Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'carbon budget'.

Category: Research article

article id 586, category Research article
Tuula Nuutinen, Seppo Kellomäki. (2001). A comparison of three modelling approaches for large-scale forest scenario analysis in Finland. Silva Fennica vol. 35 no. 3 article id 586. https://doi.org/10.14214/sf.586
Forests play an important role in the sequestration of carbon dioxide and the storage of carbon. The potential and efficiency of mitigation options in forestry have been studied using large-scale forestry scenario models. In Finland, three models have been applied in attempts to estimate timber production and related carbon budgets. In this study, these models are compared. The oldest, MELA, was designed in the 1970s for the regional and national analysis of timber production. The European Forest Information Scenario Model, EFISCEN, originally a Swedish area matrix model, was developed in the early 1980s. SIMA, a gap-type ecosystem model, was utilised in the 1990s for regional predictions on how the changing climate may affect forest growth and timber yield in Finland. In EFISCEN, only the development of growing stock is endogeneous because the assumptions on growth, and the removal and rules for felling are given exogeneously. In the SIMA model, the rules for felling are exogeneous but the growth is modelled based on individual trees reacting to their environment. In the MELA model, the management of forests is endogeneous, i.e. the growth, felling regimes and the development of growing stock are the results of the analysis. The MELA approach integrated with a process-based ecosystem model seems most applicable in the analyses of effective mitigation measures compatible with sustainable forestry under a changing climate. When using the scenarios for the estimation of carbon budget, the policy makers should check that the analyses cover the whole area of interest, and that the assumptions on growth and management together with the definitions applied correspond with the forestry conditions in question.
  • Nuutinen, Finnish Forest Research Institute, Joensuu Research Centre, Box 68, FIN-80101 Joensuu, Finland ORCID ID:E-mail: tuula.nuutinen@metla.fi (email)
  • Kellomäki, University of Joensuu, Box 111, FIN-80101 Joensuu, Finland ORCID ID:E-mail:

Category: Article

article id 7681, category Article
Eero Nikinmaa. (1992). Analyses of the growth of Scots pine: matching structure with function. Acta Forestalia Fennica no. 235 article id 7681. https://doi.org/10.14214/aff.7681

A theoretical framework to analyse the growth of Scots pine (Pinus sylvestris L.) is presented. Material exchange processes and internal processes that transport, transform and consume materials are identified as the components of growth. Hierarchical system is lined out. Momentary uptake of material at a single exchange site depends on the environmental condition next to the exchange site, the internal state of the biochemical system of the plant and the structure of the plant. The internal state depends on the exchange flows over period of time and the structural growth depends on the internal state. The response of these processes to the fluxes is controlled by the genetic composition of the plant.

The theoretical framework is formulated into a mathematical model. A concept of balanced internal state was applied to describe the poorly known internal processes. Internal substrate concentrations were assumed to remain constant but tissue-specific. A linear relationship between the quantity of foliage and wood cross-sectional area was assumed to describe balanced formation of structure. The exchange processes were thus described as a function of external conditions. The stand level interactions were derived from shading and effects of root density on nutrient uptake.

The approach was tested at different levels of hierarchy. Field measurements indicated that the hypothesis of the linear relationship described well the regularities between foliage and sapwood of a tree within a stand when measured at functionally corresponding height. There was considerable variation in the observed regularities in the range of geographic occurrence of Scots pine. Model simulations gave a realistic description of stand development in Southern Finland. The same model was also able to describe growth differences in Lapland after considering the effect of growing season length in the parameter values. Simulations to South Russia indicate stronger deviation from the observed patterns.

The simulations suggest interesting features of stand development. They indicate strong variability in the distribution of carbohydrates between tree parts during stand development. Internal circulation of nutrients and the reuse of the same transport structure by various needle generations had a strong influence on the simulation results.

The PDF includes a summary in Finnish.

  • Nikinmaa, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive