Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Erik Eriksson

Category: Research article

article id 159, category Research article
Johan Stendahl, Maj-Britt Johansson, Erik Eriksson, Åke Nilsson, Ola Langvall. (2010). Soil organic carbon in Swedish spruce and pine forests – differences in stock levels and regional patterns. Silva Fennica vol. 44 no. 1 article id 159. https://doi.org/10.14214/sf.159
The selection of tree species is one factor to consider if we want to mitigate carbon dioxide emissions to the atmosphere through forest management. The objectives of this study were to estimate the differences in soil organic carbon (SOC) stocks under Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) forests and to examine causes of differences in the accumulation of carbon in the forest soil. Large-scale inventory data was used to quantify variations in SOC stock in relation to stand type and the accumulation of carbon for spruce and pine stands was analysed by simulation. Based on field data, the national mean SOC stock was 9.2 kg m–2 in spruce dominated stands and 5.7 kg m–2 in pine dominated stands. For both species, the SOC stock, measured in the field inventory, increased significantly with increasing temperature, although at different rates. The SOC stock was larger for spruce under all temperature conditions, but the difference between species diminished with increasing temperature. The simulations indicated that the build-up of SOC over several rotations was 22% higher in spruce stands than in pine stands under similar environmental conditions. The main difference was found to be the greater input of harvest residues for spruce. Further, the simulations showed that ground vegetation contributed considerably more to the litter production under pine than under spruce. On sites where both Scots pine and Norway spruce are considered suitable, the latter should be selected if the aim of the forest management policy is to maximize the accumulation of SOC in the forest. Further, spruce is more favourable for SOC accumulation in areas with cold temperatures and on sites with low productivity.
  • Stendahl, Department of Soil and Environment, P.O. Box 7001, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail: johan.stendahl@mark.slu.se (email)
  • Johansson, Department of Soil and Environment, P.O. Box 7001, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail:
  • Eriksson, Department of Energy and Technology, P.O. Box 7061, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail:
  • Nilsson, Department of Soil and Environment, P.O. Box 7001, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail:
  • Langvall, Unit for Field-based Forest Research, Asa Experimental Forest and Research Station, Swedish University of Agricultural Sciences, SE-36030 Lammhult, Sweden ORCID ID:E-mail:
article id 317, category Research article
Erik Eriksson, Tord Johansson. (2006). Effects of rotation period on biomass production and atmospheric CO2 emissions from broadleaved stands growing on abandoned farmland. Silva Fennica vol. 40 no. 4 article id 317. https://doi.org/10.14214/sf.317
The growth rates and carbon stocks of unthinned young and mature stands of broadleaved trees growing on abandoned farmland were determined to assess whether their management regimes should involve short (15-year) or long (45-year) rotations to maximize biomass production and reductions of CO2 emissions. Dry mass production and mean annual increment (MAI) were calculated for 28 young stands and 65 mature stands of European aspen (Populus tremula L.), common alder (Alnus glutinosa (L.) Gaertn.), grey alder (Alnus incana (L.) Moench.), silver birch (Betula pendula Roth) and downy birch (Betula pubescens Ehrh.) ranging in latitude from 57° to 63° N in Sweden. The potential for using biomass from the stands to replace coal as a fuel and to store carbon was then evaluated both in short and long rotation scenarios. The results indicate that long rotations are beneficial if the objective is to maximize the average carbon stock in biomass. If, on the other hand, the intention is to optimize reductions in atmospheric CO2 emissions, rotations should be short for aspen, silver birch and grey alder stands. For downy birch and common alder, the MAI was higher for the mature stands than the young stands, indicating that in these species the mature stands are superior for both storing carbon and replacing fossil fuel. Stands of broadleaved trees grown to produce biofuel on abandoned farmland should be established on fertile soils to promote high MAI. If the MAI is low, the rotation period should be long to maximize the average carbon stock.
  • Eriksson, SLU, Dept of Bioenergy, P.O. Box 7061, SE-750 07 Uppsala, Sweden ORCID ID:E-mail:
  • Johansson, SLU, Dept of Bioenergy, P.O. Box 7061, SE-750 07 Uppsala, Sweden ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive