Current issue: 53(3)

Under compilation: 53(4)

Impact factor 1.683
5-year impact factor 1.950
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Articles containing the keyword 'stomatal conductance'.

Category: Research article

article id 328, category Research article
Pedro J. Aphalo, Markku Lahti, Tarja Lehto, Tapani Repo, Aino Rummukainen, Hannu Mannerkoski, Leena Finér. (2006). Responses of silver birch saplings to low soil temperature. Silva Fennica vol. 40 no. 3 article id 328. https://doi.org/10.14214/sf.328
Two-year-old silver birch (Betula pendula) saplings were grown for a third growing season in controlled-environment rooms (dasotrons) at three soil temperatures (5, 10, and 20 °C). All trees grew the first flush of leaves, but the growth of the second flush was almost completely inhibited at the two lower temperatures. The dry weight of the second-flush leaves was 50 times larger at 20 °C than at 5 and 10 °C, with about 100 times more nitrogen. Root growth was less affected than shoot growth. Chlorophyll content, net assimilation rate and stomatal conductance were lower at low soil temperatures. The value of the cytoplasm resistance estimated from the electric impedance spectra was lower at 5 °C than at 10 or 20 °C. Leaf water potential was highest at the lowest soil temperature, and intercellular carbon dioxide concentration was only slightly lower in saplings growing in cooler soil. We conclude that the effect of long-term exposure to cold soil on net assimilation and growth was not caused by stomatal closure alone. It is likely to be additionally mediated by the limited nitrogen acquisition at the low soil temperatures, and perhaps additionally by some other factor. As the growth depression of aboveground parts in response to low soil temperature was more significant in silver birch than what has earlier been found in conifers, the relative changes in air and soil temperature may eventually determine whether birch will become more dominant in boreal forests with climate change.
  • Aphalo, University of Helsinki, Department of Biological and Environmental Sciences ORCID ID:E-mail:
  • Lahti, The Finnish Forest Research Institute ORCID ID:E-mail:
  • Lehto, University of Joensuu, Faculty of Forestry, Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail: tarja.lehto@joensuu.fi (email)
  • Repo, The Finnish Forest Research Institute ORCID ID:E-mail:
  • Rummukainen, University of Joensuu, Faculty of Forestry, Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail:
  • Mannerkoski, University of Joensuu, Faculty of Forestry, Box 111, FI-80101 Joensuu, Finland ORCID ID:E-mail:
  • Finér, The Finnish Forest Research Institute ORCID ID:E-mail:
article id 531, category Research article
Thomas N. Buckley, Jeffrey M. Miller, Graham D. Farquhar. (2002). The mathematics of linked optimisation for water and nitrogen use in a canopy. Silva Fennica vol. 36 no. 3 article id 531. https://doi.org/10.14214/sf.531
We develop, and discuss the implementation of, a mathematical framework for inferring optimal patterns of water and nitrogen use. Our analysis is limited to a time scale of one day and a spatial scale consisting of the green canopy of one plant, and we assume that this canopy has fixed quantities of nitrogen and water available for use in photosynthesis. The efficiencies of water and nitrogen use, and the interactions between the two, are strongly affected by physiological and physical properties that can be modeled in different ways. The thrust of this study is therefore to discuss these properties and how they affect the efficiencies of nitrogen and water use, and to demonstrate, qualitatively, the effects of different model assumptions on inferred optimal strategies. Preliminary simulations suggest that the linked optimisation of nitrogen and water use is particularly sensitive to the level of detail in canopy light penetration models (e.g., whether sunlit and shaded fractions are pooled or considered independently), and to assumptions regarding nitrogen and irradiance gradients within leaves (which determine how whole-leaf potential electron transport rate is calculated from leaf nitrogen content and incident irradiance).
  • Buckley, Environmental Biology Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra City, ACT 2601, Australia and Cooperative Research Centre for Greenhouse Accounting, RSBS, ANU ORCID ID:E-mail: tom_buckley@alumni.jmu.edu (email)
  • Miller, Environmental Biology Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra City, ACT 2601, Australia ORCID ID:E-mail:
  • Farquhar, Environmental Biology Group, Research School of Biological Sciences, The Australian National University, GPO Box 475, Canberra City, ACT 2601, Australia and Cooperative Research Centre for Greenhouse Accounting, RSBS, ANU ORCID ID:E-mail:
article id 530, category Research article
Graham D. Farquhar, Thomas N. Buckley, Jeffrey M. Miller. (2002). Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica vol. 36 no. 3 article id 530. https://doi.org/10.14214/sf.530
We introduce the simultaneous optimisation of water-use efficiency and nitrogen-use efficiency of canopy photosynthesis. As a vehicle for this idea we consider the optimal leaf area for a plant in which there is no self-shading among leaves. An emergent result is that canopy assimilation over a day is a scaled sum of daily water use and of photosynthetic nitrogen display. The respective scaling factors are the marginal carbon benefits of extra transpiration and extra such nitrogen, respectively. The simple approach successfully predicts that as available water increases, or evaporative demand decreases, the leaf area should increase, with a concomitant reduction in nitrogen per unit leaf area. The changes in stomatal conductance are therefore less than would occur if leaf area were not to change. As irradiance increases, the modelled leaf area decreases, and nitrogen/leaf area increases. As total available nitrogen increases, leaf area also increases. In all the examples examined, the sharing by leaf area and properties per unit leaf area means that predicted changes in either are less than if predicted in isolation. We suggest that were plant density to be included, it too would further share the response, further diminishing the changes required per unit leaf area.
  • Farquhar, Cooperative Research Centre for Greenhouse Accounting and Environmental Biology Group, Research School of Biological Sciences, Australian National University, ACT 2601, Australia ORCID ID:E-mail: farquhar@rsbs.anu.edu.au (email)
  • Buckley, Cooperative Research Centre for Greenhouse Accounting and Environmental Biology Group, Research School of Biological Sciences, Australian National University, ACT 2601, Australia ORCID ID:E-mail:
  • Miller, Research School of Biological Sciences, Australian National University, ACT 2601, Australia ORCID ID:E-mail:

Register
Click this link to register for Silva Fennica submission and tracking system.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles

Committee on Publication Ethics A Trusted Community-Governed Archive