Moose (Alces alces L.) browsing causes severe damage in Scots pine (Pinus sylvestris L.) seedling stands. The effects of this damage on the quality of sawlogs were studied in a long-term controlled experiment. This article reports the stem size and external quality characteristics of Scots pine stems 34 years after artificial moose browsing damage. Damaging the trees by clipping the main stem at the seedling stage reduced the diameter, height, and tree volume of the trees at the end of the experiment. The tree growth reduction was dependent on the severity of clipping. The differences between the damaged and the control trees were more obvious in diameter than in height at the time of final felling. Stem form defects and vertical branches were the most typical externally detectable defects caused by clipping. Defects in the butt logs were detected in 71–89% of the damaged trees, depending on the clipping treatment severity. The stronger the clipping treatment, the more likely the stem form was defected and the more commonly were vertical branches and crooks detected in the stems. The results indicate that both tree dimensions and stem quality suffer from moose browsing. The findings of this controlled experiment more likely underestimate than overestimate the damage in comparison to real moose browsing. Further analyses are required to assess the effects of browsing damage on the internal quality of sawlogs and subsequent economic outcomes.
Detailed pre-harvest information about the volumes and properties of growing stocks is needed for increased precision in wood procurement planning for just-in-time wood deliveries by cut-to-length (CTL) harvesters. In the study, the non-parametric Most Similar Neighbour (MSN) methodology was evaluated for predicting external quality of Scots pine and Norway spruce, expressed as stem sections fulfilling the saw log dimension and quality requirements of Finnish forest industry, as they affect the recovery of timber assortments and the value of a pre-harvest stand. Effects of external tree quality were evaluated using saw log recovery and saw log reduction caused by stem defects, as well as total timber value (€) and average unit value (€ m–3) in a stand. Root mean square error (RMSE) of saw log recovery and reduction were 9.12 percentile points (pp) for Scots pine and 6.38 pp for Norway spruce stands. In the unit value considerations, the predictions compared with measurements resulted in the RMSE of 3.50 € m–3 and the bias of 0.58 € m–3 in Scots pine stands and 2.60 € m–3, and 0.35 € m–3 in Norway spruce stands, respectively. The presented MSN based approach together with the utilization of the external stem quality database included in the ARVO software could provide dimension and external quality predictions usable for pre-harvest assessment of timber stock at a stand level. This prediction methodology is usable especially in analyses where timber assortment recoveries, values and unit prices are compared when different bucking objectives are used.
In a closed market, roundwood buyers pricing system affect the roundwood flow from the stands to different roundwood users. If a buyer is capable to discriminate higher value stands from low quality stands better than its competitors, the buyer should be able to buy better raw material. In the study, a discrete event simulation was used to examine the effect of residual value appraisal (RVA) -based pricing of roundwood by log dimensions and grades compared to the traditional pricing based on average unit prices (UP) of roundwood assortments on roundwood flow. The core of the simulation model was the data containing 51 pine dominated stands from southern Finland. Sample trees were theoretically bucked by the bucking simulator in order to estimate the volumes, dimensions and grades of the logs and roundwood assortments. The simulation model of roundwood markets included four roundwood buyers, two corporations and two saw milling enterprises. The main finding of the study was that the buyers who use RVA gains an advantage and receives better quality compared to buyers who use UP. As the number of buyers using RVA increases, the competition increased and the advantage decreased.
The paper presents preliminary results on the relationships of the longitudinal modulus of elasticity (E) in bending, based on ISO Standard 3349 tests on small, clear specimens, and some basic characteristics of Finnish Scots pine (Pinus sylvestris L.) wood. A manual image analysis method – quantitative stereological counting – was introduced and applied for the investigations of wood structure.
The main results were consistent with those from the prior research. The range of E was 9.7 to 19.1 GPa. Increase in especially fibre density index (R2 = 0.95), weight density and specific gravity (R2 = 0.90), Runkel’s ratio, coefficient of cell rigidity and number of growth rings per cross-sectional unit area, but also in latewood percentage (R2 = 0.58) resulted in an increase in E. Increase in growth ring width, particularly in the width of the late wood section within a ring (R2 = 0.63 to 0.90) had a reverse effect. Cell wall thickness did not show any clear effect. Except for tracheid diameter, the relationships were stronger for the variables determined in the tangential than in the radial wood direction.
Quantitative stereological counting has been used to some degree in the Finnish wood research. The procedure is technically feasible and easy to use. A large sample of counting areas is frequently needed to obtain accurate mean results for the size and distribution of the features. Because the actual analysis points are located at a fixed distance from each other, the method is not in principle well suited for wood with a regular and simple structure, as Scots pine. However, the good correlations between E and some characteristics obtained with stereological counting did not support this misgiving.
The PDF includes an abstract in Finnish.
This article summarises the importance of forest industry in the acquisition and consumption of wood-based energy in Finland. Opportunities to increase the efficiency of energy utilization further are discussed, as well.
The forest industry uses 25% of the total energy and 40% of the total electricity. It also generates considerable amounts of heat and electric power as by-products of wood-processing. Wood in different forms accounts for 64% of the fuels of the forest industry. Consequently, the need for outside, imported energy is minute. Black liquor of pulping is dominant as a source of wood-based energy. In addition, plenty of wood residues (bark, saw dust, planer shavings, grinder dust, screening reject of chips) and minor amounts of for wood processing unsuitable fractions obtained in conjunction with harvesting small-sized whole-trees, tree selections and logging residues are used for energy production.
The PDF includes an abstract in Finnish.