Current issue: 51(2)

Under compilation: 51(3)

Impact factor 1.470
5-year impact factor 1.788
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 45 no. 4 | 2011

Category: Commentary

article id 448, category Commentary
Pia Katila & Marko Katila. (2011). New paradigm for saving the world’s forests? Silva Fennica vol. 45 no. 4 article id 448. https://doi.org/10.14214/sf.448
Book review: Douglas, J. and Simula, M. 2010. The Future of the World’s Forests. Ideas vs Ideologies. World Forests, volume 7. Springer. 211p.
  • Katila, Finnish Forest Research Institute ORCID ID:E-mail: pia.katila@metla.fi (email)
  • Katila, Dasos Capital Oy ORCID ID:E-mail:

Category: Research article

article id 447, category Research article
Jim Kiser. (2011). Histochemical and geometric alterations of sapwood in coastal Douglas-fir following mechanical damage during commercial thinning. Silva Fennica vol. 45 no. 4 article id 447. https://doi.org/10.14214/sf.447
Histochemical and geometric alterations to sapwood in mechanically damaged Douglas-fir (Pseudotsuga menziesii [Mirbel] Franco) trees were quantified 14 years after thinning. Discoloration and decay were measured in felled damaged and undamaged trees. Compartmentalized walls were identified and measured macroscopically. Sapwood to heartwood ratio was measured incrementally along the boles. Results showed a distinct reaction zone forming at the time of injury. Compartmentalized walls 1–3 were less distinct and heavily resinous streaking was evident in extant tissues, particularly in the axial direction. Post-damaged sapwood was burl-like for 4–6 years and tracheids contained resin-filled lumina. Damaged wood volumes were modeled by multiple regression. Wound depth, wound area, and diameter inside bark (DIB) accounted for 73% of the discolored volume (p = 0.02). DIB alone accounted for just over 55% of the response. Post-damaged sapwood averaged 15 mm (SE = 2.3 mm) greater in width on the side opposite the damage along the length of the boards. Wound area explained just over 65% of this response (p = 0.003). Sapwood area was not significantly different between damaged and control trees (p = 0.56). Results indicate that wounded Douglas-fir trees may slow conversion of sapwood to heartwood on the bole side opposite the wound, possibly as a response to maintain sapwood area necessary for physiological maintenance of the existing crown. About 19% of the lower bole volume in damaged trees was affected by discoloration and secondarily by structural changes. Reduction in value of the lower log can be as high as 19% by conventional bucking practices. Alternatives are presented to reduce the value loss to between 2.5% to 3.5%.
  • Kiser, P.O. Box 3729, Pagosa Springs, Colorado, USA ORCID ID:E-mail: jim.kiser@parelli.com (email)
article id 103, category Research article
Luis Diaz-Balteiro, Roberto Voces & Carlos Romero. (2011). Making sustainability rankings using compromise programming. An application to European paper industry. Silva Fennica vol. 45 no. 4 article id 103. https://doi.org/10.14214/sf.103
This paper characterizes the sustainability of the European paper industry. To undertake this task the sustainability of each country is defined by using fourteen indicators of a diverse nature (economic, environmental and social). These indicators are aggregated into a composite or synthetic index with the help of a compromise programming model. In order to associate different weights with each indicator, a survey among international experts has been carried out. In this way, a ranking of seventeen European countries analysed in terms of the sustainability of the European paper industry has been established, where Finland is the most sustainable paper industry in Europe except when the most balanced solution is chosen. Also, the results are robust when different preferential weights are attached. Finally, this methodology can be applied at a more disaggregated level and other indicators can be introduced.
  • Diaz-Balteiro, Research Group “Economics for a Sustainable Environment”, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ORCID ID:E-mail: luis.diaz.balteiro@upm.es (email)
  • Voces, Research Group “Economics for a Sustainable Environment”, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ORCID ID:E-mail:
  • Romero, Research Group “Economics for a Sustainable Environment”, Technical University of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain ORCID ID:E-mail:
article id 102, category Research article
Anne Toppinen, Katja Lähtinen, Leena A. Leskinen & Niklas Österman. (2011). Network co-operation as a source of competitiveness in medium-sized Finnish sawmills. Silva Fennica vol. 45 no. 4 article id 102. https://doi.org/10.14214/sf.102
In the Finnish sawmill industry, inter-firm collaboration has often been brought up as a means of creating a competitive edge in global markets by achieving economies of scale. According to the resource-based view (RBV), a firm can evaluate its current or potential partners by considering firm-level collaboration as a portfolio of complementary strategic resources. The specific focus of the study is on examining the types and forms of sawmill co-operation, how the co-operation emerged and which firm-specific resources are mainly related to co-operation. Based upon this, we can see how the managers of medium-sized sawmills perceive network co-operation as facilitating the achievement of a sustainable competitive advantage. The empirical data for this study were collected by interviewing 16 managers and employees in medium-sized non-integrated sawmills, a joint-venture marketing company and other co-operative partners. The findings of the study show that meaningful and beneficial co-operation partnerships exist in the Finnish sawmilling industry, but the sawmill managers do not perceive this collaboration as a strategic resource. The marketing company was the only firm in this study that relied on its co-operative networks in seeking a sustainable competitive advantage. To make more of co-operative partnerships, the principles of co-operative networking should be understood better in the sawmilling industry in order to know what to expect from co-operation. Furthermore, the managers should have the courage to engage in more extensive co-operation in order for strategic rents to materialize. Since the selection of the right partners is fundamental, further studies could be conducted on the reasons behind failed or terminated co-operative arrangements to gather further empirical knowledge in this subject area.
  • Toppinen, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: anne.toppinen@helsinki.fi (email)
  • Lähtinen, Finnish Environment Institute (SYKE), Joensuu, Finland ORCID ID:E-mail:
  • Leskinen, Rantalankuja 4, Joensuu, Finland ORCID ID:E-mail:
  • Österman, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
article id 101, category Research article
Risto Laamanen & Annika Kangas. (2011). Large-scale forest owner’s information needs in operational planning of timber harvesting - some practical views in Metsähallitus, Finnish state-owned enterprise. Silva Fennica vol. 45 no. 4 article id 101. https://doi.org/10.14214/sf.101
Metsähallitus in Finland is a state enterprise that manages about 3.5 million hectares of productive commercial state-owned forest land. Metsähallitus has a forest management planning system which uses information stored in a GIS-based forest resource information system. The information on forest resources is currently collected using a standwise inventory system with ocular estimation of stand characteristics. New promising inventory methods based on laser scanning have been introduced. Before taking a new system into use, the information needs of Metsähallitus must be analysed. In this study, information needs in operational harvest planning have been analysed with a qualitative approach. A total of eight team leaders in the forestry business unit were interviewed, six of them representing the process responsible for the operational harvest planning and two representing the process responsible for the harvest and deliveries. Based on the study, two main decision making points with different information needs were confirmed. The first decision making point is related to finding the areas potential for immediate or near future harvesting. Here, geographical information on the need for the treatment as well as rough information on the harvestable volume is needed. In the second decision making point, a final decision of sites to be harvested is made with rather intensive field work. Precise delineations of the treatment are needed as well as good estimates of volumes of different timber assortments. When considering a new inventory system it is justified to consider how much of the information needs in these decision making points can be covered. Two different approaches are proposed for further analysis. The interviews revealed a need for a more structured tactical planning system. Some of the findings of this study – especially the decision making points and information needs in them – may be transferable to other large-scale forest owners.
  • Laamanen, Metsähallitus, Vantaa, Finland ORCID ID:E-mail: risto.laamanen@metsa.fi (email)
  • Kangas, Metsähallitus, Vantaa, Finland ORCID ID:E-mail:
article id 100, category Research article
Annika Kangas, Lauri Mehtätalo, Antti Mäkinen & Kalle Vanhatalo. (2011). Sensitivity of harvest decisions to errors in stand characteristics. Silva Fennica vol. 45 no. 4 article id 100. https://doi.org/10.14214/sf.100
In forest planning, the decision maker chooses for each stand a treatment schedule for a predefined planning period. The choice is based either on optimization calculations or on silvicultural guidelines. Schedules for individual stands are obtained using a growth simulator, where measured stand characteristics such as the basal area, mean diameter, site class and mean height are used as input variables. These characteristics include errors, however, which may lead to incorrect decisions. In this study, the aim is to study the sensitivity of harvest decisions to errors in a dataset of 157 stands. Correct schedules according to silvicultural guidelines were first determined using error-free data. Different amounts of errors were then generated to the stand-specific characteristics, and the treatment schedule was selected again using the erroneous data. The decision was defined as correct, if the type of harvest in these two schedules were similar, and if the timings deviated at maximum ±2 for thinning and ±3 years for clear-cut. The dependency of probability of correct decisions on stand characteristics and the degree of errors was then modelled. The proposed model can be used to determine the required level of measurement accuracy for each characteristics in different kinds of stands, with a given accuracy requirement for the timing of treatments. This information can further be utilized in selecting the most appropriate inventory method.
  • Kangas, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: annika.kangas@helsinki.fi (email)
  • Mehtätalo, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland ORCID ID:E-mail:
  • Mäkinen, Simosol Oy, Riihimäki, Finland ORCID ID:E-mail:
  • Vanhatalo, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
article id 99, category Research article
Jouni Siipilehto. (2011). Local prediction of stand structure using linear prediction theory in Scots pine-dominated stands in Finland. Silva Fennica vol. 45 no. 4 article id 99. https://doi.org/10.14214/sf.99
This study produced a family of models for eight standard stand characteristics, frequency and basal area-based diameter distributions, and a height curve for stands in Finland dominated by Scots pine (Pinus sylvestris L.). The data consisted of 752 National Forest Inventory-based sample plots, measured three times between 1976 and 2001. Of the data, 75% were randomly selected for modelling and 25% left out for model evaluation. Base prediction models were constructed as functions of stand age, location and site providing strongly average expectations. These expectations were then calibrated with the known stand variables using linear prediction theory when estimating the best linear unbiased predictor (BLUP). Three stand variables, typically assessed in Finnish forest management planning fieldwork, were quite effective for calibrating the expectation for the unknown variable. In the case of optional distributions, it was essential to choose the weighting of the diameter distribution model such that the available input variables and the model applied were based on the same scale (e.g. arithmetic stand variables for frequency distribution). Additional input variables generally improved the accuracy of the validated characteristics, but the improvements in the predicted distributions were most noteworthy when the arithmetic mean and basal area-weighted median were simultaneously included in the BLUP estimation. The BLUP method provided a flexible approach for characterising relationships among stand variables, alternative size distributions and the height–diameter curve. Models are intended for practical use in the MOTTI simulator.
  • Siipilehto, Finnish Forest Research Institute, Vantaa Research Unit, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: jouni.siipilehto@metla.fi (email)
article id 98, category Research article
Meeri Pearson, Markku Saarinen, Kari Minkkinen, Niko Silvan & Jukka Laine. (2011). Mounding and scalping prior to reforestation of hydrologically sensitive deep-peated sites: factors behind Scots pine regeneration success. Silva Fennica vol. 45 no. 4 article id 98. https://doi.org/10.14214/sf.98
Watering up typically ensues after clearcutting forestry-drained peatland forests. Thus, the effectiveness of maintenance drainage and soil preparation procedures becomes paramount for establishing a new generation of commercial forest. Mounding is the primary method of soil preparation applied in regeneration sites lying on deep peat. As raised planting spots, mounds are resistant to waterlogging and assumed to be beneficial for organic matter (OM) decomposition via, e.g., increased soil aeration and temperature, which would also enhance seedling growth. In recent years, however, less intensive and cheaper alternatives like scalping have been sought with some reported cases of success. Our case study investigated the survival and growth of Scots pine outplants in mounds, scalps, and unprepared microsites along a moisture gradient. After three growing seasons, mounding accelerated neither seedling growth nor OM decomposition relative to the unprepared treatment. Survival in mounds was nonetheless superior overall. Scalps behaved as water collecting depressions leading to a catastrophic regeneration result. Based on our findings, water table level (WTL) overrides other growth-controlling factors in excess moisture conditions. To combat watering up coupled with greater than normal rainfall, we recommend reforestation strategies which provide elevated, prepared planting spots (i.e., mounds) or utilize unprepared, higher microforms.
  • Pearson, Finnish Forest Research Institute, Western Finland Regional Unit, Kaironiementie 15, FI-39700 Parkano, Finland ORCID ID:E-mail: meeri.pearson@metla.fi (email)
  • Saarinen, Finnish Forest Research Institute, Western Finland Regional Unit, Kaironiementie 15, FI-39700 Parkano, Finland ORCID ID:E-mail:
  • Minkkinen, University of Helsinki, Department of Forest Sciences, Helsinki, Finland ORCID ID:E-mail:
  • Silvan, Finnish Forest Research Institute, Western Finland Regional Unit, Kaironiementie 15, FI-39700 Parkano, Finland ORCID ID:E-mail:
  • Laine, Finnish Forest Research Institute, Western Finland Regional Unit, Kaironiementie 15, FI-39700 Parkano, Finland ORCID ID:E-mail:
article id 97, category Research article
Hannu Hökkä, Jaakko Repola, Mikko Moilanen & Markku Saarinen. (2011). Seedling survival and establishment in small canopy openings in drained spruce mires in Northern Finland. Silva Fennica vol. 45 no. 4 article id 97. https://doi.org/10.14214/sf.97
A large proportion of drained spruce mire stands is currently approaching regeneration maturity in Finland. Traditional regeneration methods with effective site preparation and planting generally result in satisfactory seedling stands also in spruce mires. However, natural regeneration methods may be more appropriate in protecting watercourses and minimizing regeneration costs. We studied the survival of advance growth and establishment of new seedlings in small canopy openings that were cut at three different diameters in two experimental drained spruce mire stands in Northern Finland (Tervola and Oulu) in 2004. The number of seedlings was repeatedly surveyed from five small circular plots (one 10 m2 and four 5 m2 plots in size) located within the opening. Advance growth which survived the cutting and new seedlings were separated in the surveys. The density of advance growth was on average 9000 ha–1 after cutting, and it decreased by 30% during the five-year monitoring period (2006–2010) due to natural mortality. The number of new seedlings increased rapidly within the three years after cutting the openings. In 2010, 11 000–26 000 new seedlings ha–1 in Tervola and 12 000–16 000 ha–1 in Oulu on average were observed. The size of the opening had no clear effect on the regeneration result. The proportion of birch of the new seedlings increased with time and opening size in Tervola. The results show that Norway spruce regenerates naturally in small canopy openings cut in mature drained spruce mire stands.
  • Hökkä, Finnish Forest Research Institute, Rovaniemi Research Unit, FI-96301 Rovaniemi, Finland ORCID ID:E-mail: hannu.hokka@metla.fi (email)
  • Repola, Finnish Forest Research Institute, Rovaniemi Research Unit, FI-96301 Rovaniemi, Finland ORCID ID:E-mail:
  • Moilanen, Finnish Forest Research Institute, Muhos Research Unit, Muhos, Finland ORCID ID:E-mail:
  • Saarinen, Finnish Forest Research Institute, Parkano Research Unit, Parkano, Finland ORCID ID:E-mail:
article id 96, category Research article
Scott R. Abella. (2011). How well do U.S. Forest Service terrestrial ecosystem surveys correspond with measured vegetation properties? Silva Fennica vol. 45 no. 4 article id 96. https://doi.org/10.14214/sf.96
Reliable estimates of species composition that forest sites are capable of supporting – specific to ecosystem mapping units across landscapes – are useful for many purposes in forest science and management. Like forestry agencies in numerous countries, the U.S. Forest Service has invested in ecological land classification (termed terrestrial ecosystem survey [TES] in the study region of Arizona) that includes ecosystem-explicit species lists taken to be estimated potential natural vegetation (PNV). Using multivariate community analyses, PNV in the TES was compared to measured species composition on 66 sites representing among the least-disturbed vegetation (considered this study’s measured PNV) spanning 11 ecosystem types on a Pinus ponderosa P. & C. Lawson landscape in northern Arizona, USA. Agreement between the TES PNV and measured species composition was lowest for forbs and shrubs (compared to graminoids), and species composition differed significantly between the TES and this study for at least one plant lifeform in 73% of ecosystems. Reasons for differences between the TES and this study are difficult to resolve, but in some cases appear to result from identification of different species pools in the region. This study suggests that the TES is a useful starting point in understanding vegetation-environment relationships, but further work is needed to refine species lists and more thoroughly account for the influences of fire, grazing, and climate that can influence both PNV and current vegetation. Refining and updating ecosystem-specific species lists may benefit existing forest site classifications and could be planned for when new site classifications are developed, especially with changing climates.
  • Abella, Department of Environmental and Occupational Health, University of Nevada Las Vegas, Las Vegas, Nevada 89154-3064 USA ORCID ID:E-mail: scott.abella@unlv.edu (email)
article id 95, category Research article
Venceslas Goudiaby, Suzanne Brais, Yvon Grenier & Frank Berninger. (2011). Thinning effects on jack pine and black spruce photosynthesis in eastern boreal forests of Canada. Silva Fennica vol. 45 no. 4 article id 95. https://doi.org/10.14214/sf.95
A decrease in the average diameter of commercially harvested tree species in the Eastern boreal forest of Canada has led to a decrease in availability of quality wood for the forest industry. Commercial thinning has been proposed as a means to increase stem diameter growth. However, little is known about physiological responses underlying species responses to thinning. We assessed the effect of canopy opening on the photosynthetic response of mature jack pine (Pinus banksiana Lamb.) and black spruce (Picea mariana (Mill.) BSP) trees. Two years after thinning and for each species, light response curves and the diurnal course of photosynthesis were characterized from measurements taken in a completely randomized block experiment on current-year and one-year-old needles of 12 trees from stands subjected to different levels of canopy opening. Soil water content, air and soil temperatures, and needle N concentration were not affected by thinning for either species. However, light availability increased with basal area removed and could explain the significantly positive relationship between thinning intensity and diurnal course of photosynthesis for one-year-old needles of jack pine. Black spruce photosynthesis did not respond to increases in light. Light-saturated rate of net photosynthesis (Amax), photosynthetic efficiency (α), light compensation point (LCP), and diurnal respiration (Rd) did not vary with thinning for either of the species. Jack pine and black spruce responses to thinning should be interpreted in light of species autecology.
  • Goudiaby, NSERC/UQAT/UQÀM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, Québec, Canada ORCID ID:E-mail: venceslas.goudiaby@uqat.ca (email)
  • Brais, NSERC/UQAT/UQÀM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, Québec, Canada ORCID ID:E-mail:
  • Grenier, NSERC/UQAT/UQÀM Industrial Chair in Sustainable Forest Management, Université du Québec en Abitibi-Témiscamingue, Québec, Canada ORCID ID:E-mail:
  • Berninger, University of Helsinki, Faculty of Agriculture and Forestry, Department of Forest Sciences, Finland ORCID ID:E-mail:
article id 94, category Research article
Youhong Peng & Ke Chen. (2011). Phylogeographic pattern of Populus cathayana in the southeast of Qinghai-Tibetan Plateau of China revealed by cpSSR markers. Silva Fennica vol. 45 no. 4 article id 94. https://doi.org/10.14214/sf.94
The vegetation in the Qinghai-Tibetan Plateau is thought to be highly sensitive and more vulnerable to global climate change than that of other areas. The uplift of the plateau as well as the climatic oscillations during glacial periods had a profound impact on plant species distribution and genetic diversity there. In the present study, seven pairs of cpSSR (chloroplast Simple Sequence Repeat) primers were utilized to detect genetic varieties of Populus cathayana Rehd populations from their natural range in the southeastern areas of Qinghai-Tibetan Plateau. A total of 28 alleles and 12 different haplotypes were detected. The proportion of haplotype variation among populations (GST = 0.794, NST = 0.900) indicated high level of genetic differentiation among populations and a significant phylogeographic structure (NST > GST, P < 0.05). This appears to support the hypothesis that these populations were derived from multiple refugia areas during the Quaternary climatic oscillations. Based on the haplotype network and mismatch distribution analyses, we found no evidence of postglacial range recolonization and expansion by P. cathayana in this region. This might be mainly due to the complex topography of the southeastern part of the Qinghai-Tibetan Plateau. The lofty mountain ranges and deep valleys in this region might have prevented long-distance migrations of this species during the climatic amelioration.
  • Peng, Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, China ORCID ID:E-mail: pengyh@cib.ac.cn (email)
  • Chen, Chinese Academy of Sciences, Chengdu Institute of Biology, Chengdu, China ORCID ID:E-mail:
article id 93, category Research article
Pertti Pulkkinen, Saila Varis, Raimo Jaatinen, Aulis Leppänen & Anne Pakkanen. (2011). Increasing survival and growth of Scots pine seedlings with selection based on autumn coloration. Silva Fennica vol. 45 no. 4 article id 93. https://doi.org/10.14214/sf.93
This study evaluates the possibility of using autumn coloration of young Scots pine (Pinus sylvestris L.) seedlings as an indicator of adaptation to harsh climate conditions. One-year old seedlings from natural stands with different origins and seed orchards were classified as “red/reddish” and “green” based on the needle color after artificially increased night length in nursery and then measured after 14 years in field trials. In almost all the studied groups seedlings classified as “red/reddish” had significantly higher survival rate than seedlings classified as “green”. The survival of “red/reddish” was 14.2% higher than “green” among natural stand seed material and 56.2% among seed orchard material. During the study period the survival difference between “red/reddish” and “green” seedlings tended to increase. The seedling color had limited connection with the height growth, even though the trees classified as “red/reddish” were slightly taller than those classified as “green”. However, the total productivity over all field trials, described here as a heightsum, of “red/reddish” trees was 15% higher than productivity of “green” trees from natural stand material, and 61% higher than those from seed orchard material. It seems that controlled selection based on autumn color can be utilized within seed crops of different types with the aim to increase the adaptability of seed material to different environmental conditions.
  • Pulkkinen, Metla, Haapastensyrjä, Läyliäinen, Finland ORCID ID:E-mail: pertti.pulkkinen@metla.fi (email)
  • Varis, Metla, Haapastensyrjä, Läyliäinen, Finland ORCID ID:E-mail:
  • Jaatinen, Metla, Haapastensyrjä, Läyliäinen, Finland ORCID ID:E-mail:
  • Leppänen, Metla, Haapastensyrjä, Läyliäinen, Finland ORCID ID:E-mail:
  • Pakkanen, Metla, Haapastensyrjä, Läyliäinen, Finland ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles