Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Acta Forestalia Fennica no. 254 | 1996

Category: Article

article id 7525, category Article
Pertti Hari, Johan Ross, Marja Mecke. (1996). Production process of Scots pine. Acta Forestalia Fennica no. 254 article id 7525. https://doi.org/10.14214/aff.7525

The accompanying collective research report is the result of the research project in 1986–90 between the Finnish Academy and the former Soviet Academy of Sciences. The project was organized around common field work in Finland and in the former Soviet Union, and theoretical analyses of tree growth determining processes. Based on theoretical analyses, dynamic stand growth models were made and their parameters were determined utilizing the field results.

Annual cycle effects the tree growth. Our theoretical approach was based on adaptation to local climate conditions from Lapland to South Russia. The initiation of growth was described as a simple low and high temperature accumulation driven model. The model was linked with long-term temperature data.

Analysis of field measurements of CO2 exchange showed that irradiance is the dominating factor causing variation in photosynthetic rate in natural conditions during summer. The penetration of irradiance into Scots pine (Pinus sylvestris L.) canopy is a complicated phenomenon. A moderately simple but balanced forest radiation regime sub-model was constructed.

The common field excursions in different geographical regions resulted in a lot of experimental data of regularities of woody structure. The water transport seems to be a good common factor to analyse these properties of tree structure. The produced theoretical and experimental material was utilized in the development of stand growth model that describes the growth and development of Scots pine stands in Finland and the former Soviet Union. The core of the model is carbon and nutrient balances. This means that carbon obtained in photosynthesis is consumed or growth and maintenance and nutrients are taken according to the metabolic need. Since the fundamental metabolic processes are the same in all locations, the same growth model structure can be applied in the large range of Scots pine. The model enables the analysis of geographical differences in the growth of Scots pine. The present approach enables utilization of structural and functional knowledge gained in places of intensive research, in the analysis of growth and development of any stand.

  • Hari, ORCID ID:E-mail:
  • Ross, ORCID ID:E-mail:
  • Mecke, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive