Current issue: 56(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Most viewed articles for the last 60 days

Category: Review article

article id 1673, category Review article, 5680 views
Eshetu Yirdaw, Mulualem Tigabu, Adrian Monge. (2017). Rehabilitation of degraded dryland ecosystems – review. Silva Fennica vol. 51 no. 1B article id 1673. https://doi.org/10.14214/sf.1673
Keywords: restoration; desertification; land degradation; rangelands; croplands; dry forests; landscapes
Highlights: The prospect of restoring degraded drylands is technically promising; The forest landscape restoration concept can be used as the overarching rehabilitation framework; Development of process-based models that forecast rehabilitation outcomes is needed; Rehabilitation methodologies developed for moist areas are not necessarily suitable for drylands; More data is needed on cost-benefit analysis of rehabilitation interventions.
Abstract | Full text in HTML | Full text in PDF | Author Info

Land degradation is widespread and a serious threat affecting the livelihoods of 1.5 billion people worldwide of which one sixth or 250 million people reside in drylands. Globally, it is estimated that 10–20% of drylands are already degraded and about 12 million ha are degraded each year. Driven by unsustainable land use practices, adverse climatic conditions and population increase, land degradation has led to decline in provision of ecosystem services, food insecurity, social and political instability and reduction in the ecosystem’s resilience to natural climate variability. Several global initiatives have been launched to combat land degradation, including rehabilitation of degraded drylands. This review aimed at collating the current state-of-knowledge about rehabilitation of degraded drylands. It was found that the prospect of restoring degraded drylands is technically promising using a suite of passive (e.g. area exclosure, assisted natural regeneration, rotational grazing) and active (e.g. mixed-species planting, framework species, maximum diversity, and use of nurse tree) rehabilitation measures. Advances in soil reclamation using biological, chemical and physical measures have been made. Despite technical advances, the scale of rehabilitation intervention is small and lacks holistic approach. Development of process-based models that forecast outcomes of the various rehabilitation activities will be useful tools for researchers and practitioners. The concept of forest landscape restoration approach, which operates at landscape-level, could also be adopted as the overarching framework for rehabilitation of degraded dryland ecosystems. The review identified a data gap in cost-benefit analysis of rehabilitation interventions. However, the cost of rehabilitation and sustainable management of drylands is opined to be lower than the losses that accrue from inaction, depending on the degree of degradation. Thus, local communities’ participation, incorporation of traditional ecological knowledge, clear division of tasks and benefits, strengthening local institutions are crucial not only for cost-sharing, but also for the long-term success of rehabilitation activities.

  • Yirdaw, Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: eshetu.yirdaw@helsinki.fi (email)
  • Tigabu, Sveriges Lantbruks Universitet (SLU), Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53, Alnarp, Sweden E-mail: Mulualem.Tigabu@slu.se
  • Monge, Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: adrian.mongemonge@helsinki.fi

Category: Research article

article id 10754, category Research article, 3586 views
Robert E. Tatina, Brice B. Hanberry. (2022). Historical forests of the Black Hills, South Dakota, USA, determined using General Land Office surveys. Silva Fennica vol. 56 no. 3 article id 10754. https://doi.org/10.14214/sf.10754
Keywords: fire; Ponderosa pine; settlement; ecological reference; Government Land Office; GLO; range of variation
Highlights: Based on the U.S. General Land Office survey, the historical (1878–1915) Black Hills landscape in southwestern South Dakota, USA, was relatively open; Historical survey points with trees had lesser tree densities than current forest plots; Ponderosa pine has become less dominant as fire-sensitive species have increased; This study provides another line of evidence of a changed forest structure.
Abstract | Full text in HTML | Full text in PDF | Author Info

Forests in the western United States generally have increased in tree density since Euro-American settlement, particularly through increases in fire-sensitive species, such as spruces, firs, and junipers. Like most areas, the Black Hills region in western South Dakota and eastern Wyoming was logged for forest products and underwent agricultural conversion before historical forests were documented. To supplement historical reconstructions and accounts, we compared tree composition and densities (diameters ≥12.7 cm at 1.37 m above ground height) from historical General Land Office (GLO) records (years 1878 to 1915) and current Forest Inventory and Analysis (FIA) tree surveys (years 2011 to 2016) in the Black Hills Highlands of South Dakota. For composition, ponderosa pine (Pinus ponderosa P. Lawson & C. Lawson) decreased from 95% to 86% of all trees, with a consequent increase specifically of white spruce (Picea glauca (Moench) Voss) from 1.5% to 6.7% of all trees. Ponderosa pine currently is smaller in mean diameter by 7.4 cm, while white spruce is larger in mean diameter by 2.4 cm than historically. When the 35% of historical survey points without recorded trees were excluded, historical tree densities indicated an overall forested structure of savannas and open woodlands with tree densities ranging from 66 trees ha–1 to 162 trees ha–1. However, historical forests of the Black Hills incorporated dense stands. Tree densities have increased two- to more than four-fold, to 311 trees ha–1 currently. These comparisons provide another source of information, paralleling changes documented in surface fire-dependent pine and oak forests throughout the United States, of transitions in forest composition and structure since Euro-American settlement.

  • Tatina, Department of Biological Sciences, Dakota Wesleyan University, Mitchell, SD 57301 USA E-mail: rotatina@dwu.edu (email)
  • Hanberry, USDA Forest Service, Rocky Mountain Research Station, Rapid City, SD 57702 USA E-mail: brice.hanberry@usda.gov
article id 10755, category Research article, 3507 views
Rikard Jonsson, Lotta Woxblom, Rolf Björheden, Eva-Maria Nordström, Bosko Blagojevic, Ola Lindroos. (2022). Analysis of decision-making processes for strategic technology investments in Swedish large-scale forestry. Silva Fennica vol. 56 no. 3 article id 10755. https://doi.org/10.14214/sf.10755
Keywords: information needs; qualitative analysis; harwarder; forest technology development; semi-structured interviews; unstructured decision processes
Highlights: When making development decisions, respondents representing six relatively large users of forest technology aimed to maximize economic criteria without falling below threshold values for criteria such as operator well-being, soil rutting, and wood value; Collaboration between users, manufacturers, and researchers was found to be important; Decision-making could be improved by using tools such as problem-structuring methods, simulations, and optimization.
Abstract | Full text in HTML | Full text in PDF | Author Info

Technological development gives forest companies opportunities to maintain competitiveness in the highly cost-sensitive market for forest products. However, no previous studies have examined the technological development decisions made by forest companies or the support tools used when making them. We therefore aimed to describe and analyze 1) the processes used when making such decisions, 2) the associated decision situations, and 3) the use of and need for decision support tools in these processes, with a harwarder concept as case. Semi-structured interviews were conducted with respondents from six forestry organizations. Two theoretical frameworks were used to analyze the interviews, one for unstructured decision processes and one for decision situations. The respondents’ descriptions of their decision processes were consistent with those observed in other industries, and it was shown that decision-making could potentially be improved by investing more resources into diagnosing the problem at hand. The main objective in decision-making was to maximize economic criteria while satisfying threshold requirements relating to criteria such as operator well-being, soil rutting, and wood value. When facing large uncertainties, interviewees preferred to gather data through operational trials and/or scientific studies. If confronted with large uncertainties that could not be reduced, they proceeded with development only if the potential gains exceeded the estimated uncertainties, and implemented innovations in a stepwise manner. These results indicate a need for greater use of existing decision-support tools such as problem-structuring methods to enable more precise diagnoses, simulations to better understand new innovations, and optimization to better evaluate their theoretical large-scale potential.

  • Jonsson, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: rikard.jonsson@skogforsk.se (email)
  • Woxblom, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: lotta.woxblom@skogforsk.se
  • Björheden, The Forestry Research Institute of Sweden (Skogforsk), Uppsala Science Park, SE-751 83 Uppsala, Sweden E-mail: rolf.bjorheden@skogforsk.se
  • Nordström, Swedish University of Agricultural Sciences, Department of Forest Resource Management, SE-901 83 Umeå, Sweden E-mail: eva-maria.nordstrom@slu.se
  • Blagojevic, University of Novi Sad, Department of Water Management, Trg D. Obradovica 8, 21000 Novi Sad, Serbia E-mail: bosko.blagojevic@polj.edu.rs
  • Lindroos, Swedish University of Agricultural Sciences, Department of Forest Biomaterials and Technology, SE-901 83 Umeå, Sweden E-mail: ola.lindroos@slu.se

Category: Review article

article id 1660, category Review article, 3388 views
Lars Rytter, Morten Ingerslev, Antti Kilpeläinen, Piritta Torssonen, Dagnija Lazdina, Magnus Löf, Palle Madsen, Peeter Muiste, Lars-Göran Stener. (2016). Increased forest biomass production in the Nordic and Baltic countries – a review on current and future opportunities. Silva Fennica vol. 50 no. 5 article id 1660. https://doi.org/10.14214/sf.1660
Keywords: fertilization; tree breeding; tree species; coppice; cultivation areas; growth increment; nurse crops
Highlights: Annual growth is 287 million m3 in the forests of the Nordic and Baltic countries; Growth can be increased by new tree species, tree breeding, high-productive management systems, fertilization and afforestation of abandoned agricultural land; We predict a forest growth increment of 50–100% is possible at the stand scale; 65% of annual growth is harvested today.
Abstract | Full text in HTML | Full text in PDF | Author Info

The Nordic and Baltic countries are in the frontline of replacing fossil fuel with renewables. An important question is how forest management of the productive parts of this region can support a sustainable development of our societies in reaching low or carbon neutral conditions by 2050. This may involve a 70% increased consumption of biomass and waste to meet the goals. The present review concludes that a 50–100% increase of forest growth at the stand scale, relative to today’s common level of forest productivity, is a realistic estimate within a stand rotation (~70 years). Change of tree species, including the use of non-native species, tree breeding, introduction of high-productive systems with the opportunity to use nurse crops, fertilization and afforestation are powerful elements in an implementation and utilization of the potential. The productive forests of the Nordic and Baltic countries cover in total 63 million hectares, which corresponds to an average 51% land cover. The annual growth is 287 million m3 and the annual average harvest is 189 million m3 (65% of the growth). A short-term increase of wood-based bioenergy by utilizing more of the growth is estimated to be between 236 and 416 TWh depending on legislative and operational restrictions. Balanced priorities of forest functions and management aims such as nature conservation, biodiversity, recreation, game management, ground water protection etc. all need consideration. We believe that these aims may be combined at the landscape level in ways that do not conflict with the goals of reaching higher forest productivity and biomass production.

  • Rytter, The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-26890 Svalöv, Sweden E-mail: lars.rytter@skogforsk.se (email)
  • Ingerslev, Copenhagen University, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark E-mail: moi@ign.ku.dk
  • Kilpeläinen, Finnish Environment Institute, Joensuu Office, P.O. Box 111, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: antti.kilpelainen@ymparisto.fi
  • Torssonen, University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: Piritta.Torssonen@uef.fi
  • Lazdina, Latvian State Forest Research Institute “Silava”, 111 Riga str, Salaspils, LV 2169 Latvia E-mail: Dagnija.Lazdina@silava.lv
  • Löf, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Box 49 SE-230 53 Alnarp, Sweden E-mail: magnus.lof@slu.se
  • Madsen, Copenhagen University, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark E-mail: pam@ign.ku.dk
  • Muiste, Estonian University of Life Sciences, Institute of Forestry and Rural Engineering, Dept. Forest Industry, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: Peeter.Muiste@emu.ee
  • Stener, The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-26890 Svalöv, Sweden E-mail: Lars-Goran.Stener@skogforsk.se
article id 1008, category Review article, 3125 views
Janusz Szmyt. (2014). Spatial statistics in ecological analysis: from indices to functions. Silva Fennica vol. 48 no. 1 article id 1008. https://doi.org/10.14214/sf.1008
Keywords: spatial analyses; spatial indices; spatial functions; spatial ecology
Highlights: Spatial statistics provides a quantitative description of natural variables distributed in space and time; The objectives of spatial analysis are to detect spatial patterns and to confirm if a pattern found is significant; Spatially explicit indices and functions may be applied depending on the information collected from the field; Development of the specific software supports spatial analyses.
Abstract | Full text in HTML | Full text in PDF | Author Info
This paper presents a review of the most common methods in ecological studies aimed at spatial analysis of population structures (horizontal and vertical), based on point process statistics. Methods based on simple spatially explicit indices as well as more sophisticated methods relying on functions are described in a comprehensible manner. Simple indices revealing the information on spatial structure at the scale of the nearest neighbor can be easily implemented in practical forestry. On the other hand, spatial functions, based on much more detailed data, describe the spatial structure in terms of the spatial relationships between the natural processes and population structures and because of this complexity they are rarely used in forest practice. Including both methods in a single paper is also valuable from the potential reader’s point of view saving their time for searching and choosing the appropriate method to make their spatial analysis. This paper can also serve as an initial guide for young researchers or those who are going to start their studies on spatial aspects of bio-systems. Avoiding the statistical and mathematical details makes this paper understandable for readers who are not statisticians or mathematicians. Readers will find many references related to each method described here, allowing them to find solutions to different problems observed in practice. This paper ends with a list of the most common specific software packages available to support spatial analysis.
  • Szmyt, Department of Silviculture, Faculty of Forestry, Poznań University of Life Sciences, ul. Wojska Polskiego 69, 60-625 Poznań, Poland E-mail: jszmyt@up.poznan.pl (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles