Current issue: 52(4)

Under compilation: 52(5)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 52 no. 5 | 2018

Category: Research article

article id 10040, category Research article
Bengt Andersson Gull, Torgny Persson, Aleksey Fedorkov, Tim J. Mullin. (2018). Longitudinal differences in Scots pine shoot elongation. Silva Fennica vol. 52 no. 5 article id 10040. https://doi.org/10.14214/sf.10040
Highlights: More northerly Scots pine origins exhibit earlier onset and cessation of shoot growth; Continental origins show more northern phenological behaviour; Heat accumulation requirements for onset are not fixed and may be lower when accumulating slower; Scots pine may suffer from spring frost due to earlier growth onset in a warming climate; Phenological traits show potential to adapt to new climate conditions by breeding.

Phenology can have a profound effect on growth and climatic adaptability of long-lived, northern tree species such as Scots pine (Pinus sylvestris L.), where the onset of growth in the spring is triggered mainly by accumulated heat, while cessation of growth is related to the joint effect of photoperiod and temperature. In this study, the objectives were: (1) to compare shoot phenology of genetic material from Scandinavia (maritime climate origin) and northern Russia (continental climate origin) sources, under field conditions in both Scandinavia and Russia (maritime and continental growth conditions); and (2) to estimate the heritabilities of phenological parameters. The material used was part of a larger provenance test series involving Scots pine populations and open-pollinated plus-tree families from Russia, Sweden and Finland. Terminal shoot elongation was measured on multiple occasions during the seventh growing season from seed at a trial near Bäcksjön (Sweden) and Syktyvkar (northern Russia). We calculated the regression of relative shoot elongation over accumulated heat sum above +5 °C using an exponential expression. Seedlings of Swedish and Russian provenance had similar heat-sum requirements for growth onset and cessation in both trials. More northern provenances started onset and cessation at a lower temperature sum, but heat accumulation requirements for onset were not fixed. Scots pine may suffer from spring frost due to earlier growth onset in a warming climate. Variation and heritability of phenological traits show potential to adapt Scots pine to new climate conditions by breeding.

  • Andersson Gull, The Swedish Forestry Research Institute (Skogforsk), Box 3, SE-918 21 Sävar, Sweden ORCID ID: https://orcid.org/0000-0003-3556-3172 E-mail: bengt.anderssongull@skogforsk.se
  • Persson, The Swedish Forestry Research Institute (Skogforsk), Box 3, SE-918 21 Sävar, Sweden ORCID ID:E-mail: torgny.persson@skogforsk.se
  • Fedorkov, The Institute of Biology of Komi Scientific Centre of the Ural Branch of the Russian Academy of Sciences (IB Komi SC UB RAS), Kommunisticheskaya St., 28, Syktyvkar, 167982, Russia ORCID ID: https://orcid.org/0000-0001-7800-7534 E-mail: fedorkov@ib.komisc.ru
  • Mullin, The Swedish Forestry Research Institute (Skogforsk), Box 3, SE-918 21 Sävar, Sweden ORCID ID: https://orcid.org/0000-0003-4924-1836 E-mail: tim.mullin@skogforsk.se (email)
article id 10001, category Research article
Karoliina Hämäläinen, Teemu Tahvanainen, Kaisa Junninen. (2018). Characteristics of boreal and hemiboreal herb-rich forests as habitats for polypore fungi. Silva Fennica vol. 52 no. 5 article id 10001. https://doi.org/10.14214/sf.10001
Highlights: Polypore species richness and diversity were affected positively by dead-wood diversity, and negatively by increasing latitude; Red-listed species responded only to the abundance of large-diameter dead wood; Main factor determining composition of polypore assemblages was host-tree species; High proportion of deciduous dead-wood in herb-rich forests provides complementary effect on polypore assemblages in boreal forest landscapes.

Herb-rich forests are often considered biodiversity hotspots in the boreal zone but their fungal assemblages, particularly those of wood-decaying fungi, remain poorly known. We studied herb-rich forests as habitats for polypores, a distinct group of wood-decaying fungi, and assessed the importance of tree- and stand-scale variables for polypore species richness, abundance, and diversity, including red-listed species. The data include 71 herb-rich forest stands in Finland and 4797 dead wood items, on which we made 2832 observations of 101 polypore species. Dead-wood diversity was the most important variable explaining polypore species richness and diversity, whereas increasing latitude had a negative effect. Red-listed species showed a positive response to the abundance of large-diameter dead wood, which, especially birch, supported also high general abundance of polypores. The composition of polypore assemblages reflected their host-tree species. The red-listed species did not show explicit patterns in the ordination space. Compared to old-growth spruce forests, herb-rich forests seem to host lower polypore species richness and less red-listed species. However, because of high proportion of deciduous trees in the dead wood profile, herb-rich forests have a clear complementary effect on polypore assemblages in boreal forest landscapes.

  • Hämäläinen, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail: karoham@uef.fi (email)
  • Tahvanainen, Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail: teemu.tahvanainen@uef.fi
  • Junninen, Metsähallitus Parks & Wildlife Finland, c/o UEF/Borealis, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail: kaisa.junninen@metsa.fi
article id 9985, category Research article
Antonín Martiník, Robert Knott, Jan Krejza, Jakub Černý. (2018). Biomass production of Betula pendula stands regenerated in the region of allochthonous Picea abies dieback. Silva Fennica vol. 52 no. 5 article id 9985. https://doi.org/10.14214/sf.9985
Highlights: Biomass equations for individual components of above-ground wood biomass estimation are presented for stands at the age of 4, 8, 17 and 22 years; Peak of the mean annual increment was found at the age from 15 to 20 years and reached over 5.0 t ha–1 y–1 of dry biomass; The share of the stem to the total biomass increased with stand age.

The paper deals with production of above-ground biomass of silver birch (Betula pendula Roth) stands in the Czech Republic. One-year biomass dynamics was studied within chronosequence of birch stands at the age of 4–5, 8–9, 17–18 and 22–23 years. With the exception of the youngest stand, which was established by seeding, all experimental birch stands were regenerated naturally after the allochthonous spruce stands. Above-ground biomass (AB) was calculated from plot inventory data and biomass equations were parameterized from destructive sampling of biomass component of sampled trees. Results reveal that the peak of the mean annual increment (MAIABtotal) of birch stands can be expected at the age from 15 to 20 years. Additionally, the stand age, the value of basal area (BA) should be considered as a predictor of stand productivity. If the value of BA varied from 25 to 35 m2 ha–1, the MAI of the birch stands reached the range from 5.0 to 6.5 t of dry biomass per ha y–1 at the age ranging between 15 and 25 years. The stem/branch proportion increased with stand age, the stem relative proportion ranging from 75 to 90% of total above-ground biomass. According to the results of this study, birch stand biomass production and utilization is one of the approaches in terms of forest recovery management in large disturbed areas. Although, no silvicultural treatments were occurred in all analysed stands, the pre-commercial thinning method could increase stand productivity and stability as well.

  • Martiník, Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic ORCID ID: https://orcid.org/0000-0002-5906-8830 E-mail: martinik@mendelu.cz (email)
  • Knott, Department of Silviculture, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00 Brno, Czech Republic ORCID ID:E-mail: robert.knott@mendelu.cz
  • Krejza, Global Change Research Institute CAS, v.v.i., Bělidla 4a, 603 00 Brno, Czech Republic ORCID ID:E-mail: krejza.j@czechglobe.cz
  • Černý, The Forestry and Game Management Research Institute, Research Station at Opočno, Na Olivě 550, 517 73 Opočno, Czech Republic ORCID ID:E-mail: cerny@vulhmop.cz
article id 6993, category Research article
Lars Fridh, Lars Eliasson, Dan Bergström. (2018). Precision and accuracy in moisture content determination of wood fuel chips using a handheld electric capacitance moisture meter. Silva Fennica vol. 52 no. 5 article id 6993. https://doi.org/10.14214/sf.6993
Highlights: The studied capacitance meter can provide accurate estimates of mean moisture content for chips with M < 50% if a large sample is taken; It should be possible to use the capacitance meter to measure moisture content even for calculating payments depending of the needed accuracy; However a calibration function for each assortment is needed.

According to the Swedish Timber Measurement Act, measurements affecting payments for wood fuels to landowners must be accurate and precise. In this regard, moisture content is an important quality parameter for wood chips which influences the net calorific value as received and thus the economic value. As standard practice moisture content is determined with the oven-drying method, which is cumbersome to use for deliveries to facilities without drying-ovens, which in turn necessitates that samples are taken elsewhere for measurement. An alternative solution is to use a portable moisture meter. Our aim was to evaluate the precision of a handheld capacitance moisture meter. Accuracy and precision of a capacitance meter was determined in the lab and a calibration function was made. Thereafter, the calibrated moisture meter was compared with the standard method for moisture content determination of truckloads of chips. The capacitance meter showed a moderate accuracy by underestimating moisture content by 6.0 percentage points (pp), compared to the reference method, at a precision of ±3.8 pp (CI 95%). For chips with M > 50%, both accuracy and precision decreased. Calibration increased the accuracy in the follow up study by 3 pp for chips with M < 50% but could not be made for wetter chips. The oven-drying method and the capacitance meter can provide equally accurate estimates of mean moisture content for chips with M < 50% if a larger sample is taken with the latter. It should be possible to use capacitance meters to measure moisture content even when used to calculate payments depending of the needed accuracy. A calibration function for each assortment is needed.

  • Fridh, Skogforsk, The Forestry Research Institute of Sweden, Uppsala Science Park, 751 83 Uppsala, Sweden; Skogsägarna Mellanskog, Uppsala Science Park, Box 127, 751 04 Uppsala, Sweden ORCID ID: http://orcid.org/0000-0002-4721-1193 E-mail: lars.fridh@mellanskog.se
  • Eliasson, Skogforsk, The Forestry Research Institute of Sweden, Uppsala Science Park, 751 83 Uppsala, Sweden ORCID ID: http://orcid.org/0000-0002-2038-9864 E-mail: lars.eliasson@skogforsk.se (email)
  • Bergström, Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, S-901 83 Umeå, Sweden ORCID ID:E-mail: dan.bergstrom@slu.se

Category: Research note

article id 10014, category Research note
Āris Jansons, Roberts Matisons, Virgilijus Baliuckas, Līga Purina, Oskars Krisans, Jānis Jansons, Imants Baumanis. (2018). Performance variation of lodgepole pine provenances in Latvia. Silva Fennica vol. 52 no. 5 article id 10014. https://doi.org/10.14214/sf.10014
Highlights: Performance of 36 provenances of lodgepole pine in 14 trials was studied; The 29 year survival was ca. 40%; Provenance and provenance × trial interaction affected dimensions of lodgepole pine; Provenances from lower latitudes were the most productive.

Lodgepole pine (Pinus contorta var. latifolia Engelm.) has been extensively introduced in Scandinavia on less productive sites. Under a changing climate, it also has a high potential in the eastern Baltic region; still, its performance there has scarcely been reported. This study investigated the performance of 36 Canadian provenances in 14 trials in western Latvia. Tree dimensions showed notable provenance and provenance-by-environment variation, implying that local selection by provenance can be applied for improved yield. Southern provenances showed the best height growth, while southwestern (more oceanic) provenances excelled in diameter growth. Most of the quality traits were affected by provenance or provenance-by-environment interaction, yet the variation was lower than for the growth traits.

  • Jansons, Latvian State Forest Research Institute ”Silava”, Department of Forest Tree Breeding, Rigas St.t. 111, Salaspils LV-2169, Latvia ORCID ID:E-mail: aris.jansons@silava.lv (email)
  • Matisons, Latvian State Forest Research Institute ”Silava”, Department of Forest Tree Breeding, Rigas St.t. 111, Salaspils LV-2169, Latvia ORCID ID:E-mail: robism@inbox.lv
  • Baliuckas, Forest Institute, Lithuanian Centre for Agriculture and Forestry, Department of Forest Tree Genetics and Breeding, Liepu St. 1, Girionys, LT-53101 Kaunas distr., Lithuania ORCID ID:E-mail: virgilijus.baliuckas@mi.lt
  • Purina, Latvian State Forest Research Institute ”Silava”, Department of Forest Tree Breeding, Rigas St.t. 111, Salaspils LV-2169, Latvia ORCID ID:E-mail: liga.purina@silava.lv
  • Krisans, Latvian State Forest Research Institute ”Silava”, Department of Forest Tree Breeding, Rigas St.t. 111, Salaspils LV-2169, Latvia ORCID ID:E-mail: oskars.krisans@silava.lv
  • Jansons, Latvian State Forest Research Institute ”Silava”, Department of Forest Tree Breeding, Rigas St.t. 111, Salaspils LV-2169, Latvia ORCID ID:E-mail: janis.jansons.silava@gmail.com
  • Baumanis, Latvian State Forest Research Institute ”Silava”, Department of Forest Tree Breeding, Rigas St.t. 111, Salaspils LV-2169, Latvia ORCID ID:E-mail: imants.baumanis@silava.lv

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive