Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Hardi Tullus

Category: Research article

article id 1107, category Research article
Arvo Tullus, Arne Sellin, Priit Kupper, Reimo Lutter, Linnar Pärn, Anna K. Jasinska, Meeli Alber, Maarja Kukk, Tea Tullus, Hardi Tullus, Krista Lõhmus, Anu Sõber. (2014). Increasing air humidity – a climate trend predicted for northern latitudes – alters the chemical composition of stemwood in silver birch and hybrid aspen. Silva Fennica vol. 48 no. 4 article id 1107. https://doi.org/10.14214/sf.1107
Highlights: Hybrid aspen and silver birch trees grew more slowly under increased air humidity conditions and had higher concentrations of N and P and a lower K to N ratio in stemwood; Minor species-specific changes were detected in stemwood concentrations of cellulose and hemicellulose; Density, calorific value and concentrations of lignin and ash in stemwood were not affected by elevated humidity.
We studied the physicochemical properties of stemwood in saplings of silver birch (Betula pendula Roth) and hybrid aspen (Populus tremula L. × P. tremuloides Michx.), grown for four years under artificially elevated relative air humidity (on average by 7%) in field conditions, using the Free Air Humidity Manipulation (FAHM) research facility in Estonia. Altogether 91 sample trees from three experimental plots with manipulated air humidity and from three control plots were cut in the dormant season and sampled for the analysis of cellulose, hemicellulose, acid detergent lignin, macronutrients (N, P, K), ash content, density, and calorific value of wood. The analysed trees grew significantly more slowly under elevated humidity conditions, with a more pronounced effect on aspens. Significantly higher concentrations of N and P were observed in the stemwood of both aspens and birches grown under elevated humidity. This could be the result of a change in the content of living parenchyma cells and/or enhanced retranslocation of nutrients into wood parenchyma. Additionally, humidification resulted in a significantly higher concentration of cellulose and a lower concentration of hemicellulose in aspen stemwood, and in significantly lower concentrations of cellulose and K in birch stemwood. Elevated humidity did not affect lignin concentration, ash content, basic density and calorific value of stemwood. Results from the FAHM experiment suggest that the increasing air humidity accompanying global warming at northern latitudes will affect the growth and functioning of deciduous trees and forests, with obvious consequences also for forest management and industry.
  • Tullus, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: arvo.tullus@ut.ee (email)
  • Sellin, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: arne.sellin@ut.ee
  • Kupper, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: priit.kupper@ut.ee
  • Lutter, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia ORCID ID:E-mail: reimo.lutter@emu.ee
  • Pärn, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia ORCID ID:E-mail: linnar.parn@emu.ee
  • Jasinska, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia & Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland ORCID ID:E-mail: jasiak9@wp.pl
  • Alber, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: meeli.alber@ut.ee
  • Kukk, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: maarja.kukk@ut.ee
  • Tullus, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia ORCID ID:E-mail: tea.tullus@emu.ee
  • Tullus, Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Kreutzwaldi 5, Tartu 51014, Estonia ORCID ID:E-mail: hardi.tullus@emu.ee
  • Lõhmus, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: krista.lohmus@ut.ee
  • Sõber, Department of Botany, Institute of Ecology and Earth Sciences, Faculty of Science and Technology, University of Tartu, Lai 40, Tartu 51005, Estonia ORCID ID:E-mail: anu.sober@ut.ee
article id 490, category Research article
Veiko Uri, Hardi Tullus, Krista Lõhmus. (2003). Nutrient allocation, accumulation and above-ground biomass in grey alder and hybrid alder plantations. Silva Fennica vol. 37 no. 3 article id 490. https://doi.org/10.14214/sf.490
The aim of the present work was to investigate the nutrient (N,P,K) allocation and accumulation in grey alder (Alnus incana (L.) Moench) and hybrid alder (Alnus incana (L.) Moench x Alnus glutinosa (L.) Gaertn.) plantations growing on former agricultural land and to estimate the above-ground biomass production during 4 years after establishment. In August of the 4th year, when leaf mass was at its maximum, the amount of nitrogen accumulated in above-ground biomass of grey alder stand was 142.0 kg ha–1, the amount of phosphorus 16.3 kg ha–1 and the amount of potassium 49.5 kg ha–1. The amount of nitrogen accumulated in a hybrid alder stand totalled 76.8 kg ha–1, that of phosphorus 6.2 kg ha–1 and that of potassium 28.2 kg ha–1. The smaller amounts of N,P and K bound in the hybrid alder plantation are related to the smaller biomass of the stand. Still, the amounts of N,P and K consumed for the production of one ton of biomass were similar in the case of up to 4-year-old grey alder and hybrid alder stands. In the 4th year, the amount of nutrients consumed in one ton of biomass produced were: 16.0 kg N, 1.6 kg P and 5.4 kg K for grey alder and 14.6 kg N, 1.1 kg P and 5.2 kg K for hybrid alder. In the 4th year the total above-ground biomass (dry mass) of grey alder (15750 plants ha–1) amounted to 12.3 t ha–1, current annual increment being 6.7 t ha–1. In hybrid alder stands (6700 plants ha–1), the respective figures were 6.1 t ha–1 and 4.5 t ha–1. Comparison of the production capacity on the basis of mean stem mass in the 4th year revealed that the stem mass of grey alder exceeded that of hybrid alder (0.64 kg and 0.58 kg, respectively). Grey alder outpaced hybrid alder in height growth; in the 4th year after establishment, the mean height of the grey alder stand was 4.6 ± 0.9 m and that of the hybrid alder plantation 3.5 ± 0.9 m.
  • Uri, Institute of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, 51014 Tartu, Estonia ORCID ID:E-mail: vuri@eau.ee (email)
  • Tullus, Institute of Silviculture, Estonian Agricultural University, Kreutzwaldi 5, 51014 Tartu, Estonia ORCID ID:E-mail:
  • Lõhmus, Institute of Geography, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia ORCID ID:E-mail:

Category: Article

article id 5593, category Article
Malle Mandre, Jaan Klõseiko, Vaike Reisner, Hardi Tullus. (1996). Assessment of CO2 fluxes and effects of possible climate changes on forests in Estonia. Silva Fennica vol. 30 no. 2–3 article id 5593. https://doi.org/10.14214/sf.a9238

The present study is the first attempt to carry out an inventory of greenhouse gas (GHG) fluxes in the forests of Estonia. The emission and uptake of CO2 as a result of forest management, forest conversion and abandonment of cultivated lands in Estonia was estimated. The removal of GHG by Estonian forests in 1990 exceeded the release about 3.3 times. Changes in the species composition and productivity of forest sites under various simulated climate change scenarios have been predicted by using the Forest Gap Model for the central and coastal areas of Estonia. The computational examples showed that the changes in forest community would be essential.

  • Mandre, ORCID ID:E-mail:
  • Klõseiko, ORCID ID:E-mail:
  • Reisner, ORCID ID:E-mail:
  • Tullus, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive