Current issue: 51(1B)

Under compilation: 51(2)

Impact factor 1.470
5-year impact factor 1.788
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Silva Fennica vol. 49 no. 5 | 2015

Category: Research article

article id 1405, category Research article
Lauri Korhonen, Daniela Ali-Sisto & Timo Tokola. (2015). Tropical forest canopy cover estimation using satellite imagery and airborne lidar reference data. Silva Fennica vol. 49 no. 5 article id 1405. https://doi.org/10.14214/sf.1405
Highlights: The fusion of airborne lidar data and satellite images enables accurate canopy cover mapping; The zero-and-one inflated beta regression is demonstrated in large area estimation; Forest/non-forest classification should be done directly, for example by using logistic regression.

The fusion of optical satellite imagery, strips of lidar data and field plots is a promising approach for the inventory of tropical forests. Airborne lidars also enable an accurate direct estimation of the forest canopy cover (CC), and thus a sample of lidar strips can be used as reference data for creating CC maps which are based on satellite images. In this study, our objective was to validate CC maps obtained from an ALOS AVNIR-2 satellite image wall-to-wall, against a lidar-based CC map of a tropical forest area located in Laos. The reference CC values which were needed for model training were obtained from a sample of four lidar strips. Zero-and-one inflated beta regression (ZOINBR) models were applied to link the spectral vegetation indices derived from the ALOS image with the lidar-based CC estimates. In addition, we compared ZOINBR and logistic regression models in the forest area estimation by using >20% CC as a forest definition. Using a total of 409 217 30 × 30 m population units as validation, our model showed a strong correlation between lidar-based CC and spectral satellite features (root mean square error = 12.8%, R2 = 0.82). In the forest area estimation, a direct classification using logistic regression provided better accuracy than the estimation of CC values as an intermediate step (kappa = 0.61 vs. 0.53). It is important to obtain sufficient training data from both ends of the CC range. The forest area estimation should be done before the CC estimation, rather than vice versa.

  • Korhonen, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland; (current) University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID: http://orcid.org/0000-0002-9352-0114 E-mail: lauri.z.korhonen@helsinki.fi (email)
  • Ali-Sisto, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail: dheikkil@student.uef.fi
  • Tokola, University of Eastern Finland, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland. ORCID ID:E-mail: timo.tokola@uef.fi
article id 1403, category Research article
Kristina Mjöfors, Monika Strömgren, Hans-Örjan Nohrstedt & Annemieke Ingrid Gärdenäs. (2015). Impact of site-preparation on soil-surface CO2 fluxes and litter decomposition in a clear-cut in Sweden. Silva Fennica vol. 49 no. 5 article id 1403. https://doi.org/10.14214/sf.1403
Highlights: Disturbances of the soil did not lead to higher CO2 emissions from the soil; Heavy mixing of the soil lead to lower CO2 emissions from the soil; Buried needles and coarse roots decomposed faster than those on the surface; Abundance of δ15N decreased in needles and roots after site preparation.

Boreal forest soil contains significant amounts of organic carbon. Soil disturbance, caused for example by site preparation or stump extraction, may increase decomposition and thus lead to higher CO2 emissions, contributing to global warming. The aim of this study was to quantify responses of soil-surface CO2 fluxes (Rs) and litter (needle and root) decomposition rates following various kinds of soil disturbance commonly caused by mechanical site preparation and stump harvest. For this purpose four treatments were applied in a clear-cut site in central Sweden: i) removal of the humus layer and top 2 cm of mineral soil, ii) placement of a humus layer and 2 cm of mineral soil upside down on top of undisturbed soil, forming a double humus layer buried under mineral soil, iii) heavy mixing of the humus layer and mineral soil, and iv) no disturbance (control). Rs measurements were acquired with a portable respiration system during two growing seasons. To assess the treatments’ effects on litter decomposition rates, needles or coarse roots (Ø = 6 mm) were incubated in litterbags at positions they would be located after the treatments (buried, or on top of the soil). The results indicate that site preparation-simulating treatments have no effect or may significantly reduce, rather than increase, CO2 emissions during the following two years. They also show that buried litter decomposes more rapidly than litter on the surface, but in other respects the treatments have little effect on litter decomposition rates.

  • Mjöfors, Swedish University of Agricultural Sciences (SLU), Department of Soil and Environment, P.O. Box 7014, 150 07 Uppsala, Sweden ORCID ID:E-mail: kristina.mjofors@slu.se (email)
  • Strömgren, Swedish University of Agricultural Sciences (SLU), Department of Soil and Environment, P.O. Box 7014, 150 07 Uppsala, Sweden ORCID ID:E-mail: Monika.stromgren@slu.se
  • Nohrstedt, Swedish University of Agricultural Sciences (SLU), Department of Soil and Environment, P.O. Box 7014, 150 07 Uppsala, Sweden ORCID ID:E-mail: Hans-orjan.nohrstedt@slu.se
  • Gärdenäs, Swedish University of Agricultural Sciences (SLU), Department of Soil and Environment, P.O. Box 7014, 150 07 Uppsala, Sweden ORCID ID:E-mail: Annemieke.gardenas@slu.se
article id 1395, category Research article
Joseph Buongiorno. (2015). Income and time dependence of forest product demand elasticities and implications for forecasting. Silva Fennica vol. 49 no. 5 article id 1395. https://doi.org/10.14214/sf.1395
Highlights: Elasticities of demand with gross domestic product and prices were stable over time and income level for sawnwood and particleboard only; Other product elasticities differed with income and time, leading in conjunction with a sector model to higher projected world demand and prices than obtained by ignoring differences between countries and over time.

In view of improving multi-country forest sector models, this study investigated to what extent the price and income elasticity of demand for forest products had changed in the past two decades, and how much they depended on the countries income level. For each of seven major product groups annual observations were divided between high-income (top 20% in gross domestic product per capita) and low-income, and between recent (2004–2013) and older (1992–2003) observations. The results indicated that for sawnwood and particleboard the data could be pooled across all countries and years. For the other commodity groups (veneer & plywood, fiberboard, newsprint, printing & writing paper, other paper & paperboard), there were statistically significant differences in gross domestic product or price elasticity between high and low-income levels or old and recent observations. Efficient elasticities were obtained by pooling the maximum number of observations while respecting the statistically significant differences. The resulting GDP elasticities were the same, or very close, across income levels for all products. The price elasticities differed by income level only for newsprint and for veneer and plywood. International forest sector projections to 2065 obtained with these elasticities compared with those based on pooling all data across time and income levels gave less than 3% difference for world consumption of sawnwood, particleboard, fiberboard, and newsprint, but 19% higher consumption for veneer and plywood, 31% for printing and writing paper, and 18% for other paper and paperboard. The world price was 1% to 11% higher for end products and 3% to 22% higher for raw materials and intermediate products.

  • Buongiorno, University of Wisconsin-Madison, Department of Forest and Wildlife Ecology, 1630 Linden Drive, Madison, WI 53706, USA ORCID ID:E-mail: jbuongio@wisc.edu (email)
article id 1394, category Research article
Sari Karvinen & Tuomas Nummelin. (2015). Finnish wood harvesting contractors’ risks in Russia. Silva Fennica vol. 49 no. 5 article id 1394. https://doi.org/10.14214/sf.1394
Highlights: Disagreements on wood measurement and payment delays were the most important economic risks; Dependency on a few clients created risk for unfavourable agreements and work interruptions; Fires in site huts caused the risk of personal injury; Inadequate professional skills were serious economic and work interruption risks; Unhealthy competition, the functioning of the authorities, and infrastructure were important external risk factors.

Finnish wood harvesting contractors have been working in Russia since the 1990s and new entrepreneurs are still interested in starting operations there, even though Russia is not an easy business environment. This study identifies the most significant risks in contracting in Russia. Risks were identified through expert evaluation and a risk analysis was conducted by using a risk matrix. Possible preventative measures were assessed for the identified risks. Some risks were found to be common in Russia and Finland, for example a limited number of clients, dependency on a few clients, and weak negotiating positions. A stable amount of work, i.e. the availability of stands for harvesting, was also a challenge on the both sides of border. Typical problems in Russia were breaches of contract, especially disagreements on wood measurement and payment delays, potentially causing serious economic losses. Specific to Russia were problems related to machine service and spare parts, as well as security issues. The professional skills of machine operators, as well as changing work motivation were risks in Russia. Cultural differences lead to more challenging supervision and management of staff. Among the external factors, the most challenging in Russia were unhealthy competition in the marketplace and non-transparent and the unpredictable procedures of the authorities. In Russia problems caused by seasonality are amplified by the sparse road network and longer downtime. The revealed specific features of the Russian business environment can help Finnish wood harvesting companies to plan a risk management process for operations in Russia.

  • Karvinen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: sari.karvinen@luke.fi (email)
  • Nummelin, Natural Resources Institute Finland (Luke), Green technology, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: tuomas.nummelin@luke.fi
article id 1382, category Research article
Juha Laitila & Johanna Routa. (2015). Performance of a small and a medium sized professional chippers and the impact of storage time on Scots pine (Pinus sylvestris) stem wood chips characteristics. Silva Fennica vol. 49 no. 5 article id 1382. https://doi.org/10.14214/sf.1382
Highlights: The storage time of pulpwood had no significant effect on particle size distribution in any chip size classes; The study confirms the knowledge that chipping time consumption is inversely proportional to engine power and grapple load size in feeding; The use of an narrower 80 mm × 80 mm sieve on Scots pine material does not seem to offer any benefit compared to a 100 mm × 100 mm sieve from the perspective of chip quality.

The primary aim of this study was to clarify the chipping productivity and fuel consumption of tractor-powered and truck-mounted drum chippers when chipping pine pulpwood at a terminal. The secondary aim was to evaluate the impact of wood storage time on the chemical and physical technical specifications of wood chips by chipping pulpwood from eight different storage time groups, using Scots pine (Pinus sylvestris) pulpwood stems logged between 2 and 21 months previously at the terminal with the above-mentioned chippers. Thirdly, the impact of sieve mesh size on the particle size distribution of wood chips from different age groups was compared by using an 80 mm × 80 mm sieve for a tractor-powered chipper and a 100 mm × 100 mm sieve for a truck-mounted chipper. With both chippers, the chipping productivity grew as a function of grapple load weight. The average chipping productivity of the tractor-powered chipper unit was 19 508 kg (dry mass) per effective hour (E0h), and for the truck-mounted chipper the average productivity was 31 184 kg E0h–1. The tractor-powered drum chipper’s fuel consumption was 3.1 litres and for the truck-mounted chipper 3.3 litres per chipped 1000 kg (dry mass). The amount of extractives or volatiles did not demonstrate any statistically significant differences between storage time groups. The particle size distributions with both chippers were quite uniform, and the storage time of pulpwood did not have a significant effect on the particle size distribution in any chip size classes. One reason for this might be that the basic density of chipped wood was homogenous and there was no statistical difference between different storage times. The use of new sharp knives is likely to have affected chip quality, as witnessed by the absence of oversized particles and the moderate presence of fines. The use of narrower 80 mm × 80 mm sieves on Scots pine material does not seem to offer any benefit compared to 100 mm × 100 mm from the chip quality point of view.

  • Laitila, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: juha.laitila@luke.fi (email)
  • Routa, Natural Resources Institute Finland (Luke), Bio-based business and industry, P.O. Box 68, FI-80101 Joensuu, Finland ORCID ID:E-mail: johanna.routa@luke.fi
article id 1377, category Research article
Raul Fernandez-Lacruz, Fulvio Di Fulvio, Dimitris Athanassiadis, Dan Bergström & Tomas Nordfjell. (2015). Distribution, characteristics and potential of biomass-dense thinning forests in Sweden. Silva Fennica vol. 49 no. 5 article id 1377. https://doi.org/10.14214/sf.1377
Highlights: Biomass-dense thinning forests (BDTF) cover 2.1–9.8 M ha in Sweden, which represents 9–44% of the country’s productive forest land area, depending on the constraints applied; 65% of BDTF area is found in northern Sweden; Analyses revealed a yearly harvesting potential of at least 4.3 M OD t of undelimbed whole trees (3.0 M OD t of delimbed stemwood including tops).

Understanding the characteristics of unutilized biomass resources, such as small-diameter trees from biomass-dense thinning forests (BDTF) (non-commercially-thinned forests), can provide important information for developing a bio-based economy. The aim of this study was to describe the areal distribution, characteristics (biomass of growing stock, tree height, etc.) and harvesting potential of BDTF in Sweden. A national forest inventory plot dataset was imported into a geographical information system and plots containing BDTF were selected by applying increasingly stringent constraints. Results show that, depending on the constraints applied, BDTF covers 9–44% (2.1–9.8 M ha) of the productive forest land area, and contains 7–34% of the total growing stock (119–564 M OD t), with an average biomass density of 57 OD t ha–1. Of the total BDTF area, 65% is located in northern Sweden and 2% corresponds to set-aside farmlands. Comparisons with a study from 2008 indicate that BDTF area has increased by at least 4% (about 102 000 ha), in line with general trends for Sweden and Europe. Analyses revealed that the technical harvesting potential of delimbed stemwood (over bark, including tops) from BDTF ranges from 3.0 to 6.1 M OD t yr–1 (7.5 to 15.1 M m3 yr–1), while the potential of whole-tree harvesting ranges from 4.3 to 8.7 M OD t yr–1 (10.2 to 20.6 M m3 yr–1) depending on the scenario considered. However, further technological developments of the harvest and supply systems are needed to utilize the full potential of BDTF.

  • Fernandez-Lacruz, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID: http://orcid.org/0000-0001-9284-8911 E-mail: raul.fernandez@slu.se (email)
  • Di Fulvio, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden; International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management Program (ESM), Schlossplatz 1, A-2361 Laxenburg, Austria ORCID ID:E-mail: Fulvio.di.Fulvio@slu.se
  • Athanassiadis, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: Dimitris.Athanassiadis@slu.se
  • Bergström, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: Dan.Bergstrom@slu.se
  • Nordfjell, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: Tomas.Nordfjell@slu.se
article id 1348, category Research article
Sakari Tuominen, Andras Balazs, Heikki Saari, Ilkka Pölönen, Janne Sarkeala & Risto Viitala. (2015). Unmanned aerial system imagery and photogrammetric canopy height data in area-based estimation of forest variables. Silva Fennica vol. 49 no. 5 article id 1348. https://doi.org/10.14214/sf.1348
Highlights: Orthoimage mosaic and 3D canopy height model were derived from UAV-borne colour-infrared digital camera imagery and ALS-based terrain model; Features extracted from orthomosaic and canopy height data were used for estimating forest variables; The accuracy of forest estimates was similar to that of the combination of ALS and digital aerial imagery.

In this paper we examine the feasibility of data from unmanned aerial vehicle (UAV)-borne aerial imagery in stand-level forest inventory. As airborne sensor platforms, UAVs offer advantages cost and flexibility over traditional manned aircraft in forest remote sensing applications in small areas, but they lack range and endurance in larger areas. On the other hand, advances in the processing of digital stereo photography make it possible to produce three-dimensional (3D) forest canopy data on the basis of images acquired using simple lightweight digital camera sensors. In this study, an aerial image orthomosaic and 3D photogrammetric canopy height data were derived from the images acquired by a UAV-borne camera sensor. Laser-based digital terrain model was applied for estimating ground elevation. Features extracted from orthoimages and 3D canopy height data were used to estimate forest variables of sample plots. K-nearest neighbor method was used in the estimation, and a genetic algorithm was applied for selecting an appropriate set of features for the estimation task. Among the selected features, 3D canopy features were given the greatest weight in the estimation supplemented by textural image features. Spectral aerial photograph features were given very low weight in the selected feature set. The accuracy of the forest estimates based on a combination of photogrammetric 3D data and orthoimagery from UAV-borne aerial imaging was at a similar level to those based on airborne laser scanning data and aerial imagery acquired using purpose-built aerial camera from the same study area.

  • Tuominen, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: sakari.tuominen@luke.fi (email)
  • Balazs, Natural Resources Institute Finland (Luke), Economics and society, P.O. Box 18, FI-01301 Vantaa, Finland ORCID ID:E-mail: andras.balazs@luke.fi
  • Saari, VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044 VTT, Finland ORCID ID:E-mail: Heikki.Saari@vtt.fi
  • Pölönen, University of Jyväskylä, Department of Mathematical Information Technology, P.O. Box 35, FI-40014 University of Jyväskylä, Finland ORCID ID:E-mail: ilkka.polonen@jyu.fi
  • Sarkeala, Mosaicmill Oy, Kultarikontie 1, FI-01300 Vantaa, Finland ORCID ID:E-mail: janne.sarkeala@mosaicmill.com
  • Viitala, Häme University of Applied Sciences (HAMK), P.O. Box 230, FI-13101 Hämeenlinna, Finland ORCID ID:E-mail: Risto.Viitala@hamk.fi
article id 1347, category Research article
Paulo Borges, Even Bergseng, Tron Eid & Terje Gobakken. (2015). Impact of maximum opening area constraints on profitability and biomass availability in forestry – a large, real world case. Silva Fennica vol. 49 no. 5 article id 1347. https://doi.org/10.14214/sf.1347
Highlights: We solved a large and real world near city forestry problem; The inclusion of maximum open area constraints caused 7.0% loss in NPV; Solution value at maximum deviated 0.01% from the true optimum value; The annual energy supply of 20–30 GWh estimated from harvest residues could provide a small, but stable supply of energy to the municipality.

The nature areas surrounding the capital of Norway (Oslomarka), comprising 1 700 km2 of forest land, are the recreational home turf for a population of 1.2 mill. people. These areas are highly valuable, not only for recreational purposes and biodiversity, but also for commercial activities. To assess the impacts of the challenges that Oslo municipality forest face in their management, we developed four optimization problems with different levels of management constraints. The constraints consider control of harvest level, guarantee of minimum old-growth forest area and maximum open area after final harvest. For the latter, to date, no appropriate analyses quantifying the impact of such a constraint on economy and biomass production have been carried out in Norway. The problem solved is large due to both the number of stands and number of treatment schedules. However, the model applied demonstrated its relevance for solving large problems involving maximum opening areas. The inclusion of maximum open area constraints caused 7.0% loss in NPV compared to the business as usual case with controlled harvest volume and minimum old-growth area. The estimated supply of 20-30 GWh annual energy from harvest residues could provide a small, but stable supply of energy to the municipality.

  • Borges, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway ORCID ID:E-mail: paulo.borges@nmbu.no (email)
  • Bergseng, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway ORCID ID:E-mail: even.bergseng@nmbu.no
  • Eid, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway ORCID ID:E-mail: tron.eid@nmbu.no
  • Gobakken, Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, P.O. Box 5003, 1432 Aas, Norway ORCID ID:E-mail: terje.gobakken@nmbu.no
article id 1342, category Research article
Blas Mola-Yudego, Gianni Picchi, Dominik Röser & Raffaele Spinelli. (2015). Assessing chipper productivity and operator effects in forest biomass operations. Silva Fennica vol. 49 no. 5 article id 1342. https://doi.org/10.14214/sf.1342
Highlights: A model is constructed to assess the productivity in chipping of wood biomass at roadside; The data includes 172 trials and 67 operators in Italy; The operator effect was included in a mixed model approach; The R2 were 0.76 (fixed part) and 0.88 (incl. operator effects).

The present research focuses on the productivity of energy wood chipping operations at several sites in Italy. The aim was to assess the productivity and specifically the effect attributed to the operator in the chipping of wood biomass. The research included 172 trials involving 67 operators across the country that were analysed using a mixed model approach, in order to assess productivity, and to isolate the operator effect from other potential variables. The model was constructed using different predictors aiming to explain the variability due to the machines and the raw-materials. The final model included the average piece weight of raw material chipped as well as the power of the machine. The coefficients of determination (R2) were 0.76 for the fixed part of the model, and 0.88 when the effects due to the operators were included. The operators’ performance compared to their peers was established, and it was compared to a subjective classification based on the operator’s previous experience. The results of this study can help to the planning and logistics of raw material supply for bioenergy, as well as to a more effective training of future forest operators.

  • Mola-Yudego, School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; NIBIO Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway ORCID ID: http://orcid.org/0000-0003-0286-0170 E-mail: blas.mola@uef.fi (email)
  • Picchi, CNR IVALSA, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy ORCID ID:E-mail: picchi@ivalsa.cnr.it
  • Röser, Forest Feedstocks Group, FPInnovations, Vancouver, British Columbia, Canada ORCID ID:E-mail: dominik.roser@fpinnovations.ca
  • Spinelli, CNR IVALSA, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy ORCID ID:E-mail: spinelli@ivalsa.cnr.it
article id 1340, category Research article
Mostafa Farhadi, Mulualem Tigabu & Per Christer Odén. (2015). Near Infrared Spectroscopy as non-destructive method for sorting viable, petrified and empty seeds of Larix sibirica. Silva Fennica vol. 49 no. 5 article id 1340. https://doi.org/10.14214/sf.1340
Highlights: Near Infrared spectroscopy discriminates filled-viable, empty and petrified seeds of Larix sibirica with 98%, 82% and 87% accuracy, respectively based on spectral differences attributed to moisture and storage reserves; The classification accuracy reached 100% when sorting seeds into viable and non-viable class; The results demonstrate that NIR spectroscopy has great potential as non-destructive sorting technique to upgrade seed lot quality.

Larix sibirica Ledeb. is one of the promising timber species for planting in the boreal ecosystem; but poor seed lot quality is the major hurdle for production of sufficient quantity of planting stocks. Here, we evaluated the potential of Near Infrared (NIR) Spectroscopy for sorting viable and non-viable seeds, as the conventional sorting technique is inefficient. NIR reflectance spectra were collected from single seeds, and discriminant models were developed with Orthogonal Projections to Latent Structure – Discriminant Analysis (OPLS-DA). The computed model predicted the class membership of filled-viable, empty and petrified seeds in the test set with 98%, 82% and 87% accuracy, respectively. When two-class OPLS-DA model was fitted to discriminate viable and non-viable (empty and petrified seeds combined), the predicted class membership of test set samples was 100% for both classes. The origins of spectral differences between non-viable (petrified and empty) and viable seeds were attributed to differences in seed moisture content and storage reserves. In conclusion, the result provides evidence that NIR spectroscopy is a powerful non-destructive method for sorting non-viable seeds of Larix sibirica; thus efforts should be made to develop on-line sorting system for large-scale seed handling.

  • Farhadi, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail: mostafa.farhadi@slu.se
  • Tigabu, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail: mulualem.tigabu@slu.se (email)
  • Odén, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53 Alnarp, Sweden ORCID ID:E-mail: per.oden@slu.se
article id 1334, category Research article
Abolfazl Daneshvar, Mulualem Tigabu, Asaddollah Karimidoost & Per Christer Oden. (2015). Single seed Near Infrared Spectroscopy discriminates viable and non-viable seeds of Juniperus polycarpos. Silva Fennica vol. 49 no. 5 article id 1334. https://doi.org/10.14214/sf.1334
Highlights: Near Infrared (NIR) Spectroscopy discriminates viable and non-viable (empty, insect-attacked and shriveled) seeds of J. polycarpos with 98% and 100% accuracy, respectively; The origins of spectral differences between non-viable and viable seeds were attributed to differences in seed coat chemical composition and storage reserves; The results demonstrate that NIR spectroscopy has great potential as seed sorting technology to ensure precision sowing.
A large quantity of non-viable (empty, insect-attacked and shriveled) seeds of Juniperus polycarpos (K. Koch) is often encountered during seed collection, which should be removed from the seed lots to ensure precision sowing in the nursery or out in the field. The aims of this study were to evaluate different modelling approaches and to examine the sensitivity of the change in detection system (Silicon-detector in the shorter vis-a-vis InGsAs-detector in the longer NIR regions) for discriminating non-viable seeds from viable seeds by Near Infrared (NIR) spectroscopy. NIR reflectance spectra were collected from single seeds, and discriminant models were developed by Partial Least Squares – Discriminant Analysis (PLS-DA) and Orthogonal Projection to Latent Structures – Discriminant Analysis (OPLS-DA) using the entire or selected NIR regions. Both modelling approaches resulted in 98% and 100% classification accuracy for viable and non-viable seeds in the test set, respectively. However, OPLS-DA models were superb in terms of model parsimony and information quality. Modelling in the shorter and longer wavelength region also resulted in similar classification accuracy, suggesting that prediction of class membership is insensitive to change in the detection system. The origins of spectral differences between non-viable and viable seeds were attributed to differences in seed coat chemical composition, mainly terpenoids that were dominant in non-viable seeds and storage reserves in viable seeds. In conclusion, the results demonstrate that NIR spectroscopy has great potential as seed sorting technology to upgrade seed lot quality that ensures precision sowing.
  • Daneshvar, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53, Alnarp, Sweden; (permanent address) Department of Natural Resources, Gonbad Kavous University, Shahid Fallahi Street, P.O. Box 163, Gonbad, Iran ORCID ID:E-mail: abolfazl.daneshvar@slu.se
  • Tigabu, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53, Alnarp, Sweden ORCID ID:E-mail: mulualem.tigabu@slu.se (email)
  • Karimidoost, Agriculture and Natural Resources Research Center of Golestan Province, Beheshti Ave. P.O. Box 4915677555, Gorgan, Iran ORCID ID:E-mail: karimidoost@yahoo.com
  • Oden, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53, Alnarp, Sweden ORCID ID:E-mail: per.oden@slu.se
article id 1328, category Research article
Nelly N. Selochnik, Nataliya V. Pashenova, Evgeny Sidorov, Michael J. Wingfield & Riikka Linnakoski. (2015). Ophiostomatoid fungi and their roles in Quercus robur die-back in Tellermann forest, Russia. Silva Fennica vol. 49 no. 5 article id 1328. https://doi.org/10.14214/sf.1328
Highlights: Dominant ophiostomatoid fungi associated with Q. robur in the post-outbreak region of oak die-back were investigated; Ophiostoma quercus was the most commonly encountered fungus; This is the first report of O. grandicarpum from Russia; The results of preliminary pathogenicity experiments demonstrate that fungi investigated in this study are unlikely to play causal role in oak die-back

Several eastern European countries have reported outbreaks of oak die-back during the 1980’s. Species of Ophiostoma Syd. were isolated from diseased trees and have been suggested to be the possible causal agents of the die-back, but this view have generally not been accepted. In order to monitor the post-outbreak region of oak die-back and to consider the possible role of Ophiostoma spp. in the syndrome, research has been conducted in the Tellerman forest, Voronezh region, Russia between 2005 and 2011. Our study resulted in the isolation of ophiostomatoid fungi from Quercus robur L. trees displaying external signs of desiccation. Fungi were identified based on morphological characteristics and DNA sequence comparisons. Three species of Ophiostoma were identified including O. grandicarpum (Kowalski & Butin) Rulamort, a species closely related to O. abietinum Marm. & Butin, O. fusiforme Aghayeva & M.J. Wingf. and O. lunatum Aghayeva & M.J. Wingf. representing a poorly understood species complex, and most commonly O. quercus (Georgev.) Nannf. Pathogenicity of these fungi was tested using artificial inoculations on Q. robur trees. The fungi were shown to be non-pathogenic and unlikely to play any role in oak die-back. These fungi are most likely only components in a complex of abiotic, biotic and anthropogenic factors that have contributed to a die-back of Quercus spp. in Russia.

  • Selochnik, Forest Science Institute of RAS, Uspenskoe 143030, Moscow Region, Russia ORCID ID:E-mail: lenelse@yandex.ru
  • Pashenova, V.N. Sukachev Institute of Forest SB RAS, Krasnoyarsk 660036, Russia ORCID ID:E-mail: pasnat@ksc.krasn.ru
  • Sidorov, Department of Forest Protection and Game Management, St. Petersburg State Forest Technical University, St. Petersburg 194021, Russia ORCID ID:E-mail: sidorov_evgeny@mail.ru
  • Wingfield, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa ORCID ID:E-mail: mike.wingfield@up.ac.za
  • Linnakoski, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, 0002 Pretoria, South Africa; Department of Forest Sciences, University of Helsinki, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID: http://orcid.org/0000-0002-3294-8088 E-mail: riikka.linnakoski@helsinki.fi (email)
article id 1312, category Research article
Simon Karl Nils Berg, Tomas Nordfjell & Dan Bergström. (2015). Effect of stump size and timing of stump harvesting on ground disturbance and root breakage diameter. Silva Fennica vol. 49 no. 5 article id 1312. https://doi.org/10.14214/sf.1312
Highlights: The ground disturbance and root breakage diameter during conventional stump harvesting on mineral soil were quantified; A function for estimating the disturbed area based on stump size was constructed; Many fine roots were found to be harvested; The total ground disturbance at the site after stump harvesting was similar to that caused by soil scarification.

Stump wood is a possible alternative to fossil fuel. Its harvesting, however, disturbs the ground and this has not yet been quantified at stump level. Such disturbance is likely to be dependent on stump size, type of soil and timing of stump harvesting. Therefore, we measured ground disturbance and root breakage diameter at two Norway spruce sites with sandy glacial till soil. The sites were harvested with a fork type head, 6 and 18 months after clear cutting. Measurements were made within 2 weeks of harvest. No difference was found between the two sites. The mean area of disturbed ground was 6.06 (std 3.14) m2 per stump and increased exponentially with stump size. A regression function modelling the relationship was constructed. Unexpectedly, many fine roots where extracted in the harvest. The arithmetic and basal area weighted mean root breakage diameter was 4.6 (std 2.2) and 29.5 (std 17.9) mm, respectively. There seems to be a limited increase in root breakage diameter with increased stump size. The small root breakage diameter is associated with reduced fuel quality and greater nutrient removal. It appears that much of the ground disturbance is associated with the creation of ruts rather than stump harvest per se. Stump harvesting disturbs a larger percentage of the area of a harvested site than mounding. Postponing stump harvest by one year did not decrease the ground disturbance or increase the root breakage diameter. To achieve less disturbance and larger root breakage diameter, probably new stump harvesting technology is required.

  • Berg, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: phd.simon.berg@gmail.com (email)
  • Nordfjell, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: tomas.nordfjell@slu.se
  • Bergström, Swedish University of Agricultural Sciences (SLU), Department of Forest Biomaterials and Technology (SBT), Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: dan.bergstrom@slu.se
article id 1310, category Research article
Deliang Lu, Jiaojun Zhu, Yirong Sun, Lile Hu & Guangqi Zhang. (2015). Gap closure process by lateral extension growth of canopy trees and its effect on woody species regeneration in a temperate secondary forest, Northeast China. Silva Fennica vol. 49 no. 5 article id 1310. https://doi.org/10.14214/sf.1310
Highlights: Gap closure process by lateral extension growth can be described by quadratic functions; Large gaps (514–621 m2) had higher closure rates but lower closure percentages compared with middle (174–321 m2) and small gaps (68–125 m2); Gaps promoted woody species regeneration in early stage; Large and middle gaps would provide opportunities for filling regeneration, but regeneration in small gaps may eventually fail.

Gap formation and its effects on regeneration have been reported as being important in forest development, but seldom studies concentrated on the gap closure process by lateral extension growth of canopy trees surrounding gaps. We monitored the closure process of 12 artificial gaps for 7 years with three size classes: small (from 68 m2 to 125 m2), middle (from 174 m2 to 321 m2), and large (from 514 m2 to 621 m2); and investigated the regeneration twice in a temperate secondary forest, Northeast China. The closure process can be described through quadratic functions, which showed the closure rates slowed down with gap ages. Large gaps had a higher closure rate (39 m2 a–1) than middle gaps (25 m2 a–1) and small gaps (11 m2 a–1). According to the quadratic equations, the lateral growth could last 11, 13 and 16 years for small, middle and large gaps with a remaining size of 12, 69 and 223 m2, respectively. As expected, regeneration exhibited the highest seedling density and volume in large gaps. There was no significant difference in regeneration density between middle gaps, small gaps and forest understory in the final investigation; but the volume of regenerated woody species increased significantly from small gaps to large gaps compared with forest understory. These results may provide references on the choice of appropriate gap sizes to promote the regeneration in temperate secondary forests.

  • Lu, State Key Laboratory of Forest and Soil Ecology, Qingyuan Forest CERN, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;  University of Chinese Academy of Sciences, Beijing 100049, China ORCID ID:E-mail: delianglu14@hotmail.com
  • Zhu, State Key Laboratory of Forest and Soil Ecology, Qingyuan Forest CERN, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China ORCID ID:E-mail: jiaojunzhu@iae.ac.cn (email)
  • Sun, State Key Laboratory of Forest and Soil Ecology, Qingyuan Forest CERN, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China ORCID ID:E-mail: yirongsun@iae.ac.cn
  • Hu,  Chinese Research Academy of Environmental Sciences, Beijing 100012, China ORCID ID:E-mail: lilehu@gmail.com
  • Zhang, State Key Laboratory of Forest and Soil Ecology, Qingyuan Forest CERN, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China;  University of Chinese Academy of Sciences, Beijing 100049, China ORCID ID:E-mail: zgq04713@163.com

Category: Research note

article id 1415, category Research note
Zorica Šarac, Tanja Dodoš, Nemanja Rajčević, Srdjan Bojović, Petar Marin & Jelena Aleksić. (2015). Genetic patterns in Pinus nigra from the central Balkans inferred from plastid and mitochondrial data. Silva Fennica vol. 49 no. 5 article id 1415. https://doi.org/10.14214/sf.1415
Highlights: Seven populations of Pinus nigra from the central Balkans, representing four infraspecific taxa, were analyzed with chloroplast microsatellites and a mitochondrial locus; Molecular data failed to support infraspecific circumscriptions; Levels of genetic diversities/differentiation at both genomes were in the range of those reported in western Mediterranean populations of P. nigra; Iberian/African and Balkans’ populations share one mtDNA polymorphism and differ in three mutations.

Pinus nigra J.F. Arnold, European black pine, is a typical component of Mediterranean and sub-Mediterranean coniferous forests with highly fragmentary distribution. Western Mediterranean populations of this species have been studied genetically to date, while eastern populations from the central Balkans, which are larger and more abundant, are still genetically understudied. We analyzed seven populations of P. nigra representing all infraspecific taxa recognized within the central Balkans (subspecies nigra with varieties nigra and gocensis Đorđević; and subspecies pallasiana (Lamb.) Holmboe with varieties pallasiana and banatica (Endl.) Georgescu et Ionescu), with three chloroplast microsatellites (cpDNA SSRs) and one mitochondrial (mtDNA) locus. Although our molecular data failed to support circumscription of studied infraspecific taxa, we found that genetic patterns at both genomes are in accordance with those found previously in westward populations of this species, that is – exceptionally high levels of genetic diversity (HT = 0.949) and low genetic differentiation (GST = 0.024) at the cpDNA level, and moderate levels of genetic diversity (HT = 0.357) and genetic differentiation (GST = 0.358) at the mtDNA level. Based on genealogical relations of mtDNA types currently present in Balkans’ and Iberian/African populations, we inferred that the ancestral gene pool of P. nigra already harbored polymorphism at position 328 prior to the divergence to two lineages currently present in westward and eastward parts of the species range distribution. Subsequent occurrence of three mutations, which distinguish these two lineages, suggests their long-term isolation.

  • Šarac, University of Niš, Faculty of Sciences and Mathematics, Department of Biology and Ecology, Višegradska 33, 18000 Niš, Serbia ORCID ID:E-mail: saraczorica@gmail.com (email)
  • Dodoš, University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Studentski trg 16, 11000 Belgrade, Serbia ORCID ID:E-mail: tanjadodos@bio.bg.ac.rs
  • Rajčević, University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Studentski trg 16, 11000 Belgrade, Serbia ORCID ID:E-mail: nemanja@bio.bg.ac.rs
  • Bojović, University of Belgrade, Institute for Biological Research “Siniša Stanković”, Boulevard Despota Stefana 142, 11060 Belgrade, Serbia ORCID ID:E-mail: bojovic@ibiss.bg.ac.rs
  • Marin, University of Belgrade, Faculty of Biology, Institute of Botany and Botanical Garden “Jevremovac”, Studentski trg 16, 11000 Belgrade, Serbia ORCID ID:E-mail: pdmarin@bio.bg.ac.rs
  • Aleksić, University of Belgrade, Institute of Molecular Genetics and Genetic Engineering, Vojvode Stepe 444a, P.O. Box 23, 11000 Belgrade, Serbia ORCID ID:E-mail: aleksic_jelena@yahoo.com.au

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content

Your selected articles