Current issue: 54(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'forest biomass'.

Category: Research article

article id 937, category Research article
Rene Zamora-Cristales, Kevin Boston, John Sessions, Glen Murphy. (2013). Stochastic simulation and optimization of mobile chipping economics in processing and transport of forest biomass from residues. Silva Fennica vol. 47 no. 5 article id 937. https://doi.org/10.14214/sf.937
Highlights: A stochastic simulation model is proposed to analyze forest biomass operations; The cost of chipper and truck waiting times was estimated in forest biomass recovery operations; The economic effect of truck-machine interactions under uncertainty was analyzed; Road characteristics and processing location have an economic impact in truck and chipper waiting times
We analyzed the economics of mobile chipping and transport of biomass from forest residues for energy purposes under uncertainty. A discrete-event simulation model was developed and utilized to quantify the impacts of controllable and environmental variables on productivity in order to determine the most cost effective transportation options under steep terrain conditions. Truck-chipper interactions were analyzed to show their effect on truck and chipper standing time. A costing model was developed to account for operating and standing time cost (for the chipper and trucks). The model used information from time studies of each activity in the productive cycle and spatial-temporal information obtained from geographic information system (GIS) devices, and tracking analysis of machine and truck movements. The model was validated in field operations, and proved to be accurate in providing the expected productivity. A cost distribution was elaborated to support operational decisions of forest managers, landowners and risk-averse contractors. Different scenarios were developed to illustrate the economic effects due to changes in road characteristics such as in-highway transport distance, in-forest internal road distance and pile to trailer chipper traveling distances.
  • Zamora-Cristales, Department of Forest Engineering, Resources, and Management, College of Forestry, Oregon State University, 280 Peavy Hall, Corvallis, OR 97331, USA ORCID ID:E-mail: rene.zamora@oregonstate.edu (email)
  • Boston, Department of Forest Engineering, Resources, and Management, College of Forestry, Oregon State University, 280 Peavy Hall, Corvallis, OR 97331, USA ORCID ID:E-mail: kevin.boston@oregonstate.edu
  • Sessions, Department of Forest Engineering, Resources, and Management, College of Forestry, Oregon State University, 280 Peavy Hall, Corvallis, OR 97331, USA ORCID ID:E-mail: john.sessions@oregonstate.edu
  • Murphy, Waiariki Institute of Technology, Rotorua, New Zealand ORCID ID:E-mail: glen.murphy@waiariki.ac.nz
article id 142, category Research article
Helmer Belbo. (2010). Comparison of two working methods for small tree harvesting with a multi tree felling head mounted on farm tractor. Silva Fennica vol. 44 no. 3 article id 142. https://doi.org/10.14214/sf.142
In this study, the efficiency of a small multi-tree felling head, mounted on a farm tractor with a timber trailer was studied, when harvesting small trees for energy in thinnings. Both separate loading and direct loading of the felled trees was studied. Time studies were carried out in a mixed stand of Norway spruce (Picea abies (L.) Karst) and birch (Betula pubescens Ehrh.). The time consumption of the work elements in the different work methods was formulated by regression analysis, where the independent variables were tree size and degree of accumulation. The average size of the harvested trees was 0.035 m3. The time consumption for the harvesting and loading were similar for the two studied methods, 20 minutes per m3 at a tree size of 0.035 m3, but the two methods showed different characteristics for different tree sizes and level of accumulation. The direct loading method had the highest productivity when more than 0.1 m3 were collected in the felling cycle, whereas the separate loading method had the highest productivity when less than 0.05 m3 were collected in the felling cycle. The total effective time consumption for harvesting and forwarding the biomass 300 meters to roadside landing was 27 minutes per m3. The efficiency of the initial felling and collecting of the small trees was the main challenge. Both the harvesting technique and harvesting technology needs further development to provide a feasible production chain for woodfuel from energy thinning.
  • Belbo, Norwegian Forest and Landscape Institute, Box 115, 1431 Ås, Norway ORCID ID:E-mail: helmer.belbo@skogoglandskap.no (email)

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive