Current issue: 54(1)

Under compilation: 54(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Tuomas Aakala

Category: Research article

article id 1279, category Research article
Andreas Kreutz, Tuomas Aakala, Russell Grenfell, Timo Kuuluvainen. (2015). Spatial tree community structure in three stands across a forest succession gradient in northern boreal Fennoscandia. Silva Fennica vol. 49 no. 2 article id 1279. https://doi.org/10.14214/sf.1279
Highlights: We studied the tree community spatial structure in three 1.2-ha plots representing naturally developed northern boreal forests of varying ages; Spatial structure showed little differences between the mid-successional, late-successional and old-growth stands; The occurrence of Picea abies relative to Betula spp. indicated a mosaic-like spatial assembly; Mosaics are likely maintained by species-specific replacement, not reciprocal replacement as thought earlier.
Development of species composition during succession is well studied in natural boreal forests, but empirical assessments of how within-stand spatial structure develops in late-successional stages are few. Here, we quantified spatial patterns in three unmanaged stands consisting of Picea abies (L.) Karst. and Betula pubescens Ehrh. and Betula pendula Roth (hereafter Betula spp.) in northern boreal Fennoscandia. We conducted a comprehensive analysis of small-scale spatial point patterns in three fully mapped 1.2-ha sample plots, representing different forest developmental stages: mid-successional, late-successional and old-growth forest. We used several variants of Ripley’s K-function to analyze the spatial point patterns along the successional gradient. Univariate analyses showed that mature trees of both species were either randomly distributed or clumped. P. abies saplings were clumped, and Betula spp. saplings occurred in a random or clumped manner. In the bivariate analyses, saplings were more likely to be found in the surroundings of mature trees of the same species, but occurred independent of the individuals of other tree species. Mature trees showed interspecific repulsion. Only modest differences occurred in the univariate patterns between the three successional stages, but in the bivariate analyses the most evident patterns, i.e. intraspecific attraction and interspecific repulsion, were stronger in the older successional stages. Overall, the studied stands appear structured as species-specific mosaics. These mosaics, along with mixed species composition, seem to be maintained by species self-replacement, which contrasts with findings from earlier studies.
  • Kreutz, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: andreas.kreutz@wald-rpl.de
  • Aakala, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID: http://orcid.org/0000-0003-0160-6410 E-mail: tuomas.aakala@helsinki.fi (email)
  • Grenfell, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: russell.grenfell@gmail.com
  • Kuuluvainen, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: timo.kuuluvainen@helsinki.fi
article id 89, category Research article
Russell Grenfell, Tuomas Aakala, Timo Kuuluvainen. (2011). Microsite occupancy and the spatial structure of understorey regeneration in three late-successional Norway spruce forests in northern Europe. Silva Fennica vol. 45 no. 5 article id 89. https://doi.org/10.14214/sf.89
We compared microsite occupancy and three spatial structure of regeneration in three primeval late-successional Norway spruce dominated forests. One area lay in the middle boreal zone in Russia (Dvina-Pinega) where larger-scale disturbance from bark beetles and drought had occurred; the other areas lay in the northern boreal zone, one in Finland (Pallas-Ylläs) had encountered only small-scale disturbance, and one in Russia (Kazkim) had been influenced by fire. We mapped all spruce (Picea abies) and birch (Betula pendula and Betula pubescens) trees with diameter at breast height (DBH) ≥ 10 cm on 40 m 400 m plots, and those with DBH < 10 cm on 2 m or 4 m 400 m subplots. On the subplots we also recorded microsite occupancy and estimated microsite availability. At all study areas small seedlings (h < 0.3 m) of both spruce and birch were found largely on disturbance-related microsites. Birch saplings (h ≥ 1.3 m, DBH < 10 cm) disproportionately occupied deadwood-related microsites at Dvina-Pinega. In contrast, spruce saplings at all study areas, and birch saplings at Kazkim and Pallas-Ylläs, showed less, or no, preference. Our results thus confirm the importance of disturbance-related microsites for regeneration establishment, but not necessarily for long-term survival. No spatial segregation between the overstorey (DBH ≥ 10 cm) and saplings (h ≥ 1.3 m, DBH < 10 cm) or seedlings (h < 1.3 m) was found at Pallas-Ylläs or Kazkim, and only three instances of very weak segregation were found at Dvina-Pinega. This suggests that the regeneration gap concept may not be useful for describing the regeneration dynamics of primeval boreal forests.
  • Grenfell, University of Helsinki, Dept of Forest Sciences, Helsinki, Finland ORCID ID:E-mail: russell.grenfell@helsinki.fi (email)
  • Aakala, University of Helsinki, Dept of Forest Sciences, Helsinki, Finland ORCID ID:E-mail:
  • Kuuluvainen, University of Helsinki, Dept of Forest Sciences, Helsinki, Finland ORCID ID:E-mail:
article id 81, category Research article
Tuomas Aakala. (2011). Temporal variability of deadwood volume and quality in boreal old-growth forests. Silva Fennica vol. 45 no. 5 article id 81. https://doi.org/10.14214/sf.81
Reference deadwood volumes from natural forests for forest management and restoration are often derived from one-time measurements or from repeated measurements over short time-scales. Such an approach often assumes an equilibrium state between tree mortality and decomposition, which is questionable in many boreal forest ecosystems due to the occurrence of allogenic disturbances. Using a simulation model based on empirical estimates of tree mortality, disturbance chronologies and models of wood decay class dynamics, this study aimed at characterizing variability in the volume and quality of deadwood for the past 200 years. The variability of deadwood volumes in old-growth forests, arising from differences in disturbance regimes and differing decay rates, was exemplified in two areas of Picea abies-dominated forests in northern Europe. The results imply that with stable deadwood input and slow decay rates the deadwood volume may be in an equilibrium state. On the contrary, if moderate-severity disturbances occur such a state seems improbable. Both study areas displayed continuity in deadwood availability, although temporary paucity in the early decay classes with shortest residence times was also observed. The results stress the importance of understanding the dynamic nature of deadwood in old-growth forests, instead of the traditional view of deadwood as a static ecosystem component.
  • Aakala, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: tuomas.aakala@helsinki.fi (email)
article id 468, category Research article
Antti Lännenpää, Tuomas Aakala, Heikki Kauhanen, Timo Kuuluvainen. (2008). Tree mortality agents in pristine Norway spruce forests in northern Fennoscandia. Silva Fennica vol. 42 no. 2 article id 468. https://doi.org/10.14214/sf.468
We examined tree mortality agents in pristine old Norway spruce (Picea abies (L.) Karst.) forests in northern Finland and northwestern Russia. The data was collected on nine 40 m   400 m transects. The primary mortality agents of recently dead trees were recorded and their frequencies were calculated. The pattern of tree growth prior to death was studied based on increment core samples and compared with the growth of healthy dominant trees. Of all recently dead trees, 72% could be associated with a primary mortality agent. In both study areas the most common primary mortality agent was a Coniophora (Mérat) DC. -genus fungi, which was found on average in 33% of trees sampled. The fungi Phellinus chrysoloma (Fr.) Don and Onnia leporina (Fr.) H. Jahn as mortality agents were more common in the Finnish area compared to the Russian area. Analysis on the growth patterns indicated weak differences between different pathogens’ influence on prior-to-death growth of trees, so that fungi rotting the whole tree decreased tree growth more rapidly than fungi rotting only the heart wood. The results demonstrated that in old Norway spruce forests of northern Fennoscandia the most common primary tree mortality agents were wood rotting fungi, which weaken the mechanical stability of tree stems until they fall due to snow or wind, which should be considered only as secondary mortality agents. It is evident that tree death in pristine forest typically results from a long-lasting process involving both biotic and abiotic factors.
  • Lännenpää, Department of Forest Ecology, University of Helsinki, Finland ORCID ID:E-mail:
  • Aakala, Department of Forest Ecology, University of Helsinki, Finland ORCID ID:E-mail: tuomas.aakala@helsinki.fi (email)
  • Kauhanen, Kolari Research Unit, Finnish Forest Research Institute, Finland ORCID ID:E-mail:
  • Kuuluvainen, Department of Forest Ecology, University of Helsinki, Finland ORCID ID:E-mail:

Category: Review article

article id 73, category Review article
Timo Kuuluvainen, Tuomas Aakala. (2011). Natural forest dynamics in boreal Fennoscandia: a review and classification. Silva Fennica vol. 45 no. 5 article id 73. https://doi.org/10.14214/sf.73
The aim here was to review and summarize the findings of scientific studies concerning the types of forest dynamics which occur in natural forests (i.e. forests with negligible human impact) of boreal Fennoscandia. We conducted a systematic search for relevant studies from selected reference databases, using search terms describing the location, structure and processes, and degree of naturalness of the forest. The studies resulting from these searches were supplemented with other known works that were not indexed in the databases. This procedure yielded a total of 43 studies. The studies were grouped into four types of forest dynamics according to the information presented on the characteristics of the native disturbance-succession cycle: 1) even-aged stand dynamics driven by stand-replacing disturbances, 2) cohort dynamics driven by partial disturbances, 3) patch dynamics driven by tree mortality at intermediate scales (> 200 m2) and 4) gap dynamics driven by tree mortality at fine scales (< 200 m2). All four dynamic types were reported from both spruce and pine dominated forests, but their commonness differed. Gap dynamics was most commonly reported in spruce forests, and cohort dynamics in pine forests. The studies reviewed provide the best obtainable overall picture of scientific findings concerning the characteristics and variability of the unmanaged boreal forest dynamics in Fennoscandia. The results demonstrate that the unmanaged Fennoscandian forests are characterized by more diverse and complex dynamics than has traditionally been acknowledged.
  • Kuuluvainen, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: timo.kuuluvainen@helsinki.fi (email)
  • Aakala, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive