Current issue: 51(1B)

Under compilation: 51(2)

Impact factor 1.470
5-year impact factor 1.788
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 49 no. 2 | 2015

Category: Research article

article id 1280, category Research article
Juha Laitila, Tapio Ranta, Antti Asikainen, Eero Jäppinen & Olli-Jussi Korpinen. (2015). The cost competitiveness of conifer stumps in the procurement of forest chips for fuel in Southern and Northern Finland. Silva Fennica vol. 49 no. 2 article id 1280. https://doi.org/10.14214/sf.1280
Highlights: Pre-grinding and integrated screening is a way of guaranteeing fuel quality, but, when the stumps’ ash content is six per cent or below, the procurement costs are higher than with grinding of stumps at the plant. Because of high transportation costs, stump harvesting is the most profitable in Southern Finland, where there is greater availability of stumps than in Northern Finland.
The aim of this study was to evaluate cost competitiveness, at regional level, of various systems for stump transportation and grinding, and to compare the results to the procurement costs of delimbed stems from early thinnings at the stand and regional level. The accumulation and procurement costs of stumps and delimbed stems were estimated within a 100-kilometer radius from two power plants located in Kouvola and in Kajaani. The analyses were performed as simulated treatments in clear cuts and thinnings of young stands, using existing productivity and cost functions, alternative ash percentages for stump wood, and yield calculations based on the forest industry regeneration felling stand data and the sample plots data of the National Forest Inventory of Finland. The results were expressed as Euros per solid cubic meter (€ m–3) and Euros per megawatt hour (€ MWh–1). The results highlight the need to improve stump fuel quality and increase the heating value. The procurement cost of stumps was about 1 € MWh–1 lower in Kouvola compared to Kajaani, when using conceivable ash content of 6% for stumps ground at the plant, and ash content of 1.5% for stumps pre-ground at the roadside landing. The procurement costs of stumps were, on average, 0.55 € MWh–1 lower compared to delimbed stems in Kouvola, and on average 0.6 € MWh–1 higher in Kajaani. Pre-grinding and integrated screening is a feasible way to guarantee the fuel quality expressed as ash content already at roadside landings, but the procurement costs are higher compared to grinding stumps at the plant, when the ash content of ground stumps is 6% or less.
  • Laitila, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: juha.laitila@metla.fi (email)
  • Ranta, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: tapio.ranta@lut.fi
  • Asikainen, Natural Resources Institute Finland (Luke), Bio-based Business and Industry, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: antti.asikainen@metla.fi
  • Jäppinen, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: eero.jappinen@lut.fi
  • Korpinen, Lappeenranta University of Technology, Sammonkatu 12, FI-50130 Mikkeli, Finland ORCID ID:E-mail: olli-jussi.korpinen@lut.fi
article id 1279, category Research article
Andreas Kreutz, Tuomas Aakala, Russell Grenfell & Timo Kuuluvainen. (2015). Spatial tree community structure in three stands across a forest succession gradient in northern boreal Fennoscandia. Silva Fennica vol. 49 no. 2 article id 1279. https://doi.org/10.14214/sf.1279
Highlights: We studied the tree community spatial structure in three 1.2-ha plots representing naturally developed northern boreal forests of varying ages; Spatial structure showed little differences between the mid-successional, late-successional and old-growth stands; The occurrence of Picea abies relative to Betula spp. indicated a mosaic-like spatial assembly; Mosaics are likely maintained by species-specific replacement, not reciprocal replacement as thought earlier.
Development of species composition during succession is well studied in natural boreal forests, but empirical assessments of how within-stand spatial structure develops in late-successional stages are few. Here, we quantified spatial patterns in three unmanaged stands consisting of Picea abies (L.) Karst. and Betula pubescens Ehrh. and Betula pendula Roth (hereafter Betula spp.) in northern boreal Fennoscandia. We conducted a comprehensive analysis of small-scale spatial point patterns in three fully mapped 1.2-ha sample plots, representing different forest developmental stages: mid-successional, late-successional and old-growth forest. We used several variants of Ripley’s K-function to analyze the spatial point patterns along the successional gradient. Univariate analyses showed that mature trees of both species were either randomly distributed or clumped. P. abies saplings were clumped, and Betula spp. saplings occurred in a random or clumped manner. In the bivariate analyses, saplings were more likely to be found in the surroundings of mature trees of the same species, but occurred independent of the individuals of other tree species. Mature trees showed interspecific repulsion. Only modest differences occurred in the univariate patterns between the three successional stages, but in the bivariate analyses the most evident patterns, i.e. intraspecific attraction and interspecific repulsion, were stronger in the older successional stages. Overall, the studied stands appear structured as species-specific mosaics. These mosaics, along with mixed species composition, seem to be maintained by species self-replacement, which contrasts with findings from earlier studies.
  • Kreutz, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: andreas.kreutz@wald-rpl.de
  • Aakala, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID: http://orcid.org/0000-0003-0160-6410 E-mail: tuomas.aakala@helsinki.fi (email)
  • Grenfell, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: russell.grenfell@gmail.com
  • Kuuluvainen, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: timo.kuuluvainen@helsinki.fi
article id 1274, category Research article
Juho Hautsalo, Paul Mathieu, Sakina Elshibli, Pekka Vakkari, Juha Raisio & Pertti Pulkkinen. (2015). Variation in height and survival among northern populations of pedunculate oak (Quercus robur L.): results of a 13-year field study. Silva Fennica vol. 49 no. 2 article id 1274. https://doi.org/10.14214/sf.1274
Highlights: A height-sum function allowed us to compare the combined growth and survival of northernmost stands of pedunculate oak; Individuals from Turku-Katariinanlaakso performed the best, although other families performed more consistently across trials, which should be considered in future conservation and breeding. Surprisingly, trees planted in a trial location beyond the natural northern limit of pedunculate oak showed the best performance.
We analysed the adaptive potential of pedunculate oak (Quercus robur L.) in terms of variation in height and survival in five field trials located in southern and central Finland. The trials were established with Finnish native material from six different seed origins. Thirteen years after planting, the number of living trees was counted and measured for height. Analysis of height and survival revealed a significant effect of origin, i.e., a genetic basis to individual tree performance. Two origins from the Turku region (Ruissalo and Katariinanlaakso) performed the best while trees originating from Parainen (Lenholmen) performed the worst. In order to study the effects due to tree origin, a comparison of families (half-sibling trees, i.e. those sharing the same ‘mother’ tree) was made by combining height and survival through a height-sum equation (i.e., the product of mean survival and height of each family in each trial) and used to calculate family- and origin-level ecovalences. Ecovalence is a metric for performance consistency, and indicates how much each variable contributes to the total variation; the higher the value, the lower the consistency of trees across the trials based on their origin or family. Analysis of consistency showed similar results to growth and survival, with Turku families performing the best and families from Parainen performing the worst. Families in the Katariinanlaakso stand (Turku) generally had more stable ecovalence values and more dispersed height-sums, while Ruissalo (Turku) families had higher mean height-sum but higher variability in ecovalence values. These results suggest that seed origins (i.e., genotypes) can be optimized in terms of their suitability for commercial or ecological forest management.
  • Hautsalo,  Natural Resources Institute Finland (Luke), Green technology, Antinniementie 1, FI-41330 Vihtavuori, Finland ORCID ID:E-mail: juho.hautsalo@luke.fi (email)
  • Mathieu, Agrocampus Ouest, 35000 Rennes, France ORCID ID:E-mail:
  • Elshibli, University of Helsinki, Helsinki, Finland ORCID ID:E-mail:
  • Vakkari, Natural Resources Institute Finland (Luke), Vantaa, Finland ORCID ID:E-mail: pekka.vakkari@luke.fi
  • Raisio, City of Helsinki, Helsinki, Finland ORCID ID:E-mail:
  • Pulkkinen, Natural Resources Institute Finland (Luke), Vantaa, Finland ORCID ID:E-mail: pertti.pulkkinen@luke.fi
article id 1266, category Research article
Edwyn K. Midmore, Shelagh A. McCartan, Richard L. Jinks & Christine M. Cahalan. (2015). Using thermal time models to predict germination of five provenances of silver birch (Betula pendula Roth) in southern England. Silva Fennica vol. 49 no. 2 article id 1266. https://doi.org/10.14214/sf.1266
Highlights: Using cumulative germination data, thermal time models were developed for Betula pendula; Models indicated varying degrees of dormancy and pre-chill requirements among provenances; Thermal time parameters were used with climatic data to predict germination times under mild and cold winters in southern England; Predictions suggest that pre-chilled French seeds would germinate about six weeks later than the fastest germinating provenance.
Climate predictions indicate that growing conditions may become unfavourable for certain tree species in parts of Britain. Guidelines suggest some planting of seed sources from regions between 2° and 5° south of those currently used as part of a climate change adaptation strategy. However, there has been little research on the benefits and risks associated with the use of planting stock from more southerly seed sources. Seeds of five provenances of the ‘relatively’ dormant Betula pendula were germinated over a range of temperatures both with and without a pre-chill. Subsequently, a thermal time model was used to predict the impact of migrating these provenances to southern England. Results identified geographical differences in germination response; those from higher latitude were more sensitive to pre-chill.
  • Midmore, Forest Research Agency, Alice Holt, Surrey. Current: Dolwyddelan, Llandre, Ceredigion, Wales, SY24 5BZ ORCID ID:E-mail: emidmore@gmail.com
  • McCartan, Forest Research, Alice Holt, Farnham, Surrey, GU10 4LH, UK ORCID ID:E-mail: shelagh.mccartan@forestry.gsi.gov.uk (email)
  • Jinks, Forest Research, Alice Holt Lodge, Farnham, Surrey, GU10 4LH, UK ORCID ID:E-mail: richard.jinks@forestry.gsi.gov.uk
  • Cahalan, Bangor University, School of Environment, Natural Resources and Geography, Bangor, Gwynedd, Wales, LL57 2UW ORCID ID:E-mail: c.m.cahalan@bangor.ac.uk
article id 1239, category Research article
Tomi Kaakkurivaara, Nuutti Vuorimies, Pauli Kolisoja & Jori Uusitalo. (2015). Applicability of portable tools in assessing the bearing capacity of forest roads. Silva Fennica vol. 49 no. 2 article id 1239. https://doi.org/10.14214/sf.1239
Highlights: The dynamic cone penetrometer (DCP) and light falling weight deflectometer (LFWD) are useful tools for measuring bearing capacity; The measurement results are not same as with the falling weight deflectometer (FWD), but comparable.
Forest roads provide access to logging sites and enable transportation of timber from forest to mills. Efficient forest management and forest industry are impossible without a proper forest road network. The bearing capacity of forest roads varies significantly by weather conditions and seasons since they are generally made of poor materials and the constructed layers may be mixed with subgrade. A bearing capacity assessment is valuable information when trafficability is uncertain and rutting is obvious. In this study, bearing capacity measurements were carried out using the light falling weight deflectometer (LFWD), the dynamic cone penetrometer (DCP) and the conventional falling weight deflectometer (FWD). The aim was to compare their measurement results in relation to road characteristics and moisture conditions. Data were collected from 35 test road sections in four consecutive springs and during one summer. The test road sections had measurement points both on the wheel path and the centre line. The data show logical correlations between measured quantities, and the study presents reliable regression models between measuring devices. The results indicate that light portable tools, the DCP and the LFWD, can in most cases be used instead of the expensive falling weight deflectometer on forest roads.
  • Kaakkurivaara, Natural Resources Institute Finland, Green technology, Kaironiementie 15, FI-39700 Parkano, Finland ORCID ID:E-mail: tomi.kaakkurivaara@gmail.com (email)
  • Vuorimies, Tampere University of Technology, P.O.Box 600, FI-33101 Tampere, Finland ORCID ID:E-mail: nuutti.vuorimies@tut.fi
  • Kolisoja, Tampere University of Technology, P.O.Box 600, FI-33101 Tampere, Finland ORCID ID:E-mail: pauli.kolisoja@tut.fi
  • Uusitalo, Natural Resources Institute Finland, Green technology, Kaironiementie 15, FI-39700 Parkano, Finland ORCID ID:E-mail: jori.uusitalo@luke.fi
article id 1232, category Research article
Pete Bettinger, Mehmet Demirci & Kevin Boston. (2015). Search reversion within s-metaheuristics: impacts illustrated with a forest planning problem. Silva Fennica vol. 49 no. 2 article id 1232. https://doi.org/10.14214/sf.1232
Highlights: The interruption of the sequence of events used to explore a solution space and develop a forest plan, and the re-initiation of the search process from a high-quality, known starting point (reversion) seems necessary for some s-metaheuristics; When using a s-metaheuristic, higher quality forest plans may be developed when the reversion interval is around six iterations of the model.
The use of a reversion technique during the search process of s-metaheuristics has received little attention with respect to forest management and planning problems. Reversion involves the interruption of the sequence of events that are used to explore the solution space and the re-initiation of the search process from a high-quality, known starting point. We explored four reversion rates when applied to three different types of s-metaheuristics that have previously shown promise for the forest planning problem explored, threshold accepting, tabu search, and the raindrop method. For two of the s-metaheuristics, we also explored three types of decision choices, a change to the harvest timing of a single management unit (1-opt move), the swapping of two management unit’s harvest timing (2-opt moves), and the swapping of three management unit’s harvest timing (3-opt moves). One hundred independent forest plans were developed for each of the metaheuristic / reversion rate combinations, all beginning with randomly-generated feasible starting solutions. We found that (a) reversion does improve the quality of the solutions generated, and (b) the rate of reversion is an important factor that can affect solution quality.
  • Bettinger, School of Forestry and Natural Resources, 180 E. Green Street, University of Georgia, Athens, Georgia, USA 30602 ORCID ID:E-mail: pbettinger@warnell.uga.edu (email)
  • Demirci, General Directorate of Forestry, Ministry of Forest and Water Affairs, Republic of Turkey ORCID ID:E-mail: mehmetdemirci@yahoo.com
  • Boston, Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, USA ORCID ID:E-mail: Kevin.Boston@oregonstate.edu
article id 1218, category Research article
Mikko Niemi, Mikko Vastaranta, Jussi Peuhkurinen & Markus Holopainen. (2015). Forest inventory attribute prediction using airborne laser scanning in low-productive forestry-drained boreal peatlands. Silva Fennica vol. 49 no. 2 article id 1218. https://doi.org/10.14214/sf.1218
Highlights: Following current forest inventory practises, stem volume was predicted in low-productive drained peatlands (LPDPs) with a root mean square error (RMSE) of 13.7 m3 ha–1; When 30 reference plots measured from LPDPs were added to the prediction, RMSE was decreased to 10.0 m3 ha–1; Additional reference plots from LPDPs did not affect the forest inventory attribute predictions in productive forests.
Nearly 30% of Finland’s land area is covered by peatlands. In Northern parts of the country there is a significant amount of low-productive drained peatlands (LPDPs) where the average annual stem volume growth is less than 1 m3 ha–1. The re-use of LPDPs has been considered thoroughly since Finnish forest legislation was updated and the forest regeneration prerequisite was removed from LPDPs in January 2014. Currently, forestry is one of the re-use alternatives, thus detailed forest resource information is required for allocating activities. However, current forest inventory practices have not been evaluated for sparse growing stocks (e.g., LPDPs). The purpose of our study was to evaluate the suitability of airborne laser scanning (ALS) for mapping forest inventory attributes in LPDPs. We used ALS data with a density of 0.8 pulses per m2, 558 field-measured reference plots (500 from productive forests and 58 from LPDPs) and k nearest neighbour (k-NN) estimation. Our main aim was to study the sensitivity of predictions to the number of LPDP reference plots used in the k-NN estimation. When the reference data consisted of 500 plots from productive forest stands, the root mean square errors (RMSEs) for the prediction accuracy of Lorey’s height, basal area and stem volume were 1.4 m, 2.7 m2 ha–1 and 13.7 m3 ha–1 in LPDPs, respectively. When 30 additional reference plots were allocated to LPDPs, the respective RMSEs were 1.1 m, 1.7 m2 ha–1 and 10.0 m3 ha–1. Additional reference plot allocation did not affect the predictions in productive forest stands.
  • Niemi, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Finland & Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430, Finland ORCID ID:E-mail: mikko.t.niemi@helsinki.fi (email)
  • Vastaranta, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Finland & Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430, Finland ORCID ID:E-mail: mikko.vastaranta@helsinki.fi
  • Peuhkurinen, Arbonaut Oy Ltd., Latokartanontie 7 A, FI-00700, Finland ORCID ID:E-mail: jussi.peuhkurinen@arbonaut.com
  • Holopainen, Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014, Finland & Centre of Excellence in Laser Scanning Research, Finnish Geospatial Research Institute FGI, Geodeetinrinne 2, FI-02430, Finland ORCID ID:E-mail: markus.holopainen@helsinki.fi

Category: Research note

article id 1321, category Research note
Sofia Bäcklund, Mari T. Jönsson, Joachim Strengbom & Göran Thor. (2015). Composition of functional groups of ground vegetation differ between planted stands of non-native Pinus contorta and native Pinus sylvestris and Picea abies in northern Sweden. Silva Fennica vol. 49 no. 2 article id 1321. https://doi.org/10.14214/sf.1321
Highlights: Differences in ground vegetation patterns can be linked to tree species, forest stand age and differences in canopy cover; Vascular plant cover was higher in stands of P. contorta than in stands of both native tree species; The overall differences and similarities between P. contorta and the two native conifers were not consistent over the different age classes.
Intensified forestry increases the interest in replacing native tree species with fast growing non-native species. However, consequences for native biodiversity and ecosystem functioning are poorly understood. We compared cover and composition of major functional groups of ground vegetation between planted stands of non-native Pinus contorta Dougl. var. latifolia Engelm. and native conifers Pinus sylvestris L. and Picea abies (L.) H. Karst. in northern boreal Sweden. We quantified the ground cover of lichens, bryophytes, vascular plants and ground without vegetation (bare ground) in 96 stands covering three different age classes (15, 30 and 85 years old). Our study revealed differences in ground vegetation patterns between non-native and native managed forests, and that these differences are linked to stand age and differences in canopy cover. Total vascular plant cover increased with increasing stand age for all tree species, with P. contorta stands having higher cover than both native conifers. The ground cover of lichens was, although generally low, highest in stands of Pinus sylvestris. P. abies stands had a lower cover of vascular plants, but bare ground was more common compared with P. contorta. Our results suggest that the use of P. contorta as an alternative tree species in Fennoscandian forestry will influence native ground vegetation patterns. This influence is likely to change with time and future research should consider both temporal and landscape-scale effects from shifting tree-species dominance to Pinus contorta and other non-native tree species.
  • Bäcklund, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07 Uppsala, Sweden ORCID ID:E-mail: sofia.backlund@slu.se (email)
  • Jönsson,  The Swedish Species Information Centre, P.O. Box 7007, SE-750 07 Uppsala, Sweden ORCID ID:E-mail: mari.jonsson@slu.se
  • Strengbom, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07 Uppsala, Sweden ORCID ID:E-mail: joachim.strengbom@slu.se
  • Thor, Department of Ecology, Swedish University of Agricultural Sciences, P.O. Box 7044, SE-750 07 Uppsala, Sweden ORCID ID:E-mail: goran.thor@slu.se

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles