Current issue: 58(2)

Under compilation: 58(3)

Scopus CiteScore 2021: 2.8
Scopus ranking of open access forestry journals: 8th
PlanS compliant
Select issue
Silva Fennica 1926-1997
1990-1997
1980-1989
1970-1979
1960-1969
Acta Forestalia Fennica
1953-1968
1933-1952
1913-1932

Most viewed articles for the last 60 days

Category : Review article

article id 1673, category Review article, 8375 views
Eshetu Yirdaw, Mulualem Tigabu, Adrian Monge. (2017). Rehabilitation of degraded dryland ecosystems – review. Silva Fennica vol. 51 no. 1B article id 1673. https://doi.org/10.14214/sf.1673
Keywords: restoration; desertification; land degradation; rangelands; croplands; dry forests; landscapes
Highlights: The prospect of restoring degraded drylands is technically promising; The forest landscape restoration concept can be used as the overarching rehabilitation framework; Development of process-based models that forecast rehabilitation outcomes is needed; Rehabilitation methodologies developed for moist areas are not necessarily suitable for drylands; More data is needed on cost-benefit analysis of rehabilitation interventions.
Abstract | Full text in HTML | Full text in PDF | Author Info

Land degradation is widespread and a serious threat affecting the livelihoods of 1.5 billion people worldwide of which one sixth or 250 million people reside in drylands. Globally, it is estimated that 10–20% of drylands are already degraded and about 12 million ha are degraded each year. Driven by unsustainable land use practices, adverse climatic conditions and population increase, land degradation has led to decline in provision of ecosystem services, food insecurity, social and political instability and reduction in the ecosystem’s resilience to natural climate variability. Several global initiatives have been launched to combat land degradation, including rehabilitation of degraded drylands. This review aimed at collating the current state-of-knowledge about rehabilitation of degraded drylands. It was found that the prospect of restoring degraded drylands is technically promising using a suite of passive (e.g. area exclosure, assisted natural regeneration, rotational grazing) and active (e.g. mixed-species planting, framework species, maximum diversity, and use of nurse tree) rehabilitation measures. Advances in soil reclamation using biological, chemical and physical measures have been made. Despite technical advances, the scale of rehabilitation intervention is small and lacks holistic approach. Development of process-based models that forecast outcomes of the various rehabilitation activities will be useful tools for researchers and practitioners. The concept of forest landscape restoration approach, which operates at landscape-level, could also be adopted as the overarching framework for rehabilitation of degraded dryland ecosystems. The review identified a data gap in cost-benefit analysis of rehabilitation interventions. However, the cost of rehabilitation and sustainable management of drylands is opined to be lower than the losses that accrue from inaction, depending on the degree of degradation. Thus, local communities’ participation, incorporation of traditional ecological knowledge, clear division of tasks and benefits, strengthening local institutions are crucial not only for cost-sharing, but also for the long-term success of rehabilitation activities.

  • Yirdaw, Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: eshetu.yirdaw@helsinki.fi (email)
  • Tigabu, Sveriges Lantbruks Universitet (SLU), Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, P.O. Box 49, SE-230 53, Alnarp, Sweden E-mail: Mulualem.Tigabu@slu.se
  • Monge, Viikki Tropical Resources Institute (VITRI), Department of Forest Sciences, P.O. Box 27, FI-00014 University of Helsinki, Finland E-mail: adrian.mongemonge@helsinki.fi

Category : Climate resilient and sustainable forest management – Review article

article id 23057, category Climate resilient and sustainable forest management – Review article, 7168 views
Ane Christensen Tange, Hanne K. Sjølie, Gunnar Austrheim. (2024). Effectiveness of conservation measures to support biodiversity in boreal timber-production forests. Silva Fennica vol. 58 no. 2 article id 23057. https://doi.org/10.14214/sf.23057
Keywords: forestry; sustainable forest management; dead wood enhancement; forest certification; green tree retention; riparian buffer zone
Highlights: A systematic review of in-situ conservation measures displays that forest biodiversity levels are largely maintained upon harvest with conservation measures compared to unlogged forest; The type of control impacts the frequency of positive, not significant and negative observations; The relatively few significant results restrain distinct conclusions on the effectiveness of the assessed conservation measures to support biodiversity.
Abstract | Full text in HTML | Full text in PDF | Author Info

Large parts of the boreal forest ecosystems have been greatly affected by human use, and the current timber-oriented forest management practice that dominates boreal forests is proven to cause biodiversity and ecosystem services declines. These negative effects are mitigated in various ways, including in-situ measures implemented upon harvest. The measures comprise trade-offs between economic and ecological aims; thus, requiring solid knowledge of their effectiveness. However, comprehensive literature review of the effectiveness of such measures is scarce. We aim to fill part of this void by reviewing the scientific literature that have gauged effects of four in-situ conservation measures: green tree retention (GTR), patch retention (PR), dead wood retention (DW) and riparian buffer zones (RB). Two outcomes were considered, species richness and species abundance across taxa.

From a total of 3012 initial papers, 48 met our inclusion criteria that generated 238 unique results. Results were grouped according to control. 178 studies used mature, unlogged forest as control. Out of those, 68% of the findings were not significant, i.e., suggesting no significant impact of harvest with biodiversity measures on species richness and species abundance compared to no harvest. Eighteen percent of the observations showed negative effects and 14% of the observations showed positive effects compared to no harvest. Sixty studies used harvest with no measures as control, of which 45% showed significant positive effects, meaning that compared to harvest with no measures, harvest with conservation measures has positively effects on species richness and abundance. However, 43% of the studies found no significant effect of the implemented conservation measures compared to harvest with no measures taken.

The relatively few significant results reported restrain distinct conclusions on the effectiveness of the assessed conservation measures, but some degree of conservation measure is likely to have positive effects on biodiversity in timber-production forest. However, the scientific basis does not allow for pointing to threshold levels. Higher transparency of study design and statistical results would allow us to include more studies. There is a clear need for more research of effectiveness of common conservation measures in timber-production forests in order to strengthen the knowledge basis. In particular, there are few studies that employ harvest without any conservation measure as control. This is pivotal knowledge for forest managers as well as for policymakers for preserving biodiversity and the ecosystems in forest.

  • Tange, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Department of Forestry and Wildlife Management, Evenstad, Norway; Glommen Mjøsen Skog SA, Elverum, Norway ORCID https://orcid.org/0009-0001-3145-8159 E-mail: ane.tange@inn.no (email)
  • Sjølie, Inland Norway University of Applied Sciences, Faculty of Applied Ecology, Agricultural Sciences and Biotechnology, Department of Forestry and Wildlife Management, Evenstad, Norway ORCID https://orcid.org/0000-0001-8099-3521 E-mail: hanne.sjolie@inn.no
  • Austrheim, University Museum Norwegian University of Science and Technology, Department of Natural History, Trondheim, Norway ORCID https://orcid.org/0000-0002-3909-6666 E-mail: gunnar.austrheim@ntnu.no

Category : Research article

article id 23024, category Research article, 6574 views
Anu Laakkonen, Katri Rusanen, Teppo Hujala, Mika Gabrielsson, Jouni Pykäläinen. (2023). Implications of the sustainability transition on the industry value creation logic – case of Finnish pulp and paper industry. Silva Fennica vol. 57 no. 3 article id 23024. https://doi.org/10.14214/sf.23024
Keywords: forest industry; business transformation; circular bioeconomy; sustainable business
Highlights: Global change drivers are inducing a sustainability transition to a circular bioeconomy; Established industries need to reconfigure their value creation logic; A document analysis investigated pulp and paper industry’s communicated value creation logic; An interdisciplinary approach helps to understand a changing business environment; Recognition of a socio-economic-technological-environmental system is needed.
Abstract | Full text in HTML | Full text in PDF | Author Info
Global economic, social and environmental change drivers have tremendous effects on the dynamic and nested business environment calling for a sustainability transition to a circular bioeconomy. The transition will pressurise established industries to alter their value creation logic to consider sustainability holistically. The study follows a case study research strategy and investigates how an established Finnish pulp and paper industry reconfigures its communicated value creation logic. The findings of a qualitative document analysis suggest that the pulp and paper industry has started to explore new sustainable path-breaking innovations and create a common development agenda, which has resulted in incremental adaptations in the value creation logic. However, the industry’s narrative of already being sustainable has hampered the reconfiguration and stabilisation of the adapted value creation logic. From a theoretical perspective, adopting an interdisciplinary and systemic perspective is necessary to understand the changing business environment. From a managerial perspective, cross-sectoral collaboration and including perspectives of different actors can help in creating a holistically sustainable value creation logic.
  • Laakkonen, School of Forest Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Department of Forest Sciences, Faculty of Agriculture and Forestry, University of Helsinki, P.O. Box 27, 00014 University of Helsinki, Finland ORCID https://orcid.org/0000-0002-6384-7773 E-mail: anu.laakkonen@uef.fi (email)
  • Rusanen, School of Forest Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0003-1705-5561 E-mail: katri.rusanen@uef.fi
  • Hujala, School of Forest Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland ORCID https://orcid.org/0000-0002-7905-7602 E-mail: teppo.hujala@uef.fi
  • Gabrielsson, Department of Marketing, Hanken School of Economics, P.O. Box 479, FI-00101, Helsinki, Finland; UEF Business School, Faculty of Social Sciences and Business Studies, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland ORCID https://orcid.org/0000-0002-0633-6918 E-mail: mika.gabrielsson@uef.fi
  • Pykäläinen, School of Forest Sciences, Faculty of Science, Forestry and Technology, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: jouni.pykalainen@uef.fi

Category : Review article

article id 1660, category Review article, 5474 views
Lars Rytter, Morten Ingerslev, Antti Kilpeläinen, Piritta Torssonen, Dagnija Lazdina, Magnus Löf, Palle Madsen, Peeter Muiste, Lars-Göran Stener. (2016). Increased forest biomass production in the Nordic and Baltic countries – a review on current and future opportunities. Silva Fennica vol. 50 no. 5 article id 1660. https://doi.org/10.14214/sf.1660
Keywords: fertilization; tree breeding; tree species; coppice; cultivation areas; growth increment; nurse crops
Highlights: Annual growth is 287 million m3 in the forests of the Nordic and Baltic countries; Growth can be increased by new tree species, tree breeding, high-productive management systems, fertilization and afforestation of abandoned agricultural land; We predict a forest growth increment of 50–100% is possible at the stand scale; 65% of annual growth is harvested today.
Abstract | Full text in HTML | Full text in PDF | Author Info

The Nordic and Baltic countries are in the frontline of replacing fossil fuel with renewables. An important question is how forest management of the productive parts of this region can support a sustainable development of our societies in reaching low or carbon neutral conditions by 2050. This may involve a 70% increased consumption of biomass and waste to meet the goals. The present review concludes that a 50–100% increase of forest growth at the stand scale, relative to today’s common level of forest productivity, is a realistic estimate within a stand rotation (~70 years). Change of tree species, including the use of non-native species, tree breeding, introduction of high-productive systems with the opportunity to use nurse crops, fertilization and afforestation are powerful elements in an implementation and utilization of the potential. The productive forests of the Nordic and Baltic countries cover in total 63 million hectares, which corresponds to an average 51% land cover. The annual growth is 287 million m3 and the annual average harvest is 189 million m3 (65% of the growth). A short-term increase of wood-based bioenergy by utilizing more of the growth is estimated to be between 236 and 416 TWh depending on legislative and operational restrictions. Balanced priorities of forest functions and management aims such as nature conservation, biodiversity, recreation, game management, ground water protection etc. all need consideration. We believe that these aims may be combined at the landscape level in ways that do not conflict with the goals of reaching higher forest productivity and biomass production.

  • Rytter, The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-26890 Svalöv, Sweden E-mail: lars.rytter@skogforsk.se (email)
  • Ingerslev, Copenhagen University, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark E-mail: moi@ign.ku.dk
  • Kilpeläinen, Finnish Environment Institute, Joensuu Office, P.O. Box 111, FI-80101 Joensuu, Finland; University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: antti.kilpelainen@ymparisto.fi
  • Torssonen, University of Eastern Finland, Faculty of Science and Forestry, School of Forest Sciences, P.O. Box 111, FI-80101 Joensuu, Finland E-mail: Piritta.Torssonen@uef.fi
  • Lazdina, Latvian State Forest Research Institute “Silava”, 111 Riga str, Salaspils, LV 2169 Latvia E-mail: Dagnija.Lazdina@silava.lv
  • Löf, Swedish University of Agricultural Sciences, Southern Swedish Forest Research Centre, Box 49 SE-230 53 Alnarp, Sweden E-mail: magnus.lof@slu.se
  • Madsen, Copenhagen University, Department of Geosciences and Natural Resource Management, Rolighedsvej 23, DK-1958, Frederiksberg C, Denmark E-mail: pam@ign.ku.dk
  • Muiste, Estonian University of Life Sciences, Institute of Forestry and Rural Engineering, Dept. Forest Industry, Kreutzwaldi 5, Tartu 51014, Estonia E-mail: Peeter.Muiste@emu.ee
  • Stener, The Forestry Research Institute of Sweden (Skogforsk), Ekebo 2250, SE-26890 Svalöv, Sweden E-mail: Lars-Goran.Stener@skogforsk.se

Category : Climate resilient and sustainable forest management – Review article

article id 23076, category Climate resilient and sustainable forest management – Review article, 5452 views
Joanne C. White. (2024). Characterizing forest recovery following stand-replacing disturbances in boreal forests: contributions of optical time series and airborne laser scanning data. Silva Fennica vol. 58 no. 2 article id 23076. https://doi.org/10.14214/sf.23076
Keywords: regeneration; fire; time series; Landsat; harvest; forest change
Highlights: Remote sensing contributions to monitoring of post-disturbance forest recovery in the boreal are synthesized; Definitions of forest recovery need to be clear and measurable and will vary by application; Landsat time series represent a significant innovation in recovery assessments, but the boreal biome is underrepresented in this research; Opportunities for future research directions and priorities are highlighted.
Abstract | Full text in HTML | Full text in PDF | Author Info
The success and rate of forest regeneration following disturbance has implications for sustainable forest management, climate change mitigation, and biodiversity, among others. Systematic monitoring of forest regeneration over large and often remote areas of the boreal forest is challenging. The use of remotely sensed data to characterize post-disturbance recovery in the boreal forest has been an active research topic for more than 30 years. Innovations in sensors, data policies, curated data archives, and increased computational power have enabled new insights into the characterization of post-disturbance forest recovery, particularly following stand-replacing disturbances. Landsat time series data have emerged as an important data source for post-disturbance forest recovery assessments, with Landsat’s 40-year archive of 30-m resolution data providing consistent observations on an annual time step and enabling retrospective capacity to establish spatially explicit recovery baselines. The application of remote sensing for monitoring post-disturbance forest recovery is a rapidly growing area of research globally; however, despite the large amount of disturbance and the disproportionate effects of climate change in the boreal, the boreal biome is relatively underrepresented in the remote sensing forest recovery literature. Herein, the past and present contributions of optical time series and airborne laser scanning data to the characterization of forest recovery in boreal forests are highlighted, and future research priorities are identified.
  • White, Canadian Forest Service, Pacific Forestry Centre, Natural Resources Canada, 506 West Burnside Road, Victoria, B.C., V8Z 1M5, Canada ORCID https://orcid.org/0000-0003-4674-0373 E-mail: joanne.white@nrcan-rncan.gc.ca (email)

Register
Click this link to register to Silva Fennica.
Log in
If you are a registered user, log in to save your selected articles for later access.
Contents alert
Sign up to receive alerts of new content
Your selected articles