Current issue: 53(2)

Under compilation: 53(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Dimitris Athanassiadis

Category: Research article

article id 1377, category Research article
Raul Fernandez-Lacruz, Fulvio Di Fulvio, Dimitris Athanassiadis, Dan Bergström, Tomas Nordfjell. (2015). Distribution, characteristics and potential of biomass-dense thinning forests in Sweden. Silva Fennica vol. 49 no. 5 article id 1377. https://doi.org/10.14214/sf.1377
Highlights: Biomass-dense thinning forests (BDTF) cover 2.1–9.8 M ha in Sweden, which represents 9–44% of the country’s productive forest land area, depending on the constraints applied; 65% of BDTF area is found in northern Sweden; Analyses revealed a yearly harvesting potential of at least 4.3 M OD t of undelimbed whole trees (3.0 M OD t of delimbed stemwood including tops).

Understanding the characteristics of unutilized biomass resources, such as small-diameter trees from biomass-dense thinning forests (BDTF) (non-commercially-thinned forests), can provide important information for developing a bio-based economy. The aim of this study was to describe the areal distribution, characteristics (biomass of growing stock, tree height, etc.) and harvesting potential of BDTF in Sweden. A national forest inventory plot dataset was imported into a geographical information system and plots containing BDTF were selected by applying increasingly stringent constraints. Results show that, depending on the constraints applied, BDTF covers 9–44% (2.1–9.8 M ha) of the productive forest land area, and contains 7–34% of the total growing stock (119–564 M OD t), with an average biomass density of 57 OD t ha–1. Of the total BDTF area, 65% is located in northern Sweden and 2% corresponds to set-aside farmlands. Comparisons with a study from 2008 indicate that BDTF area has increased by at least 4% (about 102 000 ha), in line with general trends for Sweden and Europe. Analyses revealed that the technical harvesting potential of delimbed stemwood (over bark, including tops) from BDTF ranges from 3.0 to 6.1 M OD t yr–1 (7.5 to 15.1 M m3 yr–1), while the potential of whole-tree harvesting ranges from 4.3 to 8.7 M OD t yr–1 (10.2 to 20.6 M m3 yr–1) depending on the scenario considered. However, further technological developments of the harvest and supply systems are needed to utilize the full potential of BDTF.

  • Fernandez-Lacruz, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID: http://orcid.org/0000-0001-9284-8911 E-mail: raul.fernandez@slu.se (email)
  • Di Fulvio, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden; International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management Program (ESM), Schlossplatz 1, A-2361 Laxenburg, Austria ORCID ID:E-mail: Fulvio.di.Fulvio@slu.se
  • Athanassiadis, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: Dimitris.Athanassiadis@slu.se
  • Bergström, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: Dan.Bergstrom@slu.se
  • Nordfjell, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: Tomas.Nordfjell@slu.se
article id 135, category Research article
Ola Lindroos, Marina Henningsson, Dimitris Athanassiadis, Tomas Nordfjell. (2010). Forces required to vertically uproot tree stumps. Silva Fennica vol. 44 no. 4 article id 135. https://doi.org/10.14214/sf.135
Stumpwood attracts renewed interest due to increased use of forest biomass for bioenergy. In Nordic countries stumps are generally uprooted with crawler excavators, which have strong cranes (ca. 400 kNm gross lift torque), but are not designed for moving in forest terrain. Their use is based on practical experience with available and tested machine types rather than thorough examinations of requirements, partly due to limited knowledge of force requirements for uprooting of stumps. Therefore, in this work mean and maximum forces required to vertically uproot stumps of Norway spruce (Picea abies) and birch (Betula spp.) were quantified together with the effects of various soil types and uprooting methods. The used excavator’s crane-mounted uprooting device enabled comparisons between usage of solely crane force, and a method in which preparatory loosening forces were applied prior to crane force. Uprooting stumps in single pieces proved difficult; 61% split unintentionally. Force requirements were similar across tree species, increasing curve-linearly with stump diameter, and stumps uprooted in a single piece required more force than split stumps. Preparatory loosening reduced crane force requirements and, surprisingly, less force was required to uproot stumps from a mesic, till soil than from a moist, finer-textured soil. No stump required more than 60 kN crane force and functions for maximum force requirements indicate that powerful harvesters and forwarders (gross crane lifting capacity of 273 and 155 kNm, respectively) should be able to uproot all stumps with ≤ 61 cm and ≤ 32 cm diameter, respectively, in one piece. Larger stumps could be managed if it is acceptable that stumps are split before uprooting.
  • Lindroos, Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden ORCID ID:E-mail: ola.lindroos@srh.slu.se (email)
  • Henningsson, Komatsu Forest AB, Box 7124, SE-907 04 Umeå, Sweden ORCID ID:E-mail:
  • Athanassiadis, Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden ORCID ID:E-mail:
  • Nordfjell, Department of Forest Resource Management, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden ORCID ID:E-mail:

Category: Article

article id 5639, category Article
Dimitris Athanassiadis. (1997). Residual stand damage following cut-to-length harvesting operations with a farm tractor in two conifer stands. Silva Fennica vol. 31 no. 4 article id 5639. https://doi.org/10.14214/sf.a8541

The objectives of this study were to record residual stand damage during harvesting operations and evaluate the influence of factors such as distance of the tree from the strip road, machine parts, operational phase, on the occurrence of tree wounds. The machine was a farm tractor equipped with a crane mounted on the front axle and a single grip harvester head. The study was carried out in two stands located in Southeast Sweden. Stand 1 was a 30-year-old Norway spruce (Picea abies (L.) H. Karst.) plantation on an afforested pasture while stand 2 was a 90-year-old mixed stand of Norway spruce, Scots pine (Pinus sylvestris L.), birch (Betula pendula Roth) and aspen (Populus tremula L.).

The mean damage percentage was 6.3% for the first stand and 6.5% for the second stand. Sixty-five percent of the wounds were less than 50 cm2, with 91% of the damage occurring on the stem and 91% of the damage on or below the root collar. Sixty-six percent of the wounds produced by the stem under processing or by the harvesting head while only 10% of the wounds were produced by the tractor wheel. Damaged trees were distributed evenly in the crane reach zone. Significant differences were found between rut depths after one, two, four and six passes of the tractor in stand 1.

  • Athanassiadis, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive