%0 Research article
%T Height increment of hybrid aspen Populus tremuloides x P. tremula as a function of weather conditions in central part of Latvia
%A Jansons, Āris
%A Zeps, Mārtiņš
%A Rieksts-Riekstiņš, Juris
%A Matisons, Roberts
%A Krišāns, Oskars
%D 2014
%J Silva Fennica
%V 48
%N 5
%R doi:10.14214/sf.1124
%U https://silvafennica.fi/article/1124
%X Height growth of young hybrid aspen (Populus tremula L. × P. tremuloides Michx.) was studied in relation to weather conditions. Height of clones with different leaf flushing phenology (early, intermediate and late) was monitored during the growing periods of 2010 and 2011 in a plantation established on former agricultural land. Mean daily height increment (HI) was calculated. Multiple linear regression was used to determine which weather factors (variables) had significant effect on HI. Mean seasonal height growth (mean seasonal HI) between clones (groups) was compared by ANOVA. In both years, HI was significantly higher for clones with early and intermediate leaf flushing compared to clones with late leaf flushing. The effect of weather factors also differed between clones according to their leaf flushing phenology; it was the weakest for HI of clones with early leaf flushing compared to clones with intermediate and late leaf flushing. Mean temperature was the main factor, which positively affected HI of all clones, suggesting that warmer climate might be beneficial for height growth of young hybrid aspen in Latvia. Nevertheless, significant negative relationship between HI and potential evapotranspiration (PET) was observed for clones with delayed leaf flushing, suggesting negative effect of increasing variability of precipitation on growth. Thus, the differences in height growth intensity might be related to growth sensitivity to weather conditions. On the other hand, such differences in height growth between clones might be caused by competition (i.e. with herbs), as trees with early leaf flushing might conquer more resources and become more robust against the environmental fluctuation.