Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Manfred Gronalt

Category: Research article

article id 10074, category Research article
Sebastian Kühle, Alfred Teischinger, Manfred Gronalt. (2019). Optimal location of laminated beech production plants within the solid hardwood supply network in Austria. Silva Fennica vol. 53 no. 3 article id 10074. https://doi.org/10.14214/sf.10074
Highlights: This paper provides data to the solid hardwood business and develops a mixed integer linear program model to design a laminated beech wood supply network; It covers the strategic decision where to locate a new production facility within the existing supply network with the lowest supply network cost; Sufficient sawn wood suppliers and potential facility locations are provided.

Due to changes in forest management in various European countries, hardwood forest areas and amounts will increase. Sustainable and individual utilization concepts have to be developed for the upcoming available resource. Studies conclude that there is low potential for hardwoods in the traditional appearance market thus the application areas have to be extended to new structural innovative products. This paper examines the extension to a future laminated beech wood supply network which would be a combination of already existing and new production facilities. For a better future use of hardwood raw materials it is necessary to consider the entire supply chain. This also better shows a total hardwood value chain. Therefore, this paper provides data to the solid hardwood business and develops a mixed integer linear programming to design a laminated beech wood supply network. The model is applied to Austria as the sample region. It covers the important strategic decisions where to locate a downstream facility within the existing production network with the lowest supply network cost. Fourteen scenarios are developed to examine various future network configurations. Results about optimal material flows and used sawmills as well as downstream production facilities are presented in form of material and financial performances. Two optimal laminated beech production locations are determined by the calculated scenarios results, and the impact of a new sawmill is analyzed which is focused on beech.

  • Kühle, BOKU - University of Natural Resources and Life Sciences, Vienna, Department of Material Science and Process Engineering, and Renewable Institute of Wood Technology Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria ORCID ID:E-mail: skuehle@boku.ac.at (email)
  • Teischinger, BOKU - University of Natural Resources and Life Sciences, Vienna, Department of Material Science and Process Engineering, and Renewable Institute of Wood Technology Materials, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria ORCID ID:E-mail: alfred.teischinger@boku.ac.at
  • Gronalt, BOKU - University of Natural Resources and Life Sciences, Vienna, Department of Economics and Social Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria ORCID ID:E-mail: manfred.gronalt@boku.ac.at
article id 1006, category Research article
Jörn Rathke, Maria A. Huka, Manfred Gronalt. (2013). The box assignment problem in log yards. Silva Fennica vol. 47 no. 3 article id 1006. https://doi.org/10.14214/sf.1006
Highlights: Logistic approach for the optimization of log yard in terms of arrangement of storage boxes and ejection boxes reduced transportation time by 16 percent compared with the original solution.
This paper presents an optimization approach to minimizing log yard round wood transportation time for a medium sized hardwood sawmill. The log yard, which has to ensure a smooth raw material supply to the entire production process, is the first processing step in a sawmill. The log yard also serves as an internal round wood sorting and storing capacity. Thus, an optimal assignment of ejection boxes, storage boxes and feeding carriages is required to minimize transportation time at a log yard. The main contribution of this paper is to present an integrated approach which simultaneously takes into account log transportation time, storage capacity and yard crane deployment. The approach is based on two steps: a) defining storage spaces per batch and calculating distances and b) determining optimum box assignments in the log yard in order to minimize overall transportation distance. The solution in step b) is compared with the results obtained by random box assignment as well as a spreadsheet based planning method. We have been able to show that our approach is much more flexible and results are more than 16 percent better than the corresponding real life solution.
  • Rathke, University of Natural Resources and Life Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria ORCID ID:E-mail: joern.rathke@boku.ac.at
  • Huka, University of Natural Resources and Life Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria ORCID ID:E-mail: maria.huka@boku.ac.at (email)
  • Gronalt, University of Natural Resources and Life Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria ORCID ID:E-mail: manfred.gronalt@boku.ac.at
article id 267, category Research article
Manfred Gronalt, Peter Rauch. (2008). Vendor managed inventory in wood processing industries – a case study. Silva Fennica vol. 42 no. 1 article id 267. https://doi.org/10.14214/sf.267
Solid structure timber (SST) is an important building material in the wood construction business, in which its production volume is largely related to that respective business. Due to the large variability in the demand and seasonal factors, SST producers’ inventories are likely to be simultaneously overstocked for one type of timber and out of stock of another. An inventory policy that ensures a high service level and relatively low stocks is required. In the present paper, we propose the vendor managed inventory (VMI) approach for controlling the stock of deals that are produced at a sawmill and delivered as raw material for SST-production. We evaluate two VMI implementations against the actual inventory management for three different market scenarios. Furthermore, we layout the necessities for reconfiguring the business processes, and subsequently set up an organisational framework within VMI, which is indeed applicable in this segment of the woodworking industry. In our application background, VMI as an inventory control system is able to reduce the overall raw material stock by more than 37% by simultaneously increasing the SST service level.
  • Gronalt, BOKU – University of Natural Resources and Applied Life Sciences, Feistmantelstr. 4, 1180 Vienna, Austria ORCID ID:E-mail:
  • Rauch, BOKU – University of Natural Resources and Applied Life Sciences, Feistmantelstr. 4, 1180 Vienna, Austria ORCID ID:E-mail: peter.rauch@boku.ac.at

Category: Review article

article id 7760, category Review article
Maria A. Huka, Manfred Gronalt. (2018). Log yard logistics. Silva Fennica vol. 52 no. 4 article id 7760. https://doi.org/10.14214/sf.7760
Highlights: Characteristics of log yard logistics; Classification into tactical structural and operational problems in the wood industry; Different solution methods such as optimisation, heuristics and simulations and their possible application within the log yard with an overview of existing literature which includes several different case studies with varying emphases, problem analysis and solution methods.

For sawmills, paper mills, particleboard, oriented strand board (OSB), fiberboard and other wood production factories, the log yard is the first step, where raw materials are sorted and stored before production begins. Due to the size of these production sites great potential exists for the optimisation of internal logistics. In this paper the different planning problems of the log yard are introduced and existing literature examined. Beginning with the tactical problems of structure, such as assessing material flow, planning facility layout and assigning storage areas, it continues with operational problems such as vehicle movement planning within the log yard, empty trip minimisation and the seasonality of raw material availability. Data derived from this study reveals a variety of possible solution methods, the applicability of which depends on the precise nature of the log yard operations. Additionally, several real life examples are provided which illustrate the potential for operational improvement.

  • Huka, University of Natural Resources and Life Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria ORCID ID:E-mail: maria.huka@boku.ac.at (email)
  • Gronalt, University of Natural Resources and Life Sciences, Institute of Production and Logistics, Feistmantelstraße 4, 1180 Vienna, Austria ORCID ID:E-mail: manfred.gronalt@boku.ac.at

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive