Current issue: 53(1)

Under compilation: 53(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Kalle Karttunen

Category: Research article

article id 1521, category Research article
Kalle Karttunen, Juha Laitila, Tapio Ranta. (2016). First-thinning harvesting alternatives for industrial or energy purposes based on regional Scots pine stand simulations in Finland. Silva Fennica vol. 50 no. 2 article id 1521. https://doi.org/10.14214/sf.1521
Highlights: Small-diameter delimbed wood from Scots pine stands delivered directly for energy use was the most cost-efficient option in terms of the total supply-chain cost in comparison with corresponding industrial use or a whole-tree supply chain for energy use; Forest-management and harvesting decisions influenced the removal of forest biomass and stumpage price as well as the total supply-chain costs for forest biomass; The greatest cost-reduction potential (10.0%, 4.00 € m–3) was achieved for the delimbed energy wood’s supply chain in the regional case of South Savo in eastern Finland.

Combining research into forest management stand conditions and wood supply chain processes has been missing from earlier forestry studies. There is a clear need to develop more cost-efficient small-diameter wood production, harvesting and transportation methods from first thinning, which could be used for either industrial or energy wood purposes. This study considers the total cost for small-diameter wood originating from young Scots pine (Pinus sylvestris L.) dominated stands. Pine pulpwood is the most harvested and most used roundwood assortment, use of which is expected to rise following new pulp-mill investments in Finland. In addition, utilisation of small-diameter trees directly for energy purposes has been increasing steadily in recent years. The aim of the study was to determine the cost-reduction potential of alternative forest management options and supply chains for small diameter-wood in the regional case of South Savo in eastern Finland. The total costs of three distinct scenarios were studied on the basis of forest management, first-thinning harvesting methods, and transportation: 1) industrial wood, 2) delimbed energy wood, and 3) whole trees for energy purposes. The cost-reduction potential for energy-wood supply chains from first thinning was compared to the industrial supply chain. Small-diameter delimbed wood delivered straight for energy purposes was found to be the most cost-efficient as far as the total cost of the supply chain is concerned. More cost-efficient small-diameter wood processes can be found by linking forest stand simulations with supply chain analysis.

  • Karttunen, Lappeenranta University of Technology, LUT School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland ORCID ID:E-mail: kalle.karttunen@lut.fi
  • Laitila, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: juha.laitila@luke.fi
  • Ranta, Lappeenranta University of Technology, LUT School of Energy Systems, Laboratory of Bioenergy, Lönnrotinkatu 7, FI-50100 Mikkeli, Finland ORCID ID:E-mail: tapio.ranta@lut.fi (email)
article id 1047, category Research article
Kalle Karttunen, Lauri Lättilä, Olli-Jussi Korpinen, Tapio Ranta. (2013). Cost-efficiency of intermodal container supply chain for forest chips. Silva Fennica vol. 47 no. 4 article id 1047. https://doi.org/10.14214/sf.1047
Highlights: The combined availability and simulation study method obtains more realistic results for use in practical decision-making in supply chain management; The total costs of forest chips with intermodal composite container supply chains were lower than traditional options in all scenarios; The most advantageous way to expand the procurement area for forest chips is either to use composite container trucks or start using train transportation instead of trucks for procurement from longer distances.
Cost-efficient solutions of supply chains for energy wood are required as part of endeavors to reach targets for renewable energy utilization. Long-distance railway transportation is an interesting area of research, especially for high-volume sites where the forest-to-site distance is considerable and rail facilities already exist. The aim of the study was to compare the cost-efficiency of an intermodal container supply chain and traditional multi-modal supply chain with corresponding direct truck logistics for long-distance transportation of forest chips. In the study, site-dependent information for forest biomass transport was integrated into a simulation model to calculate the cost-efficiency of logistic operations related to forest chips transportation in central Finland. The model was tested with several truck and railway transportation scenarios for varying demand of forest chips at the case power plant. The total costs of traditional supply chains were found to be 5–19% more expensive than container supply chain scenarios. The total unit costs of forest chips varied between 15.3 and 20.0 €/MWh depending on the scenario. It is concluded on the basis of the scenario study that intermodal light-structure container logistics and railway transportation could be developed as a viable option for large-scale supply of forest chips.
  • Karttunen, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: kalle.karttunen@lut.fi (email)
  • Lättilä, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: lauri.lattila@lut.fi
  • Korpinen, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: olli-jussi.korpinen@lut.fi
  • Ranta, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: tapio.ranta@lut.fi
article id 49, category Research article
Kalle Karttunen, Kari Väätäinen, Antti Asikainen, Tapio Ranta. (2012). The operational efficiency of waterway transport of forest chips on Finland’s Lake Saimaa. Silva Fennica vol. 46 no. 3 article id 49. https://doi.org/10.14214/sf.49
New and cost-efficient methods for use in supply chains for energy wood should be found, to reach the targets of the renewable energy utilisation set by the European Union. The long-distance waterway transportation of forest fuels should be thoroughly investigated, especially in areas where the transport distance is long and waterways could provide a feasible method of conveying forest fuel. In comparison to transport of forest chips by truck, barge-based waterway transport shows a competitive advantage due to the larger loads and higher bulk density of chips it allows. The cost-efficiency of waterway transportation operations related to forest chips in Finland’s Lake Saimaa region was studied using practical demonstrations and discrete-event simulation. The varying demand for fuel wood in three separate bio-power plants on the Saimaa lakeside (near the cities of Varkaus, Mikkeli, and Savonlinna) was addressed in several barge transportation scenarios. Finally, the economy of barge transportation was compared to the economy of truck transportation as a function of transportation distance and in terms of the annual performance of the transportation methods examined. The waterway supply chain of forest chips was cost-competitive to road transport by truck after 100–150 km. According to the simulation study, the most economical waterway transport options were based on fixed barge system and shift-independent harbor logistics where loading and unloading of barges were carried-out with a wheeled loader and a belt conveyor. Total supply chain costs including the best waterway logistics from road side storage to power plant ranged from 10.75 euros to 11.64 euros/MWh in distances of 100–150 km by waterways. The energy-density of forest chips in the barge load was found to be, on average, 25% higher than that in truck hauling, because of the better compaction of chips. Waterway transport is a viable option for long-distance transportation of forest chips in Eastern Finland.
  • Karttunen, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Mikkeli, Finland ORCID ID:E-mail: kalle.karttunen@lut.fi (email)
  • Väätäinen, The Finnish Forest Research Institute, Joensuu, Finland ORCID ID:E-mail: kari.vaatainen@metla.fi
  • Asikainen, The Finnish Forest Research Institute, Joensuu, Finland ORCID ID:E-mail: antti.asikainen@metla.fi
  • Ranta, Lappeenranta University of Technology, LUT Savo Sustainable Technologies, Mikkeli, Finland ORCID ID:E-mail: tapio.ranta@lut.fi

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive