Current issue: 53(1)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Acta Forestalia Fennica no. 250 | 1995

Category: Article

article id 7512, category Article
Mauno Pesonen, Arto Kettunen, Petri Räsänen. (1995). Non-industrial private forest landowners’ choices of timber management strategies. Acta Forestalia Fennica no. 250 article id 7512. https://doi.org/10.14214/aff.7512

The factors affecting the non-industrial, private forest owners’ (NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the forest owners’ choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models.

The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, forest owner’s positive price expectations for the next eight years, forest owner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40.

In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.3 and the relative root mean square error from the test data 0.38.

In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.

  • Pesonen, ORCID ID:E-mail:
  • Kettunen, ORCID ID:E-mail:
  • Räsänen, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive