION OF SPRUCE STUMPS AGAINST FOMES ANNOSUS (FR.) COOKE BY SOME WOOD-INHABITING FUNGI

KUUSEN KANTOJEN MAANNOUSEMASIENI-INFEKTION ESTÄMINEN MUUTAMIA PUUSSA KASVAVIA SIENIÄ KÄYTTÄEN

TAUNO KALLIO

HELSINKI 1971

PROTECTION OF SPRUCE STUMPS AGAINST FOMES ANNOSUS (FR.) COOKE BY SOME WOOD-INHABITING FUNGI

Suomen Metsättelsellisen Seuran julknisnsarjat

10 KC-R 3% Kehr 186 36 A.M.S. GULDA Scholm, McLARX K.M.R.R.M.R.R.P. (2) Leav periodella interestiva particular fields where the first state addisin valiajoin terretty for an interaction of the product and the source. Similar employer Success metaltaloutta ja see periodella kasitalovia kirjoitemia ja tyhyehköjä tutkimuksia. Himatyy atijästi vuodessa.

Tilaukset ja julkainija kodelvik Galdeliik oseitetaan Senran toimistooo / Uniminikata 40 B, Helsinki 17.

Publications of the Society of Forestry in Finland

kers. Foncerants: Fanning. Contains according to an interval of the second states with Finnish forestry and its foundations. The volumes, which appear at irregular intervals, contain one trustise each.

a vs Fasserics. Contains sparyt and short investigations mainly on Pionish forestry and its foundations, Published her more convally.

Orders for back issues of the publications of the Society, subscriptions, and exchange inquiries can be addressed to the office: Unioninkatu 40 B. Helsiuki 17, Finland.

Suomalaisen Kirjallisuuden Kirjapaino Oy Helsinki 1971

In 1959-1964 I studied the chemical control of Fomes annosus (Fr.) Cooke, and these studies awakened my interest in the biological control of the fungus. An opportunity of carrving out the relevant studies was afforded in connection with my investigation of the airborne distribution of Fomes annosus in 1967-1969.

The study would not have been possible without much assistance. Dr. AINO KÄÄRIK of the Roval College of Forestry, Stockholm, Sweden, taught me the identification of decay fungi from cultures and Mr ARVI SALONEN of the Department of Plant Pathology, University of Helsinki, that of the Fungi imperfecti. Dr. VEIKKO HINTIKKA read the manuscript and suggested valuable amendments. Mrs. ANNA-MAIJA HALLAKSELA carried out the bulk of the laboratory work, conscientiously and precisely. The personnel of the Department of Plant Pathology, University of Helsinki, assisted me in various ways towards the completion of the study. The study was carried out in a forest owned by the City of Helsinki.

I was granted financial support by the University of Helsinki and the Foundation for Research of Natural Resources in Finland.

I wish to express my very best thanks to all those mentioned above.

Helsinki, February 1971

Tauno Kallio

CONTENTS	
	page
ntroduction	
faterial and methods	
Outline of the study	
Results	
Laboratory tests	. 5
Fomes annosus on cut stump surfaces	. 6
Other fungi on cut stump surfaces	. 9
Fungi isolated from excavated inoculated stumps	. 11
Discussion	. 16
ummary	. 17
References	. 17
eloste (summary in Finnish)	. 19

Biological control in plant pathology can be defined as protection against disease by means of one or several living organisms. According to GARRETT (1965), this implies any living organism except the host plant and man. The borderline between biological and other forms of control is open to various interpretations. In the following, the possibilities of controlling *Fomes annosus* with the aid of other wood-decaying fungi are considered. This might also be termed microbiological control.

A large number of microbes are known to be antagonistic to F. annosus. They include e.g. the Actinomyces spp. (NISSEN 1956 a and 1956 b), Aspergillus spp. (ENEBO 1949), Beauveria bassiana (Bals.) Vuill. (LAINE and NUOR-TEVA 1970), Boletus bovinus L. and Boletus variegatus (Sw.) Fr. (HYPPEL 1968), Botrytis cinerea Pers. (GUNDERSEN 1967), Coryne sarcoides (Jacq.) Tul. (RICARD 1970), Hypholoma fasciculare (RISHBETH 1948), Hypholoma sp. (RISHBETH 1951 a), Lenzites sepiaria (Wulf.) Fr. (BOYCE 1966), Penicillium claviforme Bainier (RENNERFELT 1949), Penicillium spp. (RISHBETH 1948, BJÖRKMAN 1949), Peniophora gigantea (Fr.) Massee (RISHBETH 1948, 1950, 1952), Polyporus abietinus (Dicks.) Fr. (BOYCE 1966), Polyporus adustus (Willd.) Fr.

(RISHBETH 1970), Scytalidium spp. (KLING-STRÖM and BAYER 1965, RICARD 1970), Stereum sanguinolentum (A. & S.) Fr. (RISHBETH 1970), Streptomyces griseus (Krainsky) Waksman et Henr. (GUNDERSEN 1962 a), Trichoderma alba Preuss (RICARD 1970), and Trichoderma viride Pers. (RISHBETH 1948, RENNER-FELT 1949). On the other hand, F. annosus has also been reported to be antagonistic to other microbes (WILKINS 1946, RENNERFELT and PARIS 1953).

F. annosus is aerially distributed in South Finland during the snowless seasons via stump surfaces after fellings (KALLIO 1965). As a result of year-round fellings, fresh stump surfaces are available also in those seasons of the year when the diaspore settling of F. annosus is at its maximum (KALLIO 1970). The purpose of the present study was to find out whether the spreading of F. annosus via spruce (Picea abies (L.) Karst.) stumps can be reduced by treating the stump surfaces, immediately after felling, with laboratorygrown mycelial suspension of a few common spruce-decaying fungi. The following fungi were used: Fomes pinicola (Sw.) Gillet., Lenzites sepiaria (Wulf.) Fr., Peniophora gigantea (Fr.) Massee, Polyporus abietinus (Dicks.) Fr., and Trichoderma viride (Pers.).

MATERIAL AND METHODS

Outline of the study

The main part of the investigation was carried out in a forest about 14 km east of the centre of Helsinki. It was a mixed forest of spruce, pine, birch and aspen, 50—100 years old, and was being thinned. The forest site was mostly Myrtillus Type (MT). Judging from the cut surfaces, an average of 38 per cent of the felled trees were decayed. In the course of thinning operations, twenty to thirty spruces were felled every month for one year in the usual way, but then the surfaces of the spruce stumps, which to the naked eye seemed to be free from decay, were inoculated with the mycelial suspension of the fungi to be tested, using an ordinary paint brush. At the time of felling, a disc about 4 cm thick was sawn from the butt end of every tree included in the study. The disc was kept in the laboratory for 10 days at $+ 20^{\circ}$ C, wrapped up in plastic. After this the surface of the disc was studied by stereomicroscope to identify *F. annosus* conidiophores. If conidiophores were found the relevant stump was excluded from the study.

The mycelial suspensions with which the stump surfaces were inoculated were prepared by culturing the fungi on malt agar in a Petri dish for 4—6 weeks. The diameter of the dishes was 8 cm, and each contained 10 ml agar. The growths of four dishes were crushed and mixed with 240 ml sterile distilled water. This made the suspension with which 5 stump surfaces were inoculated.

About a year after the inoculation, specimens were taken from the stumps. The profuse logging waste resulting from the thinning made it impossible to find all the stumps that had originally been included in the study. A disc about 4-5 cm thick was first removed from the stump surface by power saw as aseptically as possible. Two more discs were then sawn from the stump, each about 3-4 cm thick, the saw blade being immersed in alcohol between the sawings. An arrow pointing towards the north was drawn on these discs. The top surface of the undermost disc was marked out on tracing paper in the laboratory, with the arrow pointing northwards. This disc was kept in the laboratory for 10 days, wrapped up in plastic. On its surface, the areas growing F. annosus conidiophores were localized and their borders outlined with pencil. These areas were then copied onto the tracing paper.

Identification of the fungi discolouring the

wood was attempted from the top disc. Strips 4 cm wide, running north-south and eastwest through the centre of the disc, were drawn on the surface of each disc, and along these strips small specimens were taken from all discoloured areas of wood. The fungi of these specimens were cultured on malt agar for identification. This method had been previously used by many authors (e.g. Käärik

1967 and von PECHMAN et al. 1968). After the samples had been taken, a few stumps were excavated with their roots. The roots were cut into lengths starting from the distal ends, and fungi from all discoloured spots visible to the naked eye were cultured on malt agar for identification on the basis of their mycelia.

Fungi used for inoculations

The fungal mycelia isolated from spruce discs had grown after airborne invasion of the discs in the summer of 1967 in Helsinki. Earlier information on the antagonism of other fungi towards *Fomes annosus* could already be found in the literature, except for *Fomes pinicola*. It was included in the investigation since it was very common in Finland, and also because the author had never found sporophores of *F. annosus* and *F. pinicola* on the same spruce stump.

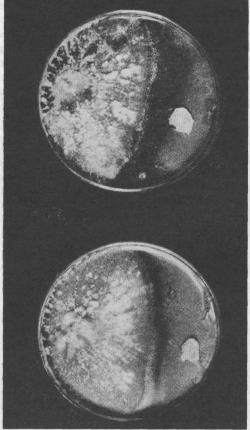
RESULTS

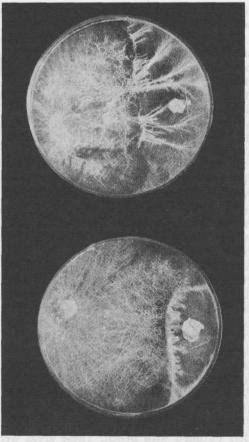
Laboratory tests

Laboratory tests were carried out with the listed fungi in order to verify the properties that were antagonistic to *F. annosus*. On malt agar substrate, *F. annosus* was inoculated into one side of the Petri dish and one of the studied fungi into the other. The growth of the fungi was then observed in the laboratory. A similar method has been used in *F. annosus* studies e.g. by RENNERFELT (1949), GUNDERSEN (1962 a, 1962 b), and FEDOROV and STAICHENKO (1968). In the present study, *Lenzites sepiaria* and *Fomes pinicola* were able to hold their own on malt agar against F. annosus. L. sepiaria and Polyporus abietinus, however, covered almost all F. annosus growth in about 10 weeks (typical growths in Figs. 1 and 2). Nevertheless, F. annosus conidiophores could still be seen on the substrate after 10 weeks of growth together with the two fungi mentioned. With Trichoderma viride on a growth substrate, F. annosus held its own relatively well right from the beginning, and in some culture tests was even able to suppress the T. viride growth (typical growths

Fig. 1. Lenzites sepiaria (left) and Fomes annosus (right) growing on their separate areas of malt agar substrate about 10 weeks after inoculation.

in Fig. 3). Peniophora gigantea totally covered the conidiophores of F. annosus in 5 weeks (Fig. 4).


Of all the fungi used for the tests, in cultures on malt agar, the P. gigantea strain was the most superior to F. annosus.


Fomes annosus on cut stump surfaces

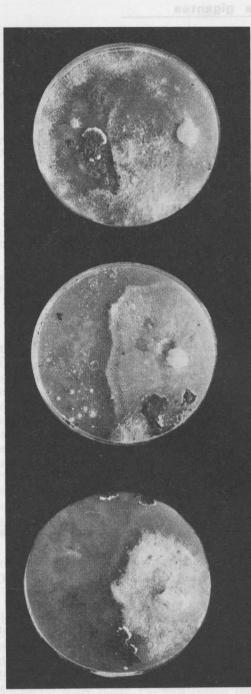

The diaspore fall of the root rot fungus in South Finland is most profuse from May to October (KALLIO 1970). Infection of the cut stump surfaces, however, does not depend on the F. annosus diaspore fall alone, for e.g. microbes antagonistic to F. annosus on the stump surfaces may interfere with infection

Fig. 2. Polyporus abietinus (left) has almost totally covered the Fomes annosus (right) growth about 10 weeks after inoculation.

by the root rot fungus (DRIVER and GINNS 1969). In the present study the root rot fungus invariably began to grow on one or a few cut surfaces of the control stumps after each felling made between May and August 1968. All inoculations with F. annosus were successful. According to Fig. 5, Peniophora gigantea was the only one of the fungi used to control F. annosus, which completely inhibited it. The present result is not in full agreement with that reported by RISHBETH (1970) on the infection of spruce stumps in England. According to him, P. gigantea failed to provide complete protection against the invasion of the cut surfaces of spruce stumps by airborne root rot fungus; on the other hand, a number of the stumps he examined were already decayed when the study began.

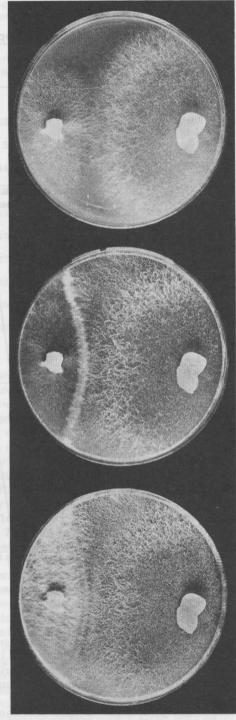


Fig. 3, Trichoderma viride (left) and Fomes annosus (right) about 8 weeks after inoculation. In the top picture the substrate is predominated by F. annosus. In the two lower pictures each fungus is growing in its separate area.

Fig. 4. Fomes annosus (left) and Peniophora gigantea (right) 8 days (top), 11 days (middle) and 35 days (bottom) after inoculation. In the last plate there are no longer any identifiable conidiophores of F. annosus.

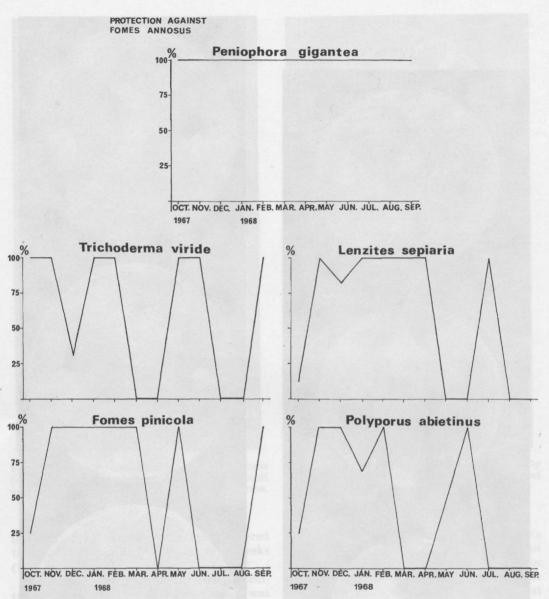


Fig. 5. Effect of different fungus inoculations on the colonization percentage of spruce stumps by $Fomes \ annosus.$

The present study excluded all stumps where decay had started. The other fungi used to control the root rot did not appreciably protect the cut stump surfaces against F. annosus infection.

Spruce stumps were also inoculated in January-September 1968 as shown in Table 1: immediately after felling the stumps were inoculated with the fungi intended to control infection and directly afterwards with F. annosus, while other stumps were first inoculated with the fungus intended to control infection and 10 days later with F. annosus. Table 1 shows the percentages, a year after the felling, of the areas occupied by F. annosus conidiophores in the total cut surface inoculated as described. In April-August, P. gigantea almost completely de-

Table 1. Fomes annosus present on the stump surfaces one year after inoculation. The area of conidiophores per cent of total stump surface area.

the dependent of the attraction here is	1968										
Month of inoculation	Jan.	Feb.	Mar.	Apr.	May	Jun.	Jul.	Aug.	Sep.		
Inoculation with:	at all			the added				is fuor	Hale		
Peniophora gigantea + Fomes annosus Peniophora gigantea + Fomes annosus	2	4	13	0	ara gia	0	0	4	27		
10 days later	3	7	3	0	0	0	4	0	4		
Trichoderma viride + Fomes annosus Trichoderma viride + Fomes annosus	23	86	44	7	in the reading	30	88	37	52		
10 days later	43	39	69	20	1	1	0	41	3		
Fomes pinicola + Fomes annosus Fomes pinicola + Fomes annosus	15	30	33	36		59	96		81		
10 days later	2	11	45	17	16	8	11	23	0		
Lenzites sepiaria + Fomes annosus Lenzites sepiaria + Fomes annosus	27	40	27	32	See a	53	42	12	33		
10 days later	33	43	23	5	19	41	6	8	2		
Polyporus abietinus + Fomes annosus Polyporus abietinus + Fomes annosus	43	5	89	11	ishtari 	45	25	51	26		
10 days later		20	57	1	8		3	2	6		

stroyed the *F. annosus* inoculated in the stump either at the same time or 10 days later. At other seasons of the year the root rot fungus was more competitive. According to the result obtained, *F. annosus* competes with *P. gigantea* more effectively at low than at high temperatures. Of the other fungi, only *T. viride* and *F. pinicola*, in one case each, were capable of destroying *F. annosus*. This result corroborates that reported from Sweden (PERSSON-HÜPPEL 1963), according to which the antagonism of *T. viride* to *F. annosus* also depends on factors other than the temperature.

Other fungi on cut stump surfaces

A study of other fungi occurring on the cut stump surfaces revealed a certain similarity between stumps inoculated with *Fomes pinicola*, *Lenzites sepiaria* and *Polyporus abietinus*. All stump surfaces inoculated with these fungi became infected by a relatively large number of other fungi. For this reason the results for the said three fungi were combined in Table 2. *Stereum sanguinolentum* was the commonest of the fungi infecting the cut stump surfaces inoculated with the above three fungi, but other species were also found. F. annosus was also among the infecting agents, and so were P. gigantea and T. viride. It seems clear that the ability of F. pinicola, L. sepiaria and P. abietinus to occupy the cut surfaces of spruce stumps at an early stage was relatively limited. Stumps inoculated with these three fungi also became infected by a number of other fungi and, especially after summer inoculations, by bacteria.

Trichoderma viride is apparently much more effective than the above three species in occupying the cut surfaces of inoculated spruce stumps. From October to April this fungus inhibited or reduced the infection by several other fungi. During the very low midwinter temperatures, S. sanguinolentum was one of the fungi invading inoculated stump surfaces; it was also capable of infecting stumps that, at the time of felling, had been inoculated with F. annosus. In the February-March inoculations T. viride was relatively predominant, yet, during these months, stumps inoculated with T. viride were infected by e.g. P. gigantea. In May-July inoculations T. viride was still competitive on the cut surfaces of stumps, but in August-Septem-

Stump surface inoculated with:	Fomes pinicola Lenzites sepiaria Polyporus abietinus			Trichoderma viride			Peniophora gigantea			Control		
The time of inoculation	Oct Apr.	May- Jul.	Aug Sep.	Oct Apr.	May- Jul.	Aug Sep.	Oct Apr.	May- Jul.	Aug Sep.	Oct Apr.	May- Jul.	Aug. Sep.
Fungi from stumps										COLUMN STREET	nolls	laocu
Coryne sarcoides	10	1	1		1.00	1	2	1			n nada	Penelo
	1.1	0				1		areb (our of the	n Josto	01016.2
Armillaria mellea				1			1					
Corticium sp.	1 1 1 1		14		12	an it		a same		1	omush	
Flammula sp.		1.1		1			11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1			and and and a	Din 191	
Fomes nigrolimitatus	1	1.00	1.1.03	Fred and	10 inter	and the				an na	SNUT COTH	0203 L L
» pinicola	12	1	1	1		1				6	1.1.1	1
Grandinia spp.	1	1		1. 1.	2	7.9		-	2 million	1		
Hypholoma sp.									Formes	1		
» capnoides	1	diary.	1		10.5	611		1.1.1.1.1	Los mar	1		Serve 2
Lenzites sepiaria	3	2	2		1000	3.2.1					2	100
Merulius spp.	the fear	1				and I			and the second		1	ions.
» tremellosus	5	3				1	1			5	5	in the second
Peniophora cinerea	3		1	1		221		at men		9		12000
» gigantea	11	6		7			42	15	8	5	9	2
» incarnata	1	1 1 1 1	1.0			100	in a comp			1		
» pithya	48	1	5	5	1.11	3	9			30		1
Polyporus abietinus	8	3	3		e H		Inter	Swall-		1	an era ar	1
» adustus	4						1.7.0 Sec.	C. C. Carrow				
» resinosus	1							1				
» zonatus	2				1.1.1.1.1.1		1			1	1	
Poria sp.	1	in traine	min			hal	alima			in la		
» candidissima	1				100	1124		11 813	ionnos	- 2	OT D	10.17
Stereum purpureum	10	1.320	01.691	1	vab.	11 (10)	2	ante	C Set 1	6	1119	(mag)
» sanguinolentum	57	9	2	9	001.9	di nil	7	silter	10368	21	16	1
Trametes serialis	10	a bus	ents		rebra	Ace	COLMA	amo	19302	2	Subri	11.10
Trechispora brinkmanni	4	1	-course	1	atari		man		minia	2		and a
histing in another that	dia la				edit							11.1
Alternaria spp.	11.12		1		1511.1	run and	(10 V I	effeqt	93003	Salea	616 .0	1
Cephalosporium spp.	6	10	1		2	1	the o	1	tures	2	9	5
Cylindrocarpon sp.	1	ative	85 10		r bas	ao n	plat.	inia.	A ba	1 333	T. BU	din
Phialophora sp.	1	1 920	(Cali		molon	E an	Derive	- Jank	10.00	1-1-1-1	and the	line
Trichoderma viride	30	8		31	7	writed	6	1.1 2.5	erod	5	9	l'vid'
Bacteria	3	3	2	2	2	1	2	1299	HIM	3	5	3
Unknown	30	9	3	3		1	6	19	1	15	8	1

Table 2. The numbers of the various fungi isolated from spruce stumps one year after inoculation with some wood-inhabiting fungi.

ber its competitive ability vis-a-vis other fungi was no longer so good as it had been earlier in the summer (cf. PERSSON-HÜPPEL 1963).

The most successful infection of the cut surfaces of inoculated stumps was by *Peniophora gigantea*. It often inhibited infection by any other fungi. However, *T. viride* was one of the fungi infecting stumps inoculated in the autumn, and *S. sanguinolentum* one of those infecting stumps inoculated in midwinter. Not many fungal species were capable of infecting stumps inoculated in February, March and April. In these months *P. gigantea*, however, infected stumps inoculated with T. viride and F. annosus. Stumps inoculated in May-September with P. gigantea were infected by S. sanguinolentum which, according to a study by ETHERIDGE (1969) in Canada, has a special capacity for infecting the wood material of Abies balsamea (L.) Mill. as long as the relative air humidity is high and the mean diurnal temperature relatively low (7—13° C). C. sarcoides also infected the cut surfaces of stumps inoculated with P. gigantea. C. sarcoides may sometimes be the only decaying agent found in a tree, and it may thus

be antagonistic to other decay fungi (DIMITRI 1968, ETHERIDGE 1970, RICARD 1970).

The most common fungi to infect the control stumps in the autumn were Peniophora pithya, Stereum sanguinolentum (cf. ETHE-RIDGE 1970), Peniophora cinerea, Fomes pinicola and Trichoderma viride. S. sanguinolentum infected the control stumps at almost any time of the year. Beginning from late winter, P. gigantea was a frequent infecting agent in control stumps. In the summer the Cephalosporium species were also relatively numerous in the control stumps. The stumps inoculated with F. annosus in the winter were found to become infected e.g. by S. sanguinolentum and T. viride, those inoculated in May e.g. by P. gigantea, and finally those inoculated in July e.g. by various Cephalosporium species.

The number of the *Fungi imperfecti* species isolated from spruce stumps was relatively low in the present study. The finding agrees with that reported by MEREDITH (1960) concerning *Pinus silvestris* L. stumps in England and disagrees with that reported by ASTIN and DRIVER (1962) concerning stumps of *Pinus elliottii* Engelm. in Georgia, USA.

In summarizing the fungal species infecting stumps, it can be said that P. gigantea was conspicuous both as a natural infection on the cut surfaces of spruce and in stumps that had been artificially inoculated. Another fungus which apparently is highly effective at invading stumps through their cut surfaces is S. sanguinolentum, also known as a parasite (e.g. HAKKILA and LAIHO 1968). According to the present study, infection by this fungus cannot be confined only to the cold and humid season, a finding also reported from studies of Abies balsamea (L.) Mill. in Canada (ETHERIDGE 1970). S. sanguinolentum in Finland, in addition to P. pithya and P. gigantea, is apparently a common species with airborne distribution. Together with F. annosus, these four fungi are probably the initial cause of infection on the majority of the cut surfaces of spruce stumps (cf. KALLIO 1965).

Fungi isolated from excavated inoculated stumps

After the fungal species producing infection through the cut stump surfaces had been ascertained, a few stumps were removed from the ground with their roots, in order to identify the fungi growing in them. Starting from the distal ends, the stumps were cut into lengths of about 20 cm, and the fungi from the discoloured spots of wood were cultured on malt agar for identification.

Stump 12 (Figs. 6 a and 6 b) was inoculated with Peniophora gigantea on October 14, 1967. Sample discs of the stump were taken on September 16, 1968, after which the stump was dug from the ground and its fungal species were examined. P. gigantea was the only fungus that could be isolated from the discs sawn from the stump. In root II it had caused decay that extended over some 30 cm from the cut stump surface towards the root. The rate of growth was approximately the same as had been reported for this fungus in the stumps of Pinus echinata Mill. (KUHLMAN and HENDRIX 1964). From the same root II, bacteria were isolated from discoloured wood material in which discoloration had apparently started from the distal end of the root. In roots I and III the decay, as in root II, extended to a distance of about 30 cm from the cut surface. Root III had bacteria in the discoloured wood where discoloration had started at the distal end of the root. Bacteria were also isolated from the continuous vein of decayed wood in root IV. P. gigantea was isolated at point 1, and it had apparently grown for about one metre from the cut surface outward along the root.

Bacteria and unidentified *Fungi imperfecti* were isolated at points 2 and 3; they had caused continuous discoloration down to the distal ends of the roots. The points 4, 5 and 6 indicate spots where bacteria were isolated. A similar result concerning the infection of spruce roots has been reported e.g. by DI-MITRI (1969 a, 1969 b).

Stump 184 was inoculated on June 14, 1968, with *P. gigantea* and on June 24, 1968, additionally with *F. annosus*. On May 12, 1969, only *P. gigantea* could be found on a cross section surface of the stump. The decay it has produced extended towards all the roots at an approximate distance of 40 cm from the cut surface of the stump. No other decay fungi were found in the stump.

Stump 18 (Fig. 7) was inoculated on October 14, 1967, with *Polyporus abietinus*, and sample discs were sawn on September 18,

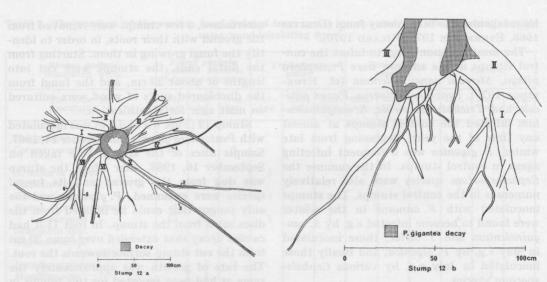
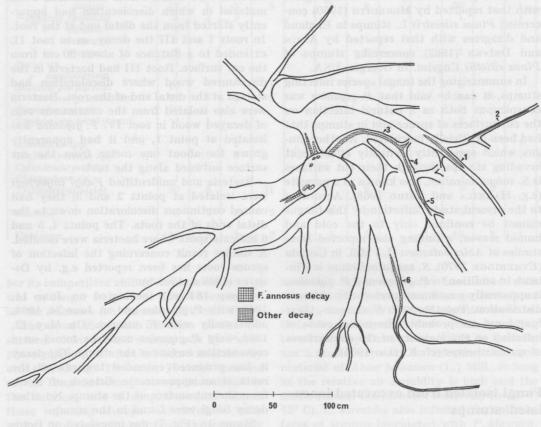



Fig. 6. Stump inoculated with Peniophora gigantea. a. top view, b. cross section view.

Stump 18

Fig. 7. Stump inoculated with *Polyporus abietinus*.

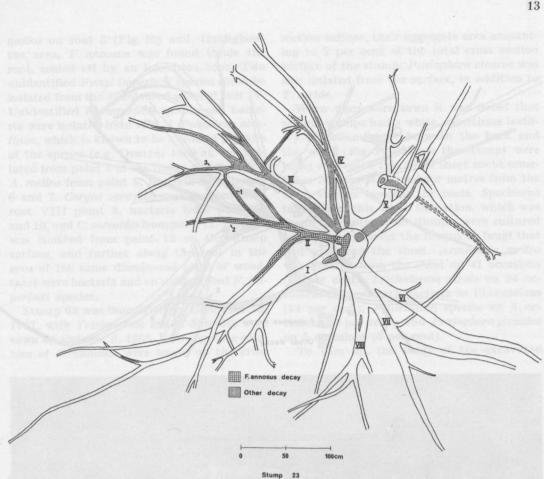


Fig. 8. Untreated control stump.

1968. The disc contained 4 separate colonies of F. annosus, with an aggregate area of about 5 per cent of the total surface area of the disc. F. annosus had grown about 30 cm towards the roots from the cut surface. Coryne sarcoides was isolated at point 1. According to ETHERIDGE (1970), in Canada C. sarcoides is one of the commonest fungi infecting the roots of conifers from the soil. No microorganisms could be isolated from points 1-5, and the specimens remained sterile. DIMITRI (1969 b) also failed to isolate micro-organisms from all discolorations he found in spruce roots. Armillaria mellea was isolated from the discoloration at point 6.

Stump 23 (Fig. 8) was quite a large control stump, with a cross section area of 1091 sq.cm. The tree was felled on October 14, 1967, and discs for the study of the root rot fungus were taken from the cut surface on September 18, 1968. F. annosus occupied 22 per cent of the total area of the cut surface. In addition, Peniophora cinerea, Stereum sanquinolentum, Trechispora brinkmanni and Trametes serialis were also isolated from the surface. In root I, F. annosus had grown about 40 cm from the cut surface along the root. In root 1, it had apparently grown both from the cut stump surface and from the ground. It had produced discoloration that extended unbroken over about 1.5 metres. At the point where roots 1 and 2 fused the colour defect could no longer be seen in root 2. Only bacteria could be isolated from the large area of discoloured wood in roots III and IV. Root V had fused with the roots of another spruce. Bacteria and an unidentified species of Fungi imperfecti were isolated from

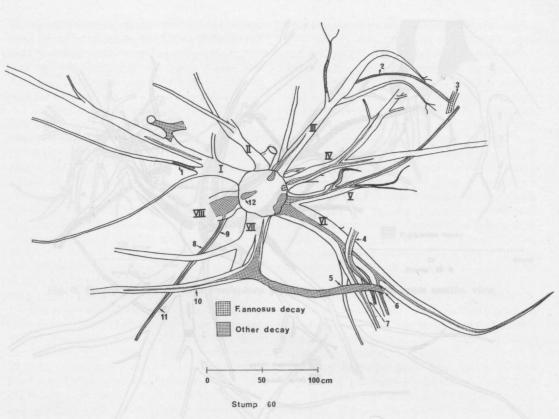


Fig. 9. Stump inoculated with Trichoderma viride.

the decayed part of this root. Bacteria were isolated from root VIII.

Stump 33 had been inoculated on November 15, 1967, with *L. sepiaria*, and sample discs had been taken on September 27, 1968. *P. cinerea*, *P. pithya* and *S. sanguinolentum* had been isolated from the disc. No other fungi were found in the stump.

Stump 60 (Fig. 9) was inoculated on December 15, 1967, with *Trichoderma viride*, and the sample discs were taken on October 8, 1968. The cross section surface had one *F. annosus* colony, with an area covering 2 per cent of the total stump surface. *Peniophora pithya* and *T. viride* were also isolated from the disc. The stump was excavated on October 24, 1968. Root I had coalesced with the root of a small decayed spruce tree. Only bacteria could be isolated from the decayed part. No micro-organism was isolated from point 1. The *P. pithya* isolated from root III had grown some 50 cm from the cut stump surface out along the root. Root 2 formed the graft between two roots. Where it fused with root 3, it could be seen that root 2 was infected by F. annosus. Beyond the point of fusion, there was an outer rim of Armillaria

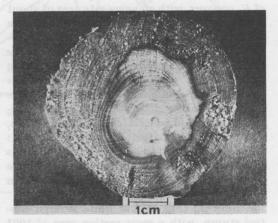


Fig. 10. Stump 60. Cross section of root 3. Armillaria mellea outside and Fomes annosus inside the inhibitory zone (dark ring).

mellea on root 3 (Fig. 10) and, throughout the area, F. annosus was found inside the root, sealed off by an inhibition zone. Two unidentified Fungi imperfecti species could be isolated from the discoloured wood of root IV. Unidentified F. imperfecti species and bacteria were isolated from root V. Polyporus abietinus, which is known to be a wound parasite of the spruce (e.g. DIMITRI 1969 a), was isolated from point 4 at the fusion with root VI, A. mellea from point 5, bacteria from points 6 and 7. Corune sarcoides was isolated from root VIII point 8, bacteria from points 9 and 10, and C. sarcoides from point 11. T. viride was isolated from point 12 on the stump surface, and further along the root in the area of the same discoloured piece of wood, there were bacteria and an unidentified F. imperfecti species.

Stump 62 was inoculated on December 15, 1967, with *Trichoderma viride*. Samples were sawn on October 8, 1968. Two separate colonies of *F. annosus* were found on the cross section surface, their aggregate area amounting to 2 per cent of the total cross section surface of the stump. *Peniophora cinerea* was also isolated from the surface, in addition to T. viride.

When discs were sawn it was noted that several stumps had a white, sometimes leathery mycelium sheet between the bark and the wood (Fig. 11). When the stumps were being excavated this white sheet could sometimes be seen to extend for metres from the sawn surface towards the roots. Specimens taken from this white formation, which was found in a total of 80 stumps, were cultured in order to discover the fungus or fungi that had produced the sheet. Armillaria mellea was isolated from the sheet on 41 occasions (45 per cent), Trichoderma viride on 24 occasions (26 per cent), bacteria on 13 occasions (14 per cent), Penicillium species on 8 occasions (9 per cent), and Peniophora gigantea on 5 occasions (6 per cent).

To sum up, the study of the excavated

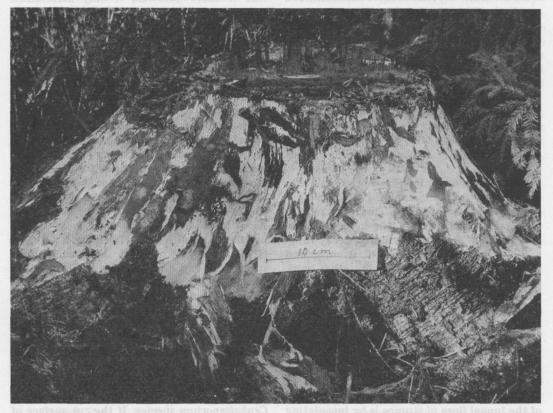


Fig. 11. White mycelium sheets between bark and wood of stump 18. Armillaria mellea was isolated from this sheet.

stumps and the fungal species growing in them showed that infection by bacteria and fungi attacks the roots from the soil or from other roots, either with or without grafts. Most of the fungal species obtained in the present study were the same as those isolated in Germany from spruce roots (DIMITRI 1969 b, Schönhar 1969). In Switzerland (WOESTE 1956) it has been found that spruce roots are easily infected by Armillaria mellea and Fomes annosus, provided the general conditions for infection are present. On the other hand, it has been shown (LAATSCH 1970) that the spruce can produce agents inhibiting F. annosus only as long as the wood contains enough sugars and the water supply is adequate and continuous.

The present study cannot throw much light on the time at which the fungi infected the roots but, at the time the tree was felled, they had probably already been infected by at least some of the microbes found. Armillaria mellea was the main fungus isolated from the white mycelium sheet between wood and bark, although other fungi had also grown on this layer, which is rich in nutrients, a year after the felling of the tree. The part played by A. mellea is confirmed by observations made about 3 years after the trees had been felled: its sporophores were found even in spruce stumps from which A. mellea could not be isolated in the present study.

Discussion

Stumps provide a long-lasting growth substrate for decay fungi enabling them to compete with other microbes. The more regular and copious the cuttings, the more probable it is that the aerially distributed decay fungi will reach the cut surfaces of stumps, and from there the root systems and other trees. With year-round cuttings, there are always trees being felled whenever a heavy deposition of diaspores from the many tree-inhabiting fungi falls from the air onto the freshly cut stump surfaces. The composition of the fungal species infecting the stumps can be influenced by treating the stump surface with chemicals (Rishbeth 1959 b, 1959 c, 1970). The most efficient way of controlling the composition of the fungal flora of stumps is by inoculating the sawn surface of the stump with selected fungi immediately after felling. Fungal species antagonistic to the patogenic fungi are chosen for the inoculation. In this way, the flora of decay fungi in the forest can be changed to some extent, on a short or long term basis, as desired by man. As proveed by RISHBETH in several studies (1950, 1952, 1959 a, 1959 b, 1959 c, 1961, 1963), inoculation of the cut surfaces of pine stumps with the mycelial suspension of Peniophora gigantea restricts the aerial distribution of F. annosus through cut stump surfaces. RISH-BETH (1970) is doubtful, however, about the possibility of protecting spruce stumps by this method. In the present study it was seen (Fig. 5) that P. gigantea did protect spruce stumps. The present study, however, only covered one year, and it cannot be claimed that the results are generally applicable. Weather conditions, for example, may change and fungal strains can also have very different infection capacities and antagonistic qualities. Because the present study was of short duration, it only ascertained those fungal species which take part in the initial phase of decay in spruce stumps. The composition of the fungal species contributing to the decay of pine stumps is known to change as the decay advances (RISHBETH 1951 a, 1951 b, MEREDITH 1959, 1960). Less is known, so far, about the decay process of spruce stumps (DIMITRI 1969 a, 1969 b, RISH-BETH 1970). In the present study, a re-examination three years after the felling and inoculation showed that many spruce stumps were occupied by the sporophores of e.g. Armillaria mellea, although no isolates of this fungus had been obtained from the wood of the same stumps one year after the felling. A. mellea and F. annosus have been found, by Zycha and Kato (1967) and DIMITRI (1969 b), to be the most important fungal species causing decay in spruce stumps. On the basis of the present study, this opinion can be shared as far as Finland is concerned, but it must be added that the Peniophora species and Stereum sanguinolentum, at least in the early stages, are even more common in Finland than A. mellea and F. annosus. NILSSON and HYPPEL (1968) have shown that spruce lesions in Sweden are infected e.g. by Peniophora gigantea, S. sanguinolentum, and Cephalosporium species. If the cut surface of a stump is regarded as a major lesion, the present study is a confirmation of their findings.

The present study also showed that after, or perhaps even before, the felling of a tree, microbes from the soil infect tree roots. Microbial infection through the soil has been studied e.g. by BAKER (1968), who found that he here faced a complex of problems requiring detailed investigation. The importance of rhizosphere-microflora for pathogenic infection was emphasized by STARKEY (1958) and WOODS (1960). MALOY and ROBINSON (1968) showed that bacteria and non-Basidiomycetes fungi were the first to attack the Abies grandis Lindl. wood material. The finding of the present study was exactly the same for Picea abies, and corroborates the result reported e.g. by SHIGO (1965) on deciduous trees.

SUMMARY

An attempt was made to restrict the aerial distribution of *Fomes annosus* through the cut surfaces of spruce stumps by inoculating the surfaces, immediately after felling, with mycelial suspension, grown in the laboratory on malt agar, of *Fomes pinicola*, *Lenzites sepiaria*, *Peniophora gigantea*, *Polyporus abietinus* and *Trichoderma viride*. Trees were felled once a month for a year. Samples were taken from the cut surfaces of the stumps approximately one year after the felling and the inoculation.

P. gigantea inhibited the infection of cut stump surfaces by airborne *F. annosus* (Fig.5). *P. gigantea* cut down both the total number and the number of the species of fungi infecting the stump through aerial distribution (Table 2). *T. viride* had a parallel but less marked effect. *F. pinicola*, *L. sepiaria* and *P. abietinus* proved to be weak colonizers of spruce stumps. When they were used to inoculate the stumps, the number of fungi infecting the cut surfaces was larger than that infecting the stumps treated with P. gigantea and T. viride.

A year after the inoculation some stumps were excavated with their roots. Fungi from the discoloured spots of wood in the stumps were cultured for identification. It was found that many different fungal species from the soil and the points of root grafting had infected the roots of the stump in the course of the year. The majority of the identified microbes were non-*Basidiomycetes* fungi, and bacteria.

A year after the felling and inoculation, a white mycelial sheet was seen between the wood and bark of many stumps. Several fungi, including *Armillaria mellea*, *Trichoderma viride*, *Penicillium* species, and *Peniophora gigantea* were isolated from this sheet.

REFERENCES

- ASTIN, J. S., Jr. & DRIVER, C. H. 1962. The natural occurrence of *Fomes annosus* and associated fungi in slash pine stumps. Plant Dis. Reptr. 46: 738-741.
- BAKER, R. 1968. Mechanisms of biological control of soil-borne pathogens. Ann. Rev. Phytopathology 6: 263-294.
- BJÖRKMAN, E. 1949. Soil antibiotics acting against the root-rot fungus (*Polyporus annosus* Fr.). Physiol. Plant. 2: 1-10.

BOYCE, J. S., Jr. 1966. Sporulation by Peniophora

gigantea with reference to control of annosus root rot. For. Sci. 12: 2-7.

- DIMITRI, L. 1968. Ermittlung der Stammfäule von Fichten (*Picea abies* Karst.) durch Bohrspanentnahme. Forstarchiv. 39: 221-224.
- -»- 1969 a. Ein Beitrag zur Infektion der Fichtenwurzel durch den Wurzelschwamm Fomes annosus (Fr.) Cooke. Forstwiss. Cbl. 88: 72 -80.
- -»- 1969 b. Untersuchungen über die unterirdischen Eintrittspforten der wichtigsten Rot-

fäuleerreger bei der Fichte (*Picea abies* Karst.). Forstwiss. Cbl. 88: 281–308.

- DRIVER, C. H. & GINNS, J. H., Jr. 1969. Ecology of slash pine stumps: fungal colonization and infection by *Fomes annosus*. For. Sci. 15: 2-10.
- ENEBO, L. 1949: Experiments with claviformin as an antibiotic against *Polyporus annosus* Fr. Physiol. Plant. 2: 56-60.
- ETHERIDGE, D. E. 1969. Factors affecting infection of balsam fir (*Abies balsamea*) by *Stereum sanguinolentum* in Quebec. Canad. J. Bot. 47: 457-479.
- -»- 1970. Ascocoryne sarcoides (Jacq. ex Gray) Groves and Wilson and its association with decay of conifers. Interaction of Organisms in the Process of Decay of Forest Trees. Bull. 13: 19-26.
- FEDOROV, N. I. & STAICHENKO, N. I. 1968. (Effect some Actinomycetes on the growth of butt-rot fungus (Fomes annosus) in a culture). Biol. Nauk. 11: 99-101.
- GARRETT, S. D. 1965. Toward biological control of soil-borne plant pathogens. Ecology of soilborne plant pathogens. Ed. by K. F. Baker and W. C. Snyder. Publ. by John Murray, London. p. 4-16.
- GUNDERSEN, K. 1962 a. A study of microbial antagonism. Acta Univ. Gothenburgensis. Abstr. of Gothenburg dissertations in science I: 1-14.
- - 1962 b. Mycelium as inoculation material for growth determinations with fungi. Friesia VII: 1-9.
- -*- 1967. Nitrite as a nutrient for microfungi of the outer stem cortex of pine and spruce and its toxicity to *Fomes annosus*. Stud. For. Suec. 43.
- HAKKILA, P. & LAIHO, O. 1967. Kuusen lahoaminen kirvesleimasta. Summary: On the decay caused by axe marks in Norway spruce. Commun. Inst. For. Fenn. 64, 3.
- HYPPEL, A. 1968. Antagonistic effects of some soil fungi on *Fomes annosus* in laboratory experiments. Stud. For, Suec. 64.
- Ка́анк, A. 1967. Colonization of pine and spruce poles by soil fungi after six months. Mater. u. Organ. 2: 97-108.
- KALLIO, T. 1965. Tutkimuksia maannousemaisenen leviämisbiologiasta ja torjuntamahdollisuuksista Suomessa. Summary: Studies on the biology of distribution and possibilities to control *Fomes annosus* in southern Finland. Acta For. Fenn. 78.
- -»- 1970. Aerial distribution of the root-rot fungus Fomes annosus (Fr.) Cooke in Finland. Acta For. Fenn. 107.
- KLINGSTRÖM, A. & BEYER, L. 1965. Two new specees of *Scytalidium* with antagonistic properties to *Fomes annosus* (Fr.) Cke. Svensk bot. Tidskr. 59: 30-36.
- KUHLMAN, E. G. & HENDRIX, F. F., Jr. 1964. Infection, growth rate, and competitive ability of *Fomes annosus* in inoculated *Pinus echinata* stumps. Phytopathology 54: 556-561.
- LAATSCH, W. 1970. Ursachen der Infektionsbereitschaft der Fichte (*Picea abies* Karst.) auf bes-

timmten Standorten. Proc. Third Int. Conf. on Fomes annosus. IUFRO, Sect. 24: 77-81.

- LAINE, L. & NUORTEVA, M. 1970. Über die antagonistische Einwirkung der insektenpathogenen Pilze Beauveria bassiana (Bals.) Vuill. und B. tenella (Delacr.) Siem. auf den Wurzelschwamm (Fomes annosus (Fr.) Cooke). Acta For. Fenn. 111.
- MALOY, O. C. & ROBINSON, V. S. 1968. Microorganisms associated with heart rot in young grand fir. Canad. J. Bot. 46: 306-309.
- MEREDITH, D. S. 1959. The infection of pine stumps by *Fomes annosus* and other fungi. Ann. Bot. 23: 455-476.
- -»- 1960, Further observations on fungi inhabiting pine stumps. Ann. Bot. 24: 63-78.
- NILSSON, P. O. & HYPPEL, A. 1968. Studier över rötangrepp i sårskador hos gran. Summary: Studies on decay in scars of Norway spruce. Sveriges SkogsvFörb. Tidskr. 66: 675-713.
- NISSEN, T. V. 1956 a. Soil actinomycetes antagonistic to *Polyporus annosus* Fr. Friesia 5: 332-339.
- -»- 1956 b. Actinomycetes antagonsitic to Polyporus annosus Fr. Experientia 12: 229-230.
- PECHMANN, H. von, AUFSESS, H. von, LIESE, W. & AMMER, U. 1967.Untersuchungen über die Rotstreifigkeit des Fichtenholzes. Forstwiss. Cbl. Beihefte 27. 112 p.
- PERSSON-HÜPPEL, A. 1963. The influence of temperature on the antagonistic effect of *Tricho-derma viride* Fr. on *Fomes annosus* (Fr.) Cke. Stud. For. Suec., 4.
 RENNERFELT, E. 1949. The effect of soil organisms
- RENNERFELT, E. 1949. The effect of soil organisms on the development of *Polyporus annosus* Fr., the root rot fungus. Oikos 1: 65-78.
- -»- & PARIS, S. K. 1953. Some physiological and ecological experiments with *Polyporus annosus* Fr. Oikos 4: 58-76.
- RICARD, J. L. 1970. Biological control of Fomes annosus in Norway spruce (Picea abies) with immunizing commensals, Stud. For. Suec. 84.
- RISHBETH, J. 1948. Fomes annosus Fr. on pines in East Anglia. Forestry 22: 174-183.
- -»- 1950. Observations on the biology of Fomes annosus, with particular reference to East Anglian pine plantations. I. The outbreaks of disease and ecological status of the fungus. Ann. Bot. 14: 365-383 + 2 plates.
- -*- 1951 a. Observations on the biology of *Fomes* annosus, with particular reference to East Anglian pine plantations. II. Spore production, stump infection, and saprohytic activity in stumps. Ann. Bot. 15: 1-21 + 1 plate.
- -»- 1951 b. Butt rot by *Fomes annosus* Fr. in East Anglian conifer plantations and its relation to tree killing. Forestry 24: 114-120.
- ->- 1952. Control of *Fomes annosus* Fr. Forestry 25: 41-50.
- -»- 1959 a. Dispersal of *Fomes annosus* Fr. and *Peniophora gigantea* (Fr.) Massee. Trans. Brit. Mycol. Soc. 42: 243-260.
- -»- 1959 b. Stump protection against Fomes annosus. I. Treatment with creosote. Ann. appl. Biol. 47: 519-528.
- -»- 1959 c. Stump protection against *Fomes annosus*. II. Treatment with substances other

than creosote. Ann. appl. Biol. 47: 529-541.

- RISHBETH, J. 1961. Inoculation of pine stumps against infection by *Fomes annosus*. Nature 191: 826-827.
- -»- 1963. Stump protection against Fomes annosus. III. Inoculation with Peniophora gigantea. Ann. appl. Biol. 52: 63-77.
- -»- 1970. The possibility of stump inoculation for conifers other than pines. Proc. Third Int. Conf. on *Fomes annosus*. IUFRO, Sect. 24: 110-120.
- SCHÖNHAR. S. 1969. Untersuchungen über das Vorkommen von Rotfäulepilzen in Fichtenbeständen der Schwäbischen Alb. Mitt. Ver. Forstl. Standortskunde Forstpfl Zücht. 19: 20-28.
- SHIGO. A. L. 1965. Organism interactions in decay and discoloration in beech, birch, and maple. U.S. For. Serv. Res. Pap. NE-43.

- STARKEY, R. L. 1958. Interrelations between microorganisms and plant roots in the rhizosphere. Bact. Reviews. 22: 154-172.
- WILKINS, W. H. 1946. Investigation into the production of bacteriostatic substances by fungi. Preliminary examination of the fifth 100 species, all *Basidiomycetes*, mostly of the wooddestroying type. Brit. J. exp. Path. 27: 140 – 142.
- WOESTE, U. 1956. Anatomische Untersuchungen über die Infektionswege einiger Wurzelpilze. Phytopath. Z. 26: 225-272.
- Woods, F. W. 1960. Biological antagonisms due to phytotoxic root exudates. Bot. Rev. 26: 546-469.
- ZYCHA, H. & Като́, F. 1967. Untersuchungen über die Rotfäule der Fichte. Schr. Reihe Forstl. Fak. Univ. Göttingen 39: 1-120.

SELOSTE:

KUUSEN KANTOJEN MAANNOUSEMASIENI-INFEKTION ESTÄMINEN MUUTAMIA PUUSSA KASVAVIA SIENIÄ KÄYTTÄEN

Vuoden ajan 15. 9. 1967-15. 8. 1968 kaadettiin kerran kuussa metsästä 20-30 kuusta ja niiden kantojen kaatopinnat siveltiin välittömästi kaatamisen jälkeen Fomes pinicolan (kantokääpä), Lenzites sepiarian (aidaskääpä), Peniophora gigantean, Polyporus abietinuksen (kuusenkääpä) ja Trichoderma viriden laboratoriossa mallasagarilla kasvatetulla rihmastosuspensiolla. Vuoden kuluttua kaatamisesta ja saastuttamisesta sahattiin kannoista nävtekiekot. Niistä määrättiin 10 vrk:n säilyttämisen jälkeen maannousemasienen kuromankannattimien kasvualat ja otettiin näytteet muiden sienien viljelemiseksi ja tunnistamiseksi. Muutamia kantoja kaivettiin näytteiden ottamisen jälkeen juurineen maasta ja viljeltiin sekä tunnistettiin niistä puun värjänneet sienet.

Kuvan 5 mukaan *P. gigantealla* siveltyihin kantoihin ei maannousemasieni iskeytynyt. Muut sienet eivät sanottavasti suojanneet kantojen kaatopintoja maannousemasienen infektiolta. Taulukon 1 mukaan *P. gigantea* hävitti huhti-elokuun aikana kuusen kannoista lähes täydellisesti joko yhtaikaa *P. gigantean* kanssa tai 10 vrk myöhemmin kaatopintaan ympätyn maannousemasienen. Muuna aikana vuotta maannousemasieni oli kilpailukykyisempi. *T. viride* ja *F. pinicola* hävittivät kumpikin yhdessä tapauksessa maannousemasienen.

Vuoden kuluttua kaatopintojen saastuttamisesta

eristettiin niiden värjäytyneistä kohdista joukko sieniä (Taulukko 2). Taulukon mukaan pystyivät F. pinicola, L. sepiaria ja P. abietinus varsin vähän estämään muiden sienien iskeytymistä kaatopintoihin. Mainituilla sienillä saastutettuihin kaatopintoihin iskeytyivät mm. Stereum sanguinolentum (punertuva verinahkasieni), F. annosus, P. gigantea ja T. viride. T. viride infektoi kaatopinnat paljon tävdellisemmin ja tehokkaammin kuin F. pinicola, L. sepiaria tai P. abietinus. Lokakuusta huhtikuuhun T. viride esti miltei kaikkien muiden sienien iskeytymisen kaatopintoihin ja se oli voimakas muiden sienien infektion estäjä myös toukokuusta heinäkuuhun tapahtuneissa saastutuksissa. Elo-syyskuussa sen kilpailukyky muihin sieniin nähden ei ollut yhtä hyvä kuin aikaisemmin kesällä. P. gigantea oli kaatopintoihin ympättynä tehokkain ja kilpailukykyisin muihin sieniin verrattuna. Muutamat sienet kuitenkin iskeytyivät P. gigantealla saastutettuihin kaatopintoihin. Tällaisia olivat mm. T. viride, S. sanguinolentum ja Coryne sarcoides. Kantojen kaatopinnoista eristettiin vain muutama Fungi imperfecti-sieni. Kontrollikantojen kaatopinnoista tehtyjen sienieristysten perusteella ovat Stereum sanguinolentum, Peniophora pithya, Peniophora gigantea ja Fomes annosus tavallisimmat kuusen kantoja ilmateitse infektoivat sienet.

Tutkimuksissa kaivettiin noin vuoden kuluttua

saastuttamisesta muutamia saastutettuja kantoja juurineen maasta. Kantojen juuriin todettiin vuoden kuluttua kaatamisesta iskeytyneen sieniä maasta ja toisista juurista käsin. Eristetyistä mikrobeista olivat tavallisimpia bakte eritjaei-*Basidiomycetes*-sienet. Tulos on samansuuntainen useiden ulkomaisten tutkimus tulosten kanssa. Vuoden kuluttua kaatamisesta tavattiin useiden kantojen kuoren ja puun välistä valkeata kalvomaista muodostumaa. Tästä eristettiin mm. Armillaria mellea, Trichoderma viride, Penicillium-lajeja ja Peniophora gigantea.

 KALLIO, TAUNO N.D.C. 172.8 1971. Protection of spruce stumps against <i>Fomes annosus</i> (Fr.) Cooke by some wood-inhabiting fungi. — ACTA FORESTALIA FENNICA 117. 20 p. Helsinki. The cut surface of spruce (<i>Picea abies</i> L.) stumps were inoculated, immedi- 	ately after felling, with mycelial suspensions grown on malt agar in the laboratory, of <i>Fones pinicola</i> , <i>Lenzites sepiaria</i> , <i>Peniophora gigantea</i> , <i>Polyporus abietinus</i> and <i>Trichoderma viride</i> . Samples were taken from the cut surfaces approximately a year after the inoculation. <i>P. gigantea</i> inhibited the inflection of root rot fungus on the cut surfaces. Some stumps were excavated with their roots, and the fungi that had infected them from the soil were identified. The majority of the infectious soil microbes were bacteria and non- <i>Basidiomycetes</i> fungi.	Authors' address: Department of Plant Pathology, University of Helsinki. Helsinki 71, Finland.	KALLIO, TAUNO 0.D.C. 172.8	1971. Protection of spruce stumps against <i>Fomes annosus</i> (Fr.) Cooke by some wood-inhabiting fungi. — ACTA FORESTALIA FENNICA 117. 20 p. Helsinki.	The cut surface of spruce (<i>Pieca abies</i> L.) stumps were inoculated, immedi- ately after felling, with mycelial suspensions grown on malt agar in the laboratory, of <i>Fomes pinicola</i> , <i>Lenziles sepiaria</i> , <i>Peniophora gigantea</i> , <i>Poly- porus abietinus</i> and <i>Trichoderma viride</i> . Samples were taken from the cut surfaces approximately a year after the inoculation. <i>P. gigantea</i> inhibited the inflection of root rot fungus on the cut surfaces. Some stumps were excavated with their roots, and the fungi that had infected them from the soil were identified The maiority of the infections soil microbes were bool	you were negative. The insports of the intectious sold interiouse were pac- teria and non-Basidiomyceles fungi.	Authors' address: Department of Plant Pathology, University of Helsinki, Helsinki 71, Finland.
 KALLIO, TAUNO RALLIO, TAUNO 1971. Protection of spruce stumps against Fomes annosus (Fr.) Cooke by some wood-inhabiting fungi. — ACTA FORESTALIA FENNICA 117. 20 p. Helsinki. The cut surface of spruce (Picea abies L.) stumps were inoculated, immedi- 	ately after felling, with mycelial suspensions grown on malt agar in the laboratory, of Fomes pinicola, Lenzites septaria, Peniophora giganlea, Polyporus abietinus and Trichoderma viride. Samples were taken from the cut surfaces approximately a year after the inoculation. P. gigantea inhibited the inflection of root fungus on the cut surfaces. Some stumps were excavated with their roots, and the fungi that had infected them from the soil were identified. The majority of the infectious soil microbes were bacteria and non-Basidionycetes fungi.	Authors' address: Department of Plant Pathology, University of Helsinki. Helsinki 71, Finland.	KALLIO, TAUNO 0.D.C. 172.8	1971. Protection of spruce stumps against <i>Fomes annosus</i> (Fr.) Cooke by some wood-inhabiting fungi. — ACTA FORESTALIA FENNICA. 117. 20 p. Helsinki.	The cut surface of spruce (<i>Picea abies</i> L.) stumps were inoculated, immedi- ately after felling, with mycelial suspensions grown on malt agar in the laboratory, of <i>Fomes pinicola</i> , <i>Lenzites sepiaria</i> , <i>Peniophora gigantea</i> , <i>Poly- porus abietinus</i> and <i>Trichoderma viride</i> . Samples were taken from the cut surfaces approximately a year after the inoculation. <i>P. gigantea</i> inhibited the inflection of root rot fungus on the cut surfaces. Some stumps were excavated with their roots, and the fungi that had infected them from the soil were identified. The maiority of the infections soil microbes were hac-	teria and non-Basidiomycefes fungi.	Authors' address: Department of Plant Pathology, University of Helsinki. Helsinki 71, Finland.

ACTA FORESTALIA FENNICA

EDELLISIÄ NITEITÄ – PREVIOUS VOLUMES

Vol. 107, 1970. TAUNO KALLIO.

Aerial Distribution of the Root-Rot Fungus Fomes annosus (Fr.) Cooke in Finland.

Vol. 108, 1970. Yrjö Ilvessalo.

Metsiköiden luontainen kehitys- ja puuntuottokyky Pohjois-Lapin kivennäismailla. Summary: Natural Development and Yield Capacity of Forest Stands on Mineral Soils in Northern Lapland.

Vol. 109, 1970. Päiviö Riihinen.

The Forest Owner and his Attitudes toward Forestry Promotion — A Study Based on Forest Owners in Ostrobothnia, Finland. Seloste: Metsänomistaja ja hänen asenteensa metsätalouden edistämiseen — Pohjanmaan metsänomistajiin perustuva tutkimus.

Vol. 110, 1970. Yrjö Vuokila.

Harsintaperiaate kasvatushakkuissa. Summary: Selection from Above in Intermediate Cuttings.

VOL. 111, 1970. LALLI LAINE UND MATTI NUORTEVA.

Über die antagonistische Einwirkung der insektenpathogenen Pilze Beauveria bassiana (Bals.) Vuill. und B. Tenella (Delacr.) Siem. auf den Wurselschwamm (Fomes annosus (Fr.) Cooke).

Vol. 112, 1970. Pentti K. Räsänen.

Nostoajankohdan, pakkaustavan, varastointiajan pituuden ja kastelun vaikutuksesta männyn taimien kehitykseen. Summary: The Effect of Lifting Date, Packing, Storing and Watering on the Field Survival and Growth of Scots Pine Seedlings.

VOL. 113, 1971. LEO HEIKURAINEN.

Pohjavesipinta ja sen mittaaminen ojitetuilla soilla. Summary: Ground water table in drained peat soils and its measurement.

Vol. 114, 1971. Leo HEIKURAINEN ja PERTTI VEIJOLA. Lannoituksen ja sarkaleveyden vaikutus rämeen uudistumiseen ja taimien kasvuun. Summary: Effect of Fertilization and Ditch Spacing

on Regeneration and Seedling Growth in Pine Swamps.

Vol. 115, 1971. TAUNO KALLIO. Aerial Distribution of some wood-inhabiting Fungi in Finland. Seloste: Eräiden kuusen puuaineksessa kasvavien sienien Suomessa ilmateitse tapahtuva leviäminen.

Vol. 116, 1971. Aarne Nyyssönen, Pentti Roiko-Jokela and Pekka Kilkki.

Studies on Improvement of the Efficiency of Systematic Sampling in Forest Inventory. Seloste: Systemaattiseen näytteen ottoon perustuvan inventoinnin tehokkuudesta. KANNATTAJAJÄSENET — UNDERSTÖDANDE MEDLEMMAR CENTRALSKOGSNÄMNDEN SKOGSKULTUR SUOMEN PUUNJALOSTUSTEOLLISUUDEN KESKUSLIITTO OSUUSKUNTA METSÄLIITTO **KESKUSOSUUSLIIKE HANKKIJA** SUNILA OSAKEYHTIÖ OY WILH. SCHAUMAN AB OY KAUKAS AB RIKKIHAPPO OY G. A. SERLACHIUS OY TYPPI OY KYMIN OSAKEYHTIÖ SUOMALAISEN KIRJALLISUUDEN KIRJAPAINO UUDENMAAN KIRJAPAINO OSAKEYHTIÖ **KESKUSMETSÄLAUTAKUNTA TAPIO** KOIVUKESKUS A. AHLSTRÖM OSAKEYHTIÖ TEOLLISUUDEN PAPERIPUUYHDISTYS R.Y. **OY TAMPELLA AB** JOUTSENO-PULP OSAKEYHTIÖ TUKKIKESKUS KEMI OY MAATALOUSTUOTTAJAIN KESKUSLIITTO VAKUUTUSOSAKEYHTIÖ POHJOLA VEITSILUOTO OSAKEYHTIÖ **OSUUSPANKKIEN KESKUSPANKKI OY** SUOMEN SAHANOMISTAJAYHDISTYS OY HACKMAN AB YHTYNEET PAPERITEHTAAT OSAKEYHTIÖ