Current issue: 54(1)

Under compilation: 54(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles by Ola Langvall

Category: Research article

article id 64, category Research article
Karin Johansson, Ola Langvall, Johan Bergh. (2012). Optimization of environmental factors affecting initial growth of Norway spruce seedlings. Silva Fennica vol. 46 no. 1 article id 64. https://doi.org/10.14214/sf.64
The purpose of the study was to create a near optimal environment for seedling establishment and growth, without the restrain of water and nutrients but under climate conditions typical for the region. This to give us valuable knowledge about the growth potential of different seedling types in the field. The experimental site was situated in southern Sweden. Six treatment combinations were applied including two site treatments; 1) soil inversion, i.e. the control treatment, and 2) soil inversion, drip irrigation and fertilization combined with plastic cover mulch, i.e. the optimization treatment, and three seedling types of Norway spruce (Picea abies L. Karst.), (a) a 2-year-old Plug+1 seedling, (b) a 1.5-year-old containerized seedling and (c) a 10-week-old mini seedling. Effects on seedling nutrient status and growth were studied during the first three years after planting. Height, diameter and biomass of the seedlings grown in the optimized environment were significantly greater than for seedlings grown in the control. The Plug+1 seedlings grown in the optimization treatment had, after three years, reached a height of 124 cm, while the containerized seedlings were 104 cm and the mini seedlings 45 cm. In practical plantations, this height is usually gained after 5–10 years depending on planting conditions. Biomass partitioning did not differ between optimization treatments, but between seedling types. The mini seedlings allocated less biomass to the roots and more biomass to needles and stem in comparison with the two other seedling types. Mini seedlings also broke bud earlier. Throughout the experimental period, seedling nutrient status for all treatment combinations was followed and a balanced nutrient supply of macro- and micronutrients was given in the optimization treatment. Nutrient concentrations were constantly higher in seedlings grown in the optimization treatment, but the difference decreased over time. Results from this study shows that, by improving site conditions associated with fast establishment, growth check can be avoided.
  • Johansson, Skogforsk, Svalöv, Sweden ORCID ID:E-mail: karin.johansson@skogforsk.se (email)
  • Langvall, SLU, Asa Forest Research Station, Sweden ORCID ID:E-mail:
  • Bergh, SLU, Southern Swedish Forest Research Centre, Sweden ORCID ID:E-mail:
article id 159, category Research article
Johan Stendahl, Maj-Britt Johansson, Erik Eriksson, Åke Nilsson, Ola Langvall. (2010). Soil organic carbon in Swedish spruce and pine forests – differences in stock levels and regional patterns. Silva Fennica vol. 44 no. 1 article id 159. https://doi.org/10.14214/sf.159
The selection of tree species is one factor to consider if we want to mitigate carbon dioxide emissions to the atmosphere through forest management. The objectives of this study were to estimate the differences in soil organic carbon (SOC) stocks under Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) forests and to examine causes of differences in the accumulation of carbon in the forest soil. Large-scale inventory data was used to quantify variations in SOC stock in relation to stand type and the accumulation of carbon for spruce and pine stands was analysed by simulation. Based on field data, the national mean SOC stock was 9.2 kg m–2 in spruce dominated stands and 5.7 kg m–2 in pine dominated stands. For both species, the SOC stock, measured in the field inventory, increased significantly with increasing temperature, although at different rates. The SOC stock was larger for spruce under all temperature conditions, but the difference between species diminished with increasing temperature. The simulations indicated that the build-up of SOC over several rotations was 22% higher in spruce stands than in pine stands under similar environmental conditions. The main difference was found to be the greater input of harvest residues for spruce. Further, the simulations showed that ground vegetation contributed considerably more to the litter production under pine than under spruce. On sites where both Scots pine and Norway spruce are considered suitable, the latter should be selected if the aim of the forest management policy is to maximize the accumulation of SOC in the forest. Further, spruce is more favourable for SOC accumulation in areas with cold temperatures and on sites with low productivity.
  • Stendahl, Department of Soil and Environment, P.O. Box 7001, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail: johan.stendahl@mark.slu.se (email)
  • Johansson, Department of Soil and Environment, P.O. Box 7001, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail:
  • Eriksson, Department of Energy and Technology, P.O. Box 7061, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail:
  • Nilsson, Department of Soil and Environment, P.O. Box 7001, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden ORCID ID:E-mail:
  • Langvall, Unit for Field-based Forest Research, Asa Experimental Forest and Research Station, Swedish University of Agricultural Sciences, SE-36030 Lammhult, Sweden ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive