Current issue: 53(2)

Under compilation: 53(3)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'decision making'.

Category: Research article

article id 1046, category Research article
Eva-Maria Nordström, Hampus Holmström, Karin Öhman. (2013). Evaluating continuous cover forestry based on the forest owner’s objectives by combining scenario analysis and multiple criteria decision analysis. Silva Fennica vol. 47 no. 4 article id 1046. https://doi.org/10.14214/sf.1046
Highlights: Scenario analysis and multiple criteria decision analysis were combined to evaluate alternative forest management strategies for Linköping municipality, Sweden; Continuous cover forestry (CCF) promoted ecological and social objectives better than even-aged forestry but was worse for economic objectives; Ecological and social objectives were important to the municipality and thus, in summary, CCF seemed to be a suitable strategy.
Forests are increasingly managed both to provide a sustainable yield of timber and for supplying a range of ecosystem services in line with the concept of sustainable forest management. Several incommensurable interests must then be considered, and it is necessary to strike a balance between different objectives. In evaluation of trade-offs to be made, both objective factors and subjective values need to be taken into account. In recent years, continuous cover forestry (CCF) has been put forward as an alternative to even-aged forestry. The aim of this study was to use scenario analysis in combination with multi criteria decision analysis (MCDA) to evaluate whether CCF is a suitable strategy based on the decision makers’ objectives and preferences for sustainable forest management in a specific landscape. This approach was applied to a planning case on the forest estate of the Linköping municipality in southwestern Sweden. The scenario analyses provided insights into relevant quantitative factors, while the MCDA evaluation helped in clarifying the objectives of the forest management and in assessing the relative importance of various objectives. The scenario analyses showed that in this case CCF is a good management strategy in ecological and social terms but yields worse economic outcomes than conventional even-aged forestry. In the Linköping case, there was a relatively strong emphasis on ecological and social aspects and thus, in summary, CCF seemed to be the most suitable option.
  • Nordström, Swedish University of Agricultural Sciences, Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: eva-maria.nordstrom@slu.se (email)
  • Holmström, Swedish University of Agricultural Sciences, Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: hampus.holmstrom@slu.se
  • Öhman, Swedish University of Agricultural Sciences, Department of Forest Resource Management, Skogsmarksgränd, SE-901 83 Umeå, Sweden ORCID ID:E-mail: karin.ohman@slu.se
article id 100, category Research article
Annika Kangas, Lauri Mehtätalo, Antti Mäkinen, Kalle Vanhatalo. (2011). Sensitivity of harvest decisions to errors in stand characteristics. Silva Fennica vol. 45 no. 4 article id 100. https://doi.org/10.14214/sf.100
In forest planning, the decision maker chooses for each stand a treatment schedule for a predefined planning period. The choice is based either on optimization calculations or on silvicultural guidelines. Schedules for individual stands are obtained using a growth simulator, where measured stand characteristics such as the basal area, mean diameter, site class and mean height are used as input variables. These characteristics include errors, however, which may lead to incorrect decisions. In this study, the aim is to study the sensitivity of harvest decisions to errors in a dataset of 157 stands. Correct schedules according to silvicultural guidelines were first determined using error-free data. Different amounts of errors were then generated to the stand-specific characteristics, and the treatment schedule was selected again using the erroneous data. The decision was defined as correct, if the type of harvest in these two schedules were similar, and if the timings deviated at maximum ±2 for thinning and ±3 years for clear-cut. The dependency of probability of correct decisions on stand characteristics and the degree of errors was then modelled. The proposed model can be used to determine the required level of measurement accuracy for each characteristics in different kinds of stands, with a given accuracy requirement for the timing of treatments. This information can further be utilized in selecting the most appropriate inventory method.
  • Kangas, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: annika.kangas@helsinki.fi (email)
  • Mehtätalo, University of Eastern Finland, School of Forest Sciences, Joensuu, Finland ORCID ID:E-mail:
  • Mäkinen, Simosol Oy, Riihimäki, Finland ORCID ID:E-mail:
  • Vanhatalo, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:
article id 635, category Research article
Manfred J. Lexer, Karl Hönninger, Helfried Scheifinger, Christoph Matulla, Nikolaus Groll, Helga Kromp-Kolb. (2000). The sensitivity of central European mountain forests to scenarios of climatic change: methodological frame for a large-scale risk assessment. Silva Fennica vol. 34 no. 2 article id 635. https://doi.org/10.14214/sf.635
The methodological framework of a large-scale risk assessment for Austrian forests under scenarios of climatic change is presented. A recently developed 3D-patch model is initialized with ground-true soil and vegetation data from sample plots of the Austrian Forest Inventory (AFI). Temperature and precipitation data of the current climate are interpolated from a network of more than 600 weather stations to the sample plots of the AFI. Vegetation development is simulated under current climate (‘control run’) and under climate change scenarios starting from today's forest composition and structure. Similarity of species composition and accumulated biomass between these two runs at various points in time were used as assessment criteria. An additive preference function which is based on Saaty’s AHP is employed to synthesize these criteria to an overall index of the adaptation potential of current forests to a changing climate. The presented methodology is demonstrated for a small sample from the Austrian Forest Inventory. The forest model successfully simulated equilibrium species composition under current climatic conditions spatially explicit in a heterogenous landscape based on ground-true data. At none of the simulated sites an abrupt forest dieback did occur due to climate change impacts. However, substantial changes occured with regard to species composition of the potential natural vegetation (PNV).
  • Lexer, Institute of Silviculture, University of Agricultural Sciences, Peter-Jordanstrasse 70, A-1190 Vienna, Austria ORCID ID:E-mail: lexer@edv1.boku.ac.at (email)
  • Hönninger, Institute of Silviculture, University of Agricultural Sciences, Peter-Jordanstrasse 70, A-1190 Vienna, Austria ORCID ID:E-mail:
  • Scheifinger, Institute of Meteorology and Physics, University of Agricultural Sciences, Türkenschanzstrasse 18, A-1180 Vienna, Austria ORCID ID:E-mail:
  • Matulla, Institute of Meteorology and Physics, University of Agricultural Sciences, Türkenschanzstrasse 18, A-1180 Vienna, Austria ORCID ID:E-mail:
  • Groll, Institute of Meteorology and Physics, University of Agricultural Sciences, Türkenschanzstrasse 18, A-1180 Vienna, Austria ORCID ID:E-mail:
  • Kromp-Kolb, Institute of Meteorology and Physics, University of Agricultural Sciences, Türkenschanzstrasse 18, A-1180 Vienna, Austria ORCID ID:E-mail:

Category: Article

article id 5619, category Article
Pertti Harstela. (1997). Decision support systems in wood procurement. A review. Silva Fennica vol. 31 no. 2 article id 5619. https://doi.org/10.14214/sf.a8520

Many kinds of planning systems have been labelled decision support systems (DSS), but few meet the most important features of real DSSs in planning and control of wood procurement. It has been concluded that many reasons exist to develop DSSs for wood procurement. The purchasing of timber seems to be one of the most promising areas for DSS, because there is no formal structure for these operations and decisions deal with human behaviour. Relations between DSSs and different features of the new approaches in wood procurement are also discussed, and hypotheses for future studies suggested.

  • Harstela, ORCID ID:E-mail:
article id 5366, category Article
Pekka Ollonqvist. (1988). Resurssien jakautumisen tehokkuuden ja päätöksentekijöiden tavoitteiden mittauksessa tapahtuneista muutoksista metsäekonomiassa. Silva Fennica vol. 22 no. 4 article id 5366. https://doi.org/10.14214/sf.a15523
English title: The quarter century development in the paradigms of forestry economics.

The two introductory books written by emeritus professor William Duerr provide an opportunity to scope the research progress in the forest economic discipline during almost a quarter century. This paper gives a presentation of the books (Fundamentals of Forest economics, 1960, and Forestry Economics as Problem Solving, 1984), and the development of forest economics during the period.

The PDF includes a summary in English.

  • Ollonqvist, ORCID ID:E-mail:
article id 7512, category Article
Mauno Pesonen, Arto Kettunen, Petri Räsänen. (1995). Non-industrial private forest landowners’ choices of timber management strategies. Acta Forestalia Fennica no. 250 article id 7512. https://doi.org/10.14214/aff.7512

The factors affecting the non-industrial, private forest owners’ (NIPF) strategic decisions in management planning are studied. A genetic algorithm is used to induce a set of rules predicting potential cut of the forest owners’ choices of preferred timber management strategies. The rules are based on variables describing the characteristics of the landowners and their forest holdings. The predictive ability of a genetic algorithm is compared to linear regression analysis using identical data sets. The data are cross-validated seven times applying both genetic algorithm and regression analyses in order to examine the data-sensitivity and robustness of the generated models.

The optimal rule set derived from genetic algorithm analyses included the following variables: mean initial volume, forest owner’s positive price expectations for the next eight years, forest owner being classified as farmer, and preference for the recreational use of forest property. When tested with previously unseen test data, the optimal rule set resulted in a relative root mean square error of 0.40.

In the regression analyses, the optimal regression equation consisted of the following variables: mean initial volume, proportion of forestry income, intention to cut extensively in future, and positive price expectations for the next two years. The R2 of the optimal regression equation was 0.3 and the relative root mean square error from the test data 0.38.

In both models, mean initial volume and positive stumpage price expectations were entered as significant predictors of potential cut of preferred timber management strategy. When tested with complete data set of 201 observations, both the optimal rule set and the optimal regression model achieved the same level of accuracy.

  • Pesonen, ORCID ID:E-mail:
  • Kettunen, ORCID ID:E-mail:
  • Räsänen, ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive