Current issue: 54(1)

Under compilation: 54(2)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'stand replacement'.

Category: Review article

article id 73, category Review article
Timo Kuuluvainen, Tuomas Aakala. (2011). Natural forest dynamics in boreal Fennoscandia: a review and classification. Silva Fennica vol. 45 no. 5 article id 73. https://doi.org/10.14214/sf.73
The aim here was to review and summarize the findings of scientific studies concerning the types of forest dynamics which occur in natural forests (i.e. forests with negligible human impact) of boreal Fennoscandia. We conducted a systematic search for relevant studies from selected reference databases, using search terms describing the location, structure and processes, and degree of naturalness of the forest. The studies resulting from these searches were supplemented with other known works that were not indexed in the databases. This procedure yielded a total of 43 studies. The studies were grouped into four types of forest dynamics according to the information presented on the characteristics of the native disturbance-succession cycle: 1) even-aged stand dynamics driven by stand-replacing disturbances, 2) cohort dynamics driven by partial disturbances, 3) patch dynamics driven by tree mortality at intermediate scales (> 200 m2) and 4) gap dynamics driven by tree mortality at fine scales (< 200 m2). All four dynamic types were reported from both spruce and pine dominated forests, but their commonness differed. Gap dynamics was most commonly reported in spruce forests, and cohort dynamics in pine forests. The studies reviewed provide the best obtainable overall picture of scientific findings concerning the characteristics and variability of the unmanaged boreal forest dynamics in Fennoscandia. The results demonstrate that the unmanaged Fennoscandian forests are characterized by more diverse and complex dynamics than has traditionally been acknowledged.
  • Kuuluvainen, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail: timo.kuuluvainen@helsinki.fi (email)
  • Aakala, University of Helsinki, Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland ORCID ID:E-mail:

Category: Research note

article id 1661, category Research note
Āris Jansons, Linda Robalte, Roberts Čakšs, Roberts Matisons. (2016). Long-term effect of whole tree biomass harvesting on ground cover vegetation in a dry Scots pine stand. Silva Fennica vol. 50 no. 5 article id 1661. https://doi.org/10.14214/sf.1661
Highlights: After 47 years, whole tree harvesting (WTH) increased richness of ground cover species compared to conventionally managed stands; Higher occurrence of the oligotrophic species after WTH suggested reduction of soil nutrient content, hence formation of different plant community; WTH, apparently, facilitated recovery of species typical for later successional stages.

Long-term (47 years) effect of experimental whole tree harvesting (WTH) with a heavy soil scarification on ground cover vegetation was assessed in a dry nutrient-poor Scots pine (Pinus sylvestris L.) stand in Latvia. Neighbouring conventionally managed young (10 years) and mature (119 years) stands of the same type were used for comparison. Higher species richness was observed in the WTH stand compared to conventionally managed young and mature stands (24, 18 and 16 species, respectively), likely due to the profound disturbance. The Shannon diversity index was higher in the young than in the WTH and mature stands (2.36, 1.77 and 1.63, respectively); still, the composition and structure of ground cover vegetation in WTH was more similar to the mature stand. Nevertheless, the occurrence of oligotrophic species in the WTH stand suggested decreased soil nutrient content and potential development of different plant community. Hence, such method might be considered for restoration of oligotrophic stands. Nevertheless, the period of 47 years appeared sufficient for the ground cover vegetation to recover after the WTH.

  • Jansons, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia ORCID ID:E-mail: aris.jansons@silava.lv
  • Robalte, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia ORCID ID:E-mail: robalte.l@gmail.com (email)
  • Čakšs, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia ORCID ID:E-mail: chakijs95@gmail.com
  • Matisons, Latvian State Forest Research Institute “Silava”, 111 Rigas Str., LV 2169, Salaspils, Latvia ORCID ID:E-mail: roberts.matisons@silava.lv

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive