Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Jiaxi Wang

Category: Research article

article id 1607, category Research article
Yanlin Fu, Juan A. Oliet, Guolei Li, Jiaxi Wang. (2017). Effect of controlled release fertilizer type and rate on mineral nutrients, non-structural carbohydrates, and field performance of Chinese pine container-grown seedlings. Silva Fennica vol. 51 no. 2 article id 1607. https://doi.org/10.14214/sf.1607
Highlights: We demonstrated that Chinese pine container-grown seedling nutrient status and non-structural carbohydrate content were sufficient over a wide range of fertilization rates; Fertilization at 80 mg N seedling–1 was optimal for seedling responses in the nursery and field; Nursery fertilization using controlled release fertilizer (CRF) with a single coating layer yielded better seedling nursery performance than CRF with multiple coatings.

Although controlled release fertilizer (CRF) with single and multiple-layer coatings are extensively used in tree seedlings, studies that compare the impact of CRF type and application rate on seedling growth, nutrient storage, and, most importantly, outplanting performance, are lacking. In the current study, container-grown Pinus tabulaeformis Carr. (Chinese pine) seedlings were fertilized with commercial CRF with either one or multiple coating layers with equivalent formulation and longevity, at six rates ranging from 40 to 240 mg N seedling–1. Seedlings were sampled for dry mass, non-structural carbohydrate (NSC) content, and mineral nutrient status at the end of the growing season in the nursery, and subsequently outplanted for one season. Compared to Chinese pine seedlings fertilized with single-layer CRF treatments, seedlings treated with multiple-layer CRF had higher starch concentrations but reduced dry mass and N, P, K concentrations in the nursery, and reduced diameter growth in the field. Fertilization rates of 80 and 120 mg N seedling–1 generally yielded maximal plant dry mass and mineral nutrient content. Field survival peaked at 80 mg N seedling–1. Seedling growth, soluble sugar content, and starch concentration in the nursery and survival in the field consistently decreased at rates of 200 and 240 mg N seedling–1. In our study, optimal nursery and field performance of P. tabulaeformis were observed using single layer CRF at 80 mg N seedling–1 (3.3 g CRF l–1 media).

  • Fu, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University; Beijing Laboratory of Urban and Rural Ecological Environment; 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: bjfu_fu@163.com
  • Oliet, Department of Natural Systems and Resources, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ORCID ID:E-mail: juan.oliet@upm.es
  • Li, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University; Beijing Laboratory of Urban and Rural Ecological Environment; 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: glli226@163.com (email)
  • Wang, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University; Beijing Laboratory of Urban and Rural Ecological Environment; 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: wjx198979@163.com
article id 1475, category Research article
Jiaxi Wang, Haiqun Yu, Guolei Li, Feng Zhang. (2016). Growth and nutrient dynamics of transplanted Quercus variabilis seedlings as influenced by pre-hardening and fall fertilization. Silva Fennica vol. 50 no. 2 article id 1475. https://doi.org/10.14214/sf.1475
Highlights: High pre-hardening fertilization favored seedling growth and nutrient storage at the rapid growth and hardening phases following transplantation. Overall, high fall fertilization was beneficial only at the hardening phase; The combination of 100 mg N seedling–1 during pre-hardening with 36 mg N seedling–1 during hardening was recommended for satisfactory transplanting performance for Quercus variabilis.

Stored nutrient reserves are closely correlated with survival and growth of transplanted seedlings. Previous studies have proven that combining pre-hardening fertilization (PF) with fall fertilization (FF) built seedling nutrient reserves more effectively; however, their effect on transplanting performance is poorly documented. We investigated the independent and interacting effects of 2 levels of PF and 4 levels of FF on seedling growth, nutrient acquisition and accumulation during different growth phases 1 year after transplanting of Quercus variabilis Blume in a nursery. High PF benefited nutrient reserves and subsequent transplanted seedling growth and tissue nutrient storage at the end of the rapid growth and hardening phases. Fall fertilization with 36 mg N increased stem dry mass and tissue nutrient content at the end of the hardening phase. At the conclusion of establishment, PF and FF showed a significant interaction for N and K uptake from soil. At the end of the rapid growth and hardening phases, high PF consistently increased nutrient uptake. Enhanced N and K uptake occurred following application of 36 mg N of FF at the end of the hardening phase. Distinct roles for PF and FF on 3 phases of transplanted seedlings demonstrated the necessity to evaluate fertilization in terms of nutrient reserves and subsequent transplanting performance in consecutive phases. Combining 100 mg N seedling–1 during pre-hardening with 36 mg N seedling–1 during fall yielded ideal transplanting performance for Quercus variabilis seedlings.

  • Wang, Key Laboratory for Silviculture and Conservation, Ministry of Education; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: wjx198979@163.com
  • Yu, Beijing Forestry Carbon Administration, room 201, No.1 Xiao Huang Zhuang Bei Jie, Dongcheng District, Beijing 100013, China ORCID ID:E-mail: yuhq@bfdic.com
  • Li, Key Laboratory for Silviculture and Conservation, Ministry of Education; Beijing Laboratory of Urban and Rural Ecological Environment, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: glli226@163.com (email)
  • Zhang, Beijing Forestry Carbon Administration, room 201, No.1 Xiao Huang Zhuang Bei Jie, Dongcheng District, Beijing 100013, China ORCID ID:E-mail: zhangf@bfdic.com
article id 1295, category Research article
Jiaxi Wang, Guolei Li, Jeremiah R. Pinto, Jiajia Liu, Wenhui Shi, Yong Liu. (2015). Both nursery and field performance determine suitable nitrogen supply of nursery-grown, exponentially fertilized Chinese pine. Silva Fennica vol. 49 no. 3 article id 1295. https://doi.org/10.14214/sf.1295
Highlights: Increasing exponential fertilization rates in the nursery increased seedling biomass, N content, and N concentration for Chinese pine seedlings; Second year seedling survival illustrated a curvilinear response to seedling fertilization rates rather than a linear one; Considering both nursery responses to fertilization and field performance after two years yielded a recommended nitrogen supply rate of 80 mg N seedling–1.
Optimum fertilization levels are often determined solely from nursery growth responses. However, it is the performance of the seedling on the outplanting site that is the most important. For Pinus species seedlings, little information is known about the field performance of plants cultured with different nutrient rates, especially with exponential fertilization. In this study, Chinese pine (Pinus tabulaeformis Carr.) seedlings grown in 187 ml containers were fertilized exponentially in 6 treatments ranging from 10 to 120 mg N seedling–1 for 25 weeks before outplanting. Dry mass and N content were measured at planting. Survival and field growth were monitored for two growing seasons. In the nursery, our data showed no difference in dry mass among the 40, 80, 100, and 120 mg N seedling–1 fertilizer treatments; collectively, these treatments were significantly greater than at 10 and 20 mg N seedling–1 treatments. Seedling N content was greatest for the 100 and 120 mg N seedling–1 rates. These data suggested that nursery optimum N fertilization rate was no less than 100 mg N seedling–1. Outplanting height and root-collar diameter growth characteristics were not significantly different after two years, whereas maximum mean survival was best for seedlings nursery-fertilized at 80 mg N seedling–1. In consideration of both nursery and field performance metrics, our data suggest that exponentially fertilizing Chinese pine seedlings at 80 mg N seedling–1 maximizes both nursery biomass accumulation and outplanting survival.
  • Wang, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: wjx198979@163.com
  • Li, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: glli226@163.com (email)
  • Pinto, US Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843, USA ORCID ID:E-mail: jpinto@fs.fed.us
  • Liu, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: 1044902638@qq.com
  • Shi, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: shiwenhui2008@163.com
  • Liu, Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, 35 East Qinghua Road, Haidian District, Beijing 100083, China ORCID ID:E-mail: lyong@bjfu.edu.cn

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive