Current issue: 53(2)

Under compilation: 53(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Mikko Vastaranta

Category: Research article

article id 1568, category Research article
Jouni Siipilehto, Harri Lindeman, Mikko Vastaranta, Xiaowei Yu, Jori Uusitalo. (2016). Reliability of the predicted stand structure for clear-cut stands using optional methods: airborne laser scanning-based methods, smartphone-based forest inventory application Trestima and pre-harvest measurement tool EMO. Silva Fennica vol. 50 no. 3 article id 1568. https://doi.org/10.14214/sf.1568
Highlights: An airborne laser scanning grid-based approach for determining stand structure enabled bi- or multimodal predicted distributions that fitted well to the ground-truth harvester data; EMO and Trestima applications needed stand-specific inventory for sample measurements or sample photos, respectively, and at their best, provided superior accuracy for predicting certain stand characteristics.

Accurate timber assortment information is required before cuttings to optimize wood allocation and logging activities. Timber assortments can be derived from diameter-height distribution that is most often predicted from the stand characteristics provided by forest inventory. The aim of this study was to assess and compare the accuracy of three different pre-harvest inventory methods in predicting the structure of mainly Scots pine-dominated, clear-cut stands. The investigated methods were an area-based approach (ABA) based on airborne laser scanning data, the smartphone-based forest inventory Trestima app and the more conventional pre-harvest inventory method called EMO. The estimates of diameter-height distributions based on each method were compared to accurate tree taper data measured and registered by the harvester’s measurement systems during the final cut. According to our results, grid-level ABA and Trestima were generally the most accurate methods for predicting diameter-height distribution. ABA provides predictions for systematic 16 m × 16 m grids from which stand-wise characteristics are aggregated. In order to enable multimodal stand-wise distributions, distributions must be predicted for each grid cell and then aggregated for the stand level, instead of predicting a distribution from the aggregated stand-level characteristics. Trestima required a sufficient sample for reliable results. EMO provided accurate results for the dominating Scots pine but, it could not capture minor admixtures. ABA seemed rather trustworthy in predicting stand characteristics and diameter distribution of standing trees prior to harvesting. Therefore, if up-to-date ABA information is available, only limited benefits can be obtained from stand-specific inventory using Trestima or EMO in mature pine or spruce-dominated forests.

  • Siipilehto, Natural Research Institute Finland (Luke), Management and Production of Renewable Resources, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: jouni.siipilehto@luke.fi (email)
  • Lindeman,  Natural Research Institute Finland, Green Technology, Kaironiementie 15, 39700 Parkano ORCID ID:E-mail: harri.lindeman@luke.fi
  • Vastaranta, University of Helsinki, Department of Forest Sciences, P.O. Box 62 (Viikinkaari 11), FI-00014 University of Helsinki ORCID ID:E-mail: mikko.vastaranta@helsinki.fi
  • Yu, Finnish Geospatial Research Institute (FGI), Department of Remote Sensing and Photogrammetry, National Land Survey of Finland, P.O. Box 15 (Geodeetinrinne 2), FI-02431, Masala, Finland ORCID ID:E-mail: xiaowei.yu@maanmittauslaitos.fi
  • Uusitalo,  Natural Research Institute Finland, Green Technology, Kaironiementie 15, 39700 Parkano ORCID ID:E-mail: jori.uusitalo@luke.fi
article id 1218, category Research article
Mikko Niemi, Mikko Vastaranta, Jussi Peuhkurinen, Markus Holopainen. (2015). Forest inventory attribute prediction using airborne laser scanning in low-productive forestry-drained boreal peatlands. Silva Fennica vol. 49 no. 2 article id 1218. https://doi.org/10.14214/sf.1218
Highlights: Following current forest inventory practises, stem volume was predicted in low-productive drained peatlands (LPDPs) with a root mean square error (RMSE) of 13.7 m3 ha–1; When 30 reference plots measured from LPDPs were added to the prediction, RMSE was decreased to 10.0 m3 ha–1; Additional reference plots from LPDPs did not affect the forest inventory attribute predictions in productive forests.
Nearly 30% of Finland’s land area is covered by peatlands. In Northern parts of the country there is a significant amount of low-productive drained peatlands (LPDPs) where the average annual stem volume growth is less than 1 m3 ha–1. The re-use of LPDPs has been considered thoroughly since Finnish forest legislation was updated and the forest regeneration prerequisite was removed from LPDPs in January 2014. Currently, forestry is one of the re-use alternatives, thus detailed forest resource information is required for allocating activities. However, current forest inventory practices have not been evaluated for sparse growing stocks (e.g., LPDPs). The purpose of our study was to evaluate the suitability of airborne laser scanning (ALS) for mapping forest inventory attributes in LPDPs. We used ALS data with a density of 0.8 pulses per m2, 558 field-measured reference plots (500 from productive forests and 58 from LPDPs) and k nearest neighbour (k-NN) estimation. Our main aim was to study the sensitivity of predictions to the number of LPDP reference plots used in the k-NN estimation. When the reference data consisted of 500 plots from productive forest stands, the root mean square errors (RMSEs) for the prediction accuracy of Lorey’s height, basal area and stem volume were 1.4 m, 2.7 m2 ha–1 and 13.7 m3 ha–1 in LPDPs, respectively. When 30 additional reference plots were allocated to LPDPs, the respective RMSEs were 1.1 m, 1.7 m2 ha–1 and 10.0 m3 ha–1. Additional reference plot allocation did not affect the predictions in productive forest stands.
  • Niemi, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Finland & Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430, Finland ORCID ID:E-mail: mikko.t.niemi@helsinki.fi (email)
  • Vastaranta, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Finland & Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430, Finland ORCID ID:E-mail: mikko.vastaranta@helsinki.fi
  • Peuhkurinen, Arbonaut Oy Ltd., Latokartanontie 7 A, FI-00700, Finland ORCID ID:E-mail: jussi.peuhkurinen@arbonaut.com
  • Holopainen, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Finland & Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430, Finland ORCID ID:E-mail: markus.holopainen@helsinki.fi

Category: Research note

article id 9986, category Research note
Ninni Saarinen, Joanne C. White, Michael A. Wulder, Annika Kangas, Sakari Tuominen, Ville Kankare, Markus Holopainen, Juha Hyyppä, Mikko Vastaranta. (2018). Landsat archive holdings for Finland: opportunities for forest monitoring. Silva Fennica vol. 52 no. 3 article id 9986. https://doi.org/10.14214/sf.9986
Highlights: The 45-year Landsat archive contained 30 076 images for Finland by December 31, 2017; 16.3% of these were acquired within ±30 days of August 1 (northern hemisphere summer), have <70% cloud cover, and a 30 m spatial resolution; Using time series analyses, these data provide unique information that complements other datasets available for forest monitoring and assessment in Finland.

There is growing interest in the use of Landsat data to enable forest monitoring over large areas. Free and open data access combined with high performance computing have enabled new approaches to Landsat data analysis that use the best observation for any given pixel to generate an annual, cloud-free, gap-free, surface reflectance image composite. Finland has a long history of incorporating Landsat data into its National Forest Inventory to produce forest information in the form of thematic maps and small area statistics on a variety of forest attributes. Herein we explore the spatial and temporal characteristics of the Landsat archive in the context of forest monitoring in Finland. The United States Geological Survey Landsat archive holds a total of 30 076 images (1972–2017) for 66 scenes (each 185 km by 185 km in size) representing the terrestrial area of Finland, of which 93.6% were acquired since 1984 with a spatial resolution of 30 m. Approximately 16.3% of the archived images have desired compositing characteristics (acquired within August 1 ±30 days, <70% cloud cover, 30 m spatial resolution). Data from the Landsat archive can augment forest monitoring efforts in Finland, provide new information for science and applications, and enable retrospective, systematic analyses to characterize the development of Finnish forests over the past three decades. The capacity to monitor trends based upon this multi-decadal record with the addition of new measurements is of benefit to multisource inventories and offers nationally comprehensive spatially-explicit datasets for a wide range of stakeholders and applications.

  • Saarinen, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID: https://orcid.org/0000-0003-2730-8892 E-mail: ninni.saarinen@helsinki.fi (email)
  • White, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland; Canadian Forest Service, (Pacific Forestry Center), Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada ORCID ID: http://orcid.org/0000-0003-4674-0373 E-mail: joanne.white@canada.ca
  • Wulder, Canadian Forest Service, (Pacific Forestry Center), Natural Resources Canada, 506 West Burnside Road, Victoria, BC, V8Z 1M5, Canada ORCID ID: https://orcid.org/0000-0002-6942-1896 E-mail: mike.wulder@canada.ca
  • Kangas, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Yliopistokatu 6, FI-80100 Joensuu, Finland ORCID ID:E-mail: annika.kangas@luke.fi
  • Tuominen, Natural Resources Institute Finland (Luke), Bioeconomy and environment, Latokartanonkaari 9, FI-00790 Helsinki, Finland ORCID ID:E-mail: sakari.tuominen@luke.fi
  • Kankare, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: ville.kankare@helsinki.fi
  • Holopainen, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: markus.holopainen@helsinki.fi
  • Hyyppä, Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute, National Land Survey of Finland, Geodeetinrinne 2, FI-02431 Masala, Finland ORCID ID:E-mail: juha.hyyppa@nls.fi
  • Vastaranta, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID: https://orcid.org/0000-0001-6552-9122 E-mail: mikko.vastaranta@uef.fi

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive