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Highlights
•	 Spatial statistics provides a quantitative description of natural variables distributed in space 

and time.
•	 The	objectives	of	spatial	analysis	are	to	detect	spatial	patterns	and	to	confirm	if	a	pattern	

found	is	significant.
•	 Spatially explicit indices and functions may be applied depending on the information col-

lected	from	the	field.
•	 Development	of	the	specific	software	supports	spatial	analyses.

Abstract
This paper presents a review of the most common methods in ecological studies aimed at spa-
tial analysis of population structures (horizontal and vertical), based on point process statistics. 
Methods based on simple spatially explicit indices as well as more sophisticated methods relying 
on functions are described in a comprehensible manner. Simple indices revealing the information 
on spatial structure at the scale of the nearest neighbor can be easily implemented in practical 
forestry. On the other hand, spatial functions, based on much more detailed data, describe the 
spatial structure in terms of the spatial relationships between the natural processes and popula-
tion structures and because of this complexity they are rarely used in forest practice. Including 
both methods in a single paper is also valuable from the potential reader’s point of view saving 
their time for searching and choosing the appropriate method to make their spatial analysis. This 
paper can also serve as an initial guide for young researchers or those who are going to start their 
studies on spatial aspects of bio-systems. Avoiding the statistical and mathematical details makes 
this paper understandable for readers who are not statisticians or mathematicians. Readers will 
find	many	references	related	to	each	method	described	here,	allowing	them	to	find	solutions	to	
different	problems	observed	in	practice.	This	paper	ends	with	a	list	of	the	most	common	specific	
software packages available to support spatial analysis.
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1 Introduction

Spatial and temporal dimensions of ecological phenomena have been inherent in ecology for a 
long time. Most data collected in ecological studies contain both spatial and time aspects, but only 
recently they have been incorporated into ecological theories, sampling, experimental design and 
models. Many ecologists who want to embark on spatial analysis are not familiar with what is 
available and how the different methods should be used correctly. 

Spatial statistics provides the quantitative description of natural variables distributed in 
space	and	time	and	now	it	is	the	most	rapidly	growing	field	in	ecology	(Fortin	and	Dale	2005;	
Pommerening 2008). Spatial analyses are commonly used in many disciplines, such as plant and 
animal ecology, geography, archeology or mining engineering. It has also found applications in 
forestry and forest science. 

Increasing popularity of spatial analysis in ecology is related to three main factors: 1) 
needs to include spatial structure of bio-systems (e.g. forests) in ecological thinking; 2) alteration 
of landscapes at an increasing rate that requires evaluation of their spatial heterogeneity, and 3) 
availability	of	specific	spatial	statistics	software	packages	(Legendre	and	Fortin	1989;	Liebhold	
and Gurevitch 2002; Fortin and Dale 2005). 

Usually	the	objectives	of	spatial	analysis	are	to	detect	spatial	patterns	that	cannot	be	done	
by	visual	analysis	(the	so-called	exploratory	spatial	analysis)	and	to	confirm	(confirmatory	spatial	
analysis)	whether	a	spatial	pattern	found	is	significant.	In	other	words,	using	spatial	analysis	we	
would	like	to	find	out	if	an	observed	pattern	emerged	only	by	chance	or	whether	it	stems	from	
certain causes. Biological structures are repetitive patterns resulting from complex interactions 
of components creating them. Self-organization, structure relations and pattern recognition are 
important	concepts	in	biological	structures.	The	first	refers	to	irreversible	processes	creating	com-
plex structures as a result of mutual interactions of objects in a system. Structure relations depend 
on properties of the system’s components and structural information. The third concept – pattern 
recognition	–	plays	a	very	important	role	in	clarification	of	raw	data	in	useful	summaries	using	
numbers and functions. It also helps to identify and link spatial patterns of individuals with cor-
responding	properties	(Lepš	1990;	Kenkel	et	al. 1997; Wiegand et al. 2012).

In the past, a lack of spatial dependence in data sets collected by ecologists has been a 
problem obscuring the ability to understand the biology of organisms and dynamics of different 
ecosystems. The effect of space in ecological research was usually ignored or eliminated from 
the analysis as many methods have been devised to eliminate or avoid the spatial dependence of 
populations	(Legendre	and	Fortin	1989;	Liebhold	and	Gurevitch	2002;	Perry	et	al. 2002). 

Most systems in nature are, however, not spatially homogenous, but they exhibit a kind of 
spatial structure. Ecologists are aware that biological processes leave traces in the form of spatial 
patterns of individuals and determine ecosystem properties in general (Dale et al. 2002; Perry et 
al. 2002; McIntire and Fajardo 2009; Pukkala et al. 2012; Wiegand et al. 2012). It is also obvious 
that	different	ecological	processes	operate	at	different	spatial	scales	and	time,	resulting	in	specific	
dynamics of the system. Ecologists studying the spatial pattern of populations try to infer the 
existence of different processes and interactions between individuals (e.g. competition, coopera-
tion, reproduction or mortality) as well as interactions between individuals and the environment.

In	forests,	for	example,	existing	structures	enable	trees	to	influence	ecological	factors	such	
as light, air and soil temperature or precipitation beneath the canopy, modifying simultaneously 
the micro-climatic conditions. As a consequence, trees and the stand structure play an important 
role	in	determining	the	life	cycle	of	all	living	organisms	in	the	forest,	both	fauna	and	flora.	Differ-
ent spatial structures create suitable niches for birds, mammals, insects and others organisms and 
it is obviously known that the more complex structures, the greater biodiversity can be observed.
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The changing spatial structure of individuals, resulting from mortality and birth processes, 
affects growth, yields and dynamics of the population and determines its stability and integrity 
(Oliver	and	Larson	1996;	Wiegand	1998;	Motz	et	al.	2010;	Pretzsch	2010;	Ruprecht	2010;	Bagchi	
et	al.	2011;	Iszkuło	et	al.	2012).	

Because of the complexity of spatial patterning in natural systems the inference of casual 
processes from the pattern revealed by the population is not an easy task. The same spatial struc-
ture and pattern can be caused by different processes, but the same process does not necessarily 
create the same spatial pattern. On the other hand, a single process can create a precise pattern 
and a non-random process can produce a highly structured pattern (McIntire and Fajardo 2009). 
Moreover, the impact of a pattern on a process may not be visible at the same spatial scale. Thus, 
inference	on	the	causation	of	a	certain	spatial	structure	should	be	performed	with	great	care	(Lepš	
1990; Perry et al. 2002; Brown et al. 2011; Nanami et al. 2011; Pommerening et al. 2011). Three 
steps are proposed to link the pattern and natural processes in ecological studies: characterization 
of the spatial pattern, development of hypotheses about processes generating the observed pattern 
and the evaluation of hypotheses (Fortin and Dale 2005; McIntire and Fajardo 2009).

This paper aims to provide a coherent and comprehensible description of the most commonly 
used methods in analyses of the spatial structure in ecological studies, mainly in forest science. 
Hence, this paper does not provide many theoretical and mathematical derivations which are 
available	in	more	specialized	textbooks,	e.g.	Upton	and	Fingleton	(1985),	Cressie	(1993),	Bailey	
and	Gatrell	(1995),	Diggle	(2003),	or	Illian	et	al.	(2008),	but	it	provides	sufficient	information	to	
understand and apply them by researchers intending to start spatial analyses. References assigned 
to each method help the potential reader to check how different problems with practical application 
of	these	methods	can	be	identified	and	solved.	The	last	chapter	contains	a	list	of	available	spatial	
software packages that can support spatial analyses.

It	should	be	underlined	that	methods	from	the	field	of	geostatistics	are	not	included	in	this	
paper. They need to be described separately.

2 Spatial data types

Before the analysis can be performed, the researcher should make a choice concerning the study 
area. In many situations the point pattern of interest is larger than samples that may be used in 
analysis (e.g. forests). Then, the choice of the study area is usually related to the question asked 
(Perry et al. 2002; Illian et al. 2008). Studying the relationships between neighboring individuals 
the study area with the homogenous individual distribution may be suitable to avoid large-scale 
influences.	More	detailed	information	concerning	the	choice	of	the	size	of	the	study	area	can	be	
found in Illian et al. (2008). Besides the selection of the study area, the choice of the data collec-
tion methods has an impact on the selection of an appropriate method for further spatial analysis. 
One of the oldest techniques of data collecting is quadrat counting in subwidows (Ripley 1981; 
Krebs	1999;	Illian	et	al.	2008).	Other	field	methods	for	data	collection	are	distance	methods.	In	
this technique the distances from the test point (or tree) are measured and then analyzed. A special 
form of distance sampling comprises nearest neighbor distance methods (Staupedahl and Zucchini 
2006). Ripley (1981) treats both forms as synonymous. The idea of the distance methods has been 
used in forestry for a long time and its basis is that if the forest is dense the distances measured 
from the point (or tree) to its nearest tree will be small (Ripley 1981). The most informative type 
of data sets for point pattern analysis consist of exact coordinates of all objects (e.g. trees) present 
in the study area, in the textbooks usually referred to as mapped data sets (Ripley 1981; Fortin 
and Dale 2005; Illian et al. 2008; Pommerening 2008). Measuring point coordinates for a large 
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study area is very laborious and costly. They can be determined either for all individuals in the 
study	area	or	only	specific	sample	plots	with	centers	on	the	systematic	grid.	The	latter	case	is	very	
common in forestry (Illian et al. 2008). Perry et al. (2002) distinguished three prevalent spatial 
data types i.e. point-references data (with and without point attributes), area-referenced data 
and non-spatially referenced data. Besides the description of these types of data they indicated 
suitable	methods	for	their	analyses	based	on	specific	questions	asked	of	such	data.	For	example,	
questions asked of point-referenced data usually concern the spatial pattern of individuals in the 
population.	Suitable	methods	 for	such	data	 types	 include	Ripley’s	K-function,	pair	correlation	
function, etc. If additional information for each point from the spatial data set is available through 
its attribute(s), then also quadrat variance methods or mark correlation functions or geostatistics 
methods (not described in this paper) can be applied (Perry et al. 2002). These methods allow to 
determine whether values of point attribute are more or less similar than expected in relation to 
those nearby, or whether they occur randomly with respect to one another. The nearest neighbor 
methods,	e.g.	the	Clark-Evans	index,	can	be	used	to	analyze	the	distance	from	each	of	individuals	
in a set of point-referenced data to its n-th nearest neighbor. The set of distances is not spatially 
explicit, even if it is derived from point-referenced locations. Tests are then usually based on the 
expected distribution of distances from the random arrangement of points (Perry et al. 2002). They 
are	similar	to	such	methods	as	Ripley’s	K-function	or	pair	correlation	function,	but	they	differ	from	
them in that they use less spatial information and thus they cannot identify the pattern at multiple 
spatial scales. Although most forestry data are derived from ground sampling, more sophisticated 
methods of data collection can be applied, e.g. through remote sensing or satellite imagery. A new 
technology	of	data	collecting	provides	the	so-called	big	data,	which	require	specific	software	(e.g.	
GIS software) to analyze them. This term refers to massive volumes of data which are hard to 
handle by usual data tools and practices (Hampton et al. 2013). Despite the fact that such data sets 
usually concern very large areas, selected methods described in the presented paper might be suc-
cessfully applied. However, in such cases geostatistical methods (e.g. variograms, correlograms, 
spatial autoregression models, spatial prediction methods, etc.) seem to be especially relevant. 
Additionally, working with big data sets ecologists should be ready to work collectively in order 
to collect, preserve and share the data across projects and research groups (Hampton et al. 2013). 
Good examples for such data can be found in Perry et al. (2002), Watt et al. (2009), Reich et al. 
(2010) and Pongpattananurak et al. (2012).

3 Spatially explicit indices in spatial structure description

For the reader’s convenience mathematical formulas of most indices described below are included 
in Table 1. 

Simple spatial explicit indices are usually assigned to three main groups of methods: quadrat 
counts, distance-based methods and indices based on angles between nearest neighbors. Advan-
tages of the use of these indices are related with the fact that the results are easy to calculate and 
interpret and easy to use in practice (e.g. by foresters). Most of them are based on data sets often 
easily	 collected	 in	 the	 field	 (counts	 of	 individuals,	measures	 of	 nearest-neighbor	 distances	 or	
angles). Their great disadvantage is connected with the loss of detailed information about spatial 
patterns at different spatial scales (Dale et al. 2002). They describe the spatial structure only at the 
fine	scale	of	nearest	neighbors.
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Table 1. Formulas for spatial explicit indices.

Index Formulation Explanations
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3.1 Quadrat counts in spatial analysis

In quadrat counts the data for analysis come from small subareas (quadrats) located in a particular 
region of interest. This technique is the oldest and the simplest measure of spatial patterns. Here, 
the	exact	locations	of	individuals	are	not	recorded,	which	simplifies	data	collection	but	also	limits	
the	statistical	analysis	(Krebs	1999;	Illian	et	al.	2008).	The	basic	requirements	are	that	the	area	
counted	is	known	and	that	the	individuals	are	immobile	during	the	counting	period	(Krebs	1999).	
The disadvantage of quadrat count methods is that the perceived dispersion of the point pattern may 
depend	greatly	on	the	scale	of	study	and	the	size	of	the	sample	unit	(Krebs	1999;	Perry	et	al.	2002).

Variance-mean ratio (Ic) is one of the oldest and the simplest indices to calculate and this 
concept is based on the Poisson distribution. The computed variance in the number of individu-
als per square is related to their mean occupancy. It provides an answer to the question whether 
individuals in the region being analyzed are distributed randomly, regularly or in clumps. One of 
the properties of the Poisson distribution is that the mean and variance are equal to intensity of the 
point pattern (Reich and Davis 2008). Thus, for a given set of quadrat counts, if the ratio of the 
sample variance to the sample mean is 1, this would indicate that the counts come from a Poisson 
distribution. If the index Ic > 1 (the variance is greater than the mean) one can state clumping, while 
Ic < 1 (the variance is smaller than the mean) points out a regular distribution of individuals in the 
population	(Krebs	1999;	Fortin	and	Dale	2005;	Reich	and	Davis	2008;	Pretzsch	2010).	To	test	
the	statistical	significance	of	departures	from	the	random	expectation	confidence	envelopes	using	
the	χ2 test for n–1 degrees of freedom are calculated (Dale et al. 2002; Reich and Davis 2008). If 
the value of Ic is outside the critical region, the hypothesis of a random distribution of individu-
als should be rejected. Results of this test depend on the number of quadrats taken into analysis 
(Illian	et	al.	2008).	Using	this	index	it	is	not	possible	to	make	any	statements	about	how	objects	
are distributed in the primary units (quadrats) or what is the average spacing between the points (in 
case of regular pattern) or what is the average size of patch and gap (in case of clumped distribu-
tion). This index was used e.g. by Pielou (1959), Hanewinkel (2004), Paluch (2007), Szewczyk 
and Szwagrzyk (2010), Rosenberg and Anderson (2011).

Quadrat variance methods stem from the application of hierarchical analysis of variance 
to the data from grids or strips of continuous quadrats, which are blocked in a successive power 
of two, thus, the number of quadrats used is restricted (Greig-Smith 1952). This blocked quadrat 
method	(later	referred	to	as	BQV)	proposed	by	Greig-Smith	(1952)	and	Kershaw	(1977),	calculates	
the variance of non-overlapping blocks of different sizes. To remove limitations of BQV such as 
limitation of block size to powers of two, dependence of results on the starting point and the lack 
of independence of different variance estimates, Hill (1973) developed the so-called two-term local 
variance	methods	(referred	to	as	TTLQV).	In	these	methods	quadrats	are	combined	in	blocks	of	
a range of sizes no longer limited to powers of two to detect the scale of patterns in a population 
(Ludwig	and	Goodall	1978).	TTLQV	differs	from	BQV	in	that	its	variance	is	based	on	overlap-
ping blocks. Two-term local quadrat variance can be applied to data sets collected from a series of 
contiguous	quadrats	(Krebs	1999).	It	calculates	the	average	of	the	square	of	the	difference	between	
block totals of adjacent pairs of block size b (Hanewinkel 2004; Fortin and Dale 2005). The vari-
ance	in	TTLQV	is	calculated	as:

V b x x b n b( ) / 2 ( 1 2 ) (1)j j
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where x1...xn are counts of points, n is the number of quadrats, j is the number of blocks and b 
is	block	size.	Krebs	(1999)	stated	that	the	upper	limit	of	block	size	should	be	n/2; however, the 
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recommendation is n/10. Plotting variances against block size can be used to determine the spatial 
pattern. If individuals are distributed randomly over the population, the plot of variance against 
block	size	will	fluctuate	irregularly.	Regularity	can	be	stated	if	the	variances	are	low	and	will	not	
fluctuate	with	block	size,	while	in	case	of	the	clumping	pattern	variances	will	tend	to	peak	at	the	
block	size	equal	to	the	radius	of	clump	size	(Krebs	1999).	Campbell	et	al. (1998) in their discus-
sion on the interpretation of peaks in two-term form pointed out that peaks found at block sizes 1, 
2 and 3 occur frequently by chance and do not indicate a pattern. Fig. 1 illustrates types of spatial 
patterns	distinguished	by	TTLQV.

Another method based on quadrat variance is three-term local quadrat variance (referred to 
as	3TLQV),	being	the	extension	of	TTLQV	method.	It	examines	the	average	of	squared	differences	
among trios of adjacent blocks of size b and it looks at the squared differences between the sum 
of	the	first	and	the	third	block	and	twice	the	second	block.	Its	variance	is	denoted	by	(Dale	et	al.	
2002; Fortin and Dale 2005):

∑∑∑∑= − +












+ −
= +

+ −

= +

+ −

=

+ −

=

+ −

V b x x x b n b( ) 2 / 8 ( 1 3 ) (2)j j j
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This three-term local quadrat variance form is assumed to be less sensitive to trends in the data 
sets	(Hanewinkel	2004).	Examples	of	the	use	of	TTLQV	and	3TLQV	can	be	found	in	Ludwig	and	
Goodall (1978), Dale and MacIsaack (1989), Dale and Blundon (1990), Wheeler et al. (1994), 
Perry et al. (2002) and Hanewinkel (2004). 

Morisita’s dispersion index (Iσ) is also based on counts of individuals on sample squares and 
it is calculated from the number of objects on the squares, number of squares and total numbers of 
individuals	(Krebs	1999).	The	index	is	a	quotient	of	observed	probability	σ	for	a	given	distribution	
and	the	expected	probability	E(σ)	=	1/q when the distribution is random (q – number of squares). 
The index can take values from 0 to n. If Iσ = 1 (both probabilities are equal) the population is said 
to be randomly dispersed; if Iσ > 1 the population shows clumping distribution and Iσ < 1 indicates 
regularity	(Pretzsch	2010).	Statistical	significance	of	observed	deviations	from	expectations	(ran-
domness)	can	be	tested	using	critical	values	of	the	χ2 distribution with n–1 degrees of freedom 
(Krebs	1999).	Also	standardized	index	Iσ st can be used, being the scaled Morisita’s index Iσ and 
setting	up	[–0.5,	0.5]	values	as	95%	confidence	regions	around	random	distribution	with	the	value	0	
(Krebs	1999).	The	calculation	of	standardized	Iσ is more tedious. First, the standard Iσst index must 
be calculated and then one needs to calculate critical values for the index describing uniformity or 
clustering. After calculation of these critical values the standardized Iσst index has to be calculated 
using	four	different	formulas	(Krebs	1999).	This	modified	index	can	take	values	between	–1	and	
+1.	This	standardized	modification	is	assumed	to	be	a	very	good	measure	of	spatial	dispersion,	
because it is not affected by the population density and sample size; however, it is hard to state the 

Fig. 1. Schematic illustration of the spatial pattern types for TTLQV method for contiguous quadrats: (left) 
random, (middle) regular and (right) clumped (adapted from Krebs 1999).
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best	sample	size	to	provide	a	reliable	index	(Krebs	1999).	This	modified	index	was	applied	among	
others by Miyakodoro et al. (2003), Veech (2005); Taylor et al. (2006), Habashi et al. (2007), 
Sankey (2008) and Sapkota et al. (2009).

In literature other indices based on quadrat counts can be found, however, they are not so 
commonly	used	in	practice.	Hanewinkel	(2004)	listed	such	indices:	the	index	of	cluster	size	(ICS),	
index of cluster frequency, index of mean crowding, index of patchiness and Green’s index.

3.2 Nearest neighbor indices

Nearest neighbor statistics (NNS) requires information about relative tree positions in the popula-
tion	using	an	appropriate	sampling	method	(Kint	et	al.	2004).	Using	NNS	one	assumes	that	spatial	
structure	of	forests	is	determined	to	a	large	extent	by	nearest	neighbors	relations.	Using	indices	
belonging to this group of methods we can determine different aspects of spatial structure: tree 
distribution type, species mingling and spatial differentiation of tree sizes. They are very useful in 
comparisons, e.g. between different forest types, managed vs. natural forests, between different 
harvest events, etc. (Pukkala et al. 2012).

3.2.1 Distance-dependent indices

These methods are based on nearest-neighbor distances. The measurements are of two types: dis-
tances from the sample point to a tree or from a tree to a tree (Staupendahl and Zucchini 2006). 
These indices can be also applied for data sets with known tree positions.

The Clark-Evans index of clumping (CE) belongs to the methods based on distances between 
individuals	within	the	population.	It	was	introduced	by	Clark	and	Evans	(1954)	and	then	modi-
fied	by	Donnelly	(1978).	It	uses	distances	between	nearest	neighbours	and	it	is	measured	for	all	
individuals located on the plot. This index is a measure of the extent, to which the observed popu-
lation differs from the randomly distributed one. The maximum value of the index is reached for 
a strict hexagonal pattern and then CE	=	2.15	for	(Krebs	1999;	Neumann	and	Starlinger	2001).	Its	
interpretation is easy: a population distributed randomly shows CE = 1.0, while regularity can be 
assumed if CE > 1.0. Index CE < 1.0 indicates the clumped distribution of individuals. A simple 
test	of	significance	for	the	deviation	from	randomness	can	be	estimated	using	the	Z-test	(Clark	and	
Evans	1954;	Krebs	1999;	Pommerening	2002).	Donnelly	(1978)	modified	the	CE index in terms of 
the edge effect correction. This index can be used as a preliminary step of the analysis and provides 
information	about	the	point	pattern	in	a	fine	spatial	scale	(at	nearest	neighbour	distances).	As	it	
was	stated	by	Longuetaud	et	al.	(2008),	this	index	is	density-dependent	and	comparisons	between	
results	from	populations	of	varying	densities	are	rather	difficult.	Kint	et	al.	(2003)	pointed	out	that	
the CE index should not be applied in populations, for which clustered distribution can be assumed. 
In such cases other indices can be more suitable. This index is, however, quite frequently used in 
forestry	–	see	Pretzsch	(1997),	Pommerening	(2002),	Kint	et	al.	(2003),	Kint	et	al.	(2004),	Vorčák	
et	al.	(2006),	Szmyt	and	Ceitel	(2011)	and	Szmyt	(2012).

The Pielou index of nonrandomness (Si), alternatively to CE, uses the distance from random 
points selected in the area under investigation to their nearest neighbor. In case of random distribu-
tion, the distribution of random points is as random as trees are. The value of Si > 1 indicates clus-
tering, while Si < 1 points out regularity in spatial distribution. Randomly spaced individuals show 
values of Si	being	around	1	(Pielou	1959).	The	significance	of	any	deviations	from	the	expected	
value	for	the	Poisson	distribution	can	be	tested	using	χ2 distribution with 2n degrees of freedom 
(n – number of distance measurements). Payandeh (1974) gave an example of this index applied 
to	forests	located	in	Ontario,	Canada.
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3.2.2 Angle-based indices

The uniform angle index (Wi), also referred to as the contagion index, describes the degree of regu-
larity	in	spatial	distribution	of	individuals	(Gadow	and	Hui	2002).	Unlike	CE,	the	contagion	index	
is	based	on	the	classification	of	angles	between	nearest	neighbours	of	the	reference	point	(event)	
(Pommerening	2002;	Aguirre	et	al.	2003;	Corral-Rivas	et	al.	2010).	If	Wi = 0, then one can assume 
that objects close to the reference point (tree) are distributed in a regular manner and Wi = 1 indicates 
a clumped distribution. If the so-called structural group of 4 nearest neighbors (Fig. 2) are taken into 
account, Wi	can	take	five	values	(0;	0.25,	0.5;	0.75	and	1;	Fig.	3).	The	distribution	of	index	values	
provides a more detailed analysis of the observed population, not only in terms of a single mean 
parameter	(Pommerening	2002).	The	significance	of	deviations	from	CSR	can	be	estimated	by	a	
comparison of the index value with the critical values Wiα and Wi1-α	(α	–	the	level	of	significance).	
If empirical Wi is larger than Wiα,	the	CSR	hypothesis	is	rejected	in	favor	of	clustering	of	points.	If	
Wi is smaller than Wi1-α, then	points	are	distributed	regularly.	As	Corral-Rivas	et	al.	(2006)	stated	
the contagion index is a very rapid and cost-effective method to characterize the spatial structure 

Fig. 3. Calculation of uniform angle index Wi and possible values for structural 
group of 4 neighbors around the reference i-tree (Gadow and Hui 2002).

Fig. 2. An example of structural group of trees for calculation of uniform angle 
index (Wi), size differentiation index (T) and species mingling index (SM) 
(Pommerening 2002).
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of any population, because it requires neither the distance nor angle measurements (angles are 
classified,	not	measured	exactly).	The	authors	also	stated	that	this	index	is	a	powerful	tool	when	
100 objects (or more) are present on the plot. This index is also plot-shape independent. Examples 
of application of the contagion index can be found in Pommerening (2002), Aguirre et al. (2003); 
Montes	et	al.	(2004),	Corral-Rivas	et	al.	(2006),	Staupendahl	and	Zucchini	(2006),	Pommerening	
(2006), Pastorella and Paletto (2013). The critical values Wiα and Wi1-α determined by simulations 
depend	on	the	number	of	points	on	the	plot,	but	not	on	its	size	(Corral-Rivas	et	al.	2006).

The mean directional index (Ri) is similar to Gadow’s index and it does not require meas-
urements of tree-to-tree distances. It characterizes the neighbourhood of a reference point (e.g. 
tree)	by	the	directions,	under	which	the	nearest	neighbors	are	visible	(Corral-Rivas	et	al.	2006,	
Fig. 4). The behaviour of the index corresponds to Wi and if individuals are regularly spaced Ri = 0, 
whereas when they are distributed in clumps the index Ri tends to take larger values. The value 
for a random population is Ri = 1.779. It shall be deemed that this index is a powerful method in 
the recognition of random, regular or clumped distributions when the number of individuals in a 
population	exceeds	50.	Testing	for	CSR	is	similar	as	for	the	Wi index. Examples of the use of the 
Ri	index	can	be	found	in	Corral-Rivas	et	al.	(2006)	and	Illian	et	al.	(2008).

Themeanofangles(θ) presented by Assunção (1994) is another angle method to test the 
hypothesis of complete spatial randomness in point distribution. It considers individuals represented 
by points occurring in a planar region (study plot). A sample of n point locations is selected and 
two	nearest	points	(events)	to	each	of	the	sample	points	are	found.	The	test	for	CSR	is	based	on	
the angle between vectors connecting each sample point to its two neighbors. The index can take 
values	between	0	and	π	if	the	points	are	distributed	according	to	CSR	then	mean	θ = 90°. For a 
regular distribution θ > 90°, for a tendency towards clumping θ < 90°. Then, the power of the test 
is compared with the Hopkins and T2 test (Assunção 1994; Assunção and Reis 2000; Staupendahl 
and	Zucchini	2006;	Trifković	and	Yamamoto	2008).	The	authors	recommended	this	method	as	
especially	useful	 in	ecological	studies	 in	 regions	where	distance	measurements	are	difficult	 to	
conduct; however, it is not so commonly used as other indices described above.

3.2.3 Spatial indices for tree attributes

Simple spatially explicit indices can be also used to describe the distribution of individuals of differ-
ent types described by marks assigned to them. Such information reveals the impact of interactions 
(e.g. competition) between objects. Below several such indices are described.

Spatial differentiation of sizes (T) is often calculated for quantitative attributes of individuals 
(sizes,	e.g.	diameters,	heights,	crown	width)	and	it	reflects	size	differentiation	between	neighbor-
ing objects. Index values can vary between 0 (no differentiation) and 1 (complete differentiation) 
(Pommerening 2002). Again, a single value of the index provides information on the average dif-
ferentiation of individual sizes in a certain population. More informative is the distribution of the 

Fig. 4. Illustration of angle measurements for 
mean directional index Ri with structural 
group of 4 neighbors around the reference 
i-tree (Corral-Rivas et al. 2006).
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index in differentiation classes. For 4 nearest neighbors the following differentiation classes can 
be	applied	(Aguirre	et	al.	2003;	Kint	2004;	Vorčak	at	al.	2008):	0.00–0.20	–	very	small	differen-
tiation, 0.20–0.40 – small differentiation, 0.40–0.60 – obvious differentiation, 0.60–0.80 – large 
differentiation and 0.80–1.00 – very large differentiation. There is no theoretical test to investigate 
the	significance	of	differences	between	observed	differentiation	and	under	the	random	condition,	
however,	the	permutation	procedure	can	be	used	to	state	such	differences	(Kint	2003).	Examples	
for	the	application	of	size	differentiation	index	are	included	in	Kint	et	al.	(2003);	Vorčák	et	al.	
(2006);	Mason	et	al.	(2007);	Sterba	(2008);	Barbeito	et	al.	(2009),	Crecente-Compo	et	al.	(2009);	
Pommerening et al. (2011), Szmyt (2012) and Pastorella and Paletto (2013).

Size dominance indices (Ui) were proposed by Hui et al. (1998) to relate the relative domi-
nance	of	a	certain	individual	to	its	immediate	neighbors.	It	is	defined	as	the	proportion	of	the	n	
nearest neighbors of a given reference object which are smaller than the reference one. Similar to 
the differentiation index, the dominance index can take n + 1 values (n – the number of neighbors): 
0 (all neighbors are smaller than the reference tree), 0.25, 0.5, 0.75 and 1 (none of the neighbors are 
smaller than the reference tree). These classes correspond to social classes of tree position in the 
stand	developed	by	Kraft.	Examples	can	be	found	in	Aguirre	et	al.	(2003),	Pommerening	(2006)	
and Pommerening and Stoyan (2008).

There are also indices making it possible to describe the relative position of different quali-
tative marks of points (trees), e.g. tree species in mixed forests. Pielou’s index of segregation and 
the mingling index are the most commonly applied indices in such cases.

Pielou’s index of segregation (S), developed by Pielou (1961), describes the relative mixing of 
two species regardless of their spatial pattern. This method is based on the nearest neighbor distances 
and compares the observed number of mixed pairs with the one expected under random conditions 
(Kint	et	al.	2003,	Table	2).	Values	of	the	S index vary between –1 and 1. If 0 < S < 1 indicates that the 
nearest neighbors are always different species (spatial separation of species) and if –1 < S < 0, spatial 
association between two species is observed. If both species are randomly distributed, then S = 0. 
It is worth noting that the terms “separation” and “attraction” describe only the spatial patterns of 
both	species.	To	judge	whether	the	observed	mixture	departs	significantly	from	the	case	of	random	
conditions	the	χ2	test	may	be	used.	The	spatial	segregation	index	was	applied	by	Kint	et	al.	(2003),	
Kint	(2005),	Getzin	et	al.	(2006),	Bilek	et	al.	(2011),	Pastorella	and	Paletto	(2013).

Spatial mingling index (SM) differs from the S index in such a way that in this case multiple 
neighbors can be accounted for and the index is not limited to the mixture of only two species, 
but it can be estimated for all species together as well as for each species separately (Gadow and 
Hui 2002). The index gives the proportion of neighbors of the reference tree which are not the 
same	species.	Hence,	in	case	of	4	neighbors	the	index	can	take	five	values:	0,	0.25,	0.5,	0.75	and	
1, depending on the spatial pattern and relative frequency of the species. Strongly represented or 

Table 2. Contingency table summarizing the number of trees of 
both species (A and B) with the nearest neighbors of their own 
species (a and d) and of the other species, used for Pielou’s 
segregation index calculation (Pielou 1977).

Species of the nearest neighbor
A B Total

Reference species A a b m
B c d n

Total v w N

Explanation: m = a + b; n = c + d; v = a + c; w = b + d; N = m + n
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segregated species result in low SM values and less frequent or regularly spaced species have higher 
values of the SM	index	(Aguirre	et	al.	2003;	Kint	at	al.	2003).	Low	values	of	the	index	indicate	
homogenous groups of species and low mingling, while high values indicate complete mixture 
of	the	species.	To	find	out	if	the	observed	spatial	mingling	is	different	than	in	case	of	a	random	
situation	Kint	(2004)	suggested	the	application	of	the	permutation	procedure.	The	distribution	of	
the mingling index provides more detailed insight into the spatial composition of the forest. Pom-
merening (2002); Graz (2004); Bilek et al. (2011); Ruprech (2010), Pommerening et al. (2011) 
and Pastorella and Paletto (2013) applied this index in different forest studies.

4 Functional statistics in spatial analysis

The modern point process statistics uses functions instead of simple indices described above. These 
functions	depend	on	distances	between	all	individuals	in	the	population	(e.g.	K-function,	L-func-
tion, and pair correlation function) or nearest-neighbor distances (e.g. G-function, F-function and 
J-function). Thus they can be used to detect simultaneously different spatial scales of the observed 
pattern (Ripley 1981; Illian et al. 2008). This is a great advantage over the nearest neighbor indices. 
Their	disadvantage	is	that	they	usually	require	much	more	detailed	field	data	sets,	namely	maps	
of locations of individual specimens. On the one hand it makes the analysis more precise, but on 
the other hand, gathering data is much more costly and time consuming. Recorded results are then 
related	to	theoretical	(reference)	distributions	(null	models).	Usually	a	homogenous	Poisson	model	
(assuming	randomness	of	point	distribution)	is	such	reference	in	the	first	stage	of	each	analysis.	
Thanks to revealing the spatial pattern at different spatial scales simultaneously, it is possible to 
distinguish different processes responsible for creating a certain spatial structure of the population.

The nearest-neighbour distance distribution function (G-function) is based on distances 
from an event (e.g. tree) to its nearest neighbor and it measures the distribution of these distances. 
The function can be estimated as:



= ≤G r r s r
n

( ) #[ ( ) ] (3)imin

where the nominator is the number of points si with the nearest neighbor distance rmin ≤r and the 
denominator	is	the	number	of	points	in	the	study	area.	Under	the	CSR	the	G-function	is	(Mateu	et	
al.1998; Bivand et al. 2008; Illian et al. 2008):

λπ{ }= − −G r r( ) 1 exp (4)2

where λ is intensity (the mean number of events per unit area).
The empirical G-function is then plotted against the theoretical expectation. The shape of 

the function indicates how the events (trees) are spaced in a point pattern. If they are clustered, 
then the G-function increases rapidly at the short distances, while it increases slowly up to the 
distance	where	most	of	events	are	spaced	and	then	it	increases	rapidly	(regularity).	The	significance	
of	departures	from	the	CSR	hypothesis	can	be	evaluated	using	simulated	confidence	envelopes	
computed	by	a	repeated	simulation	of	the	CSR	point	process	with	the	same	intensity	λ from the 
study region and check if the empirical function is inside the envelopes (Dixon 2001; Bivand et 
al. 2008). The application of the G-function is not so common, but it may be seen in Mateu et al. 
(1998), Dixon (2001) and Wiegand et al. (2012). Fig. 5 presents an example of the G-function 
calculated for 43 year old pines regenerated by planting at a certain initial spacing. It indicates 
regularity	of	up	to	0.5	m	reflecting	the	initial	spacing	between	plants.
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The empty space function (F-function) (also called spherical contact distribution) is based 
on measures of distribution of all distances between arbitrary selected points (but not the location 
of trees) on the plane to their nearest neighbor and it is closely related to the G-function (Mateu 
et al. 1998; Dixon 2001; Bivand et al. 2008; Illian at al. 2008). The name “empty space function” 
results	from	the	fact	 that	 it	 is	a	measure	of	 the	average	space	between	points.	Under	 the	CSR	
assumption the function is:

λπ= − −F r r( ) 1 exp{ } (5)2

Then the empirical F-function is compared with a theoretical one by simulation of the envelopes 
(Monte	Carlo	procedure).	Points	are	clustered	if	F(r) rises slowly at a small distance and then rap-
idly at longer distances. Regularity is assumed when F	first	rises	rapidly	and	then	slowly	at	longer	
distances. So interpretation of the F-function is thus reverse to the G-function. For examples of 
applications of the empty space function see references to the G-function. Wiegand et al. (2012) 
stated that both functions can also quantify aspects of non-stationary patterns, when the pattern 
comprises areas with low and high densities of points. Fig. 6 presents the F-function calculated 
for yews (Taxus baccata	L.)	indicating	their	clumping	distribution.

Fig. 6. The F-function for naturally regen-
erated English yew (Taxus baccata L.) 
trees indicating clustering (dashed line 
– the F-function for CSR; solid line – 
empirical F-function).

Fig. 5. The G-function calculated for 43 
year old Scots pine semi-plantation 
indicating regularity (dashed line – the 
G-function for randomness (CSR); solid 
line – empirical G-function).
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Both functions, G and F, require the edge correction procedure. Different methods to solve 
this problem can be found in textbooks of Ripley (1981) and Illian et al. (2008).

The J-function is another distance-dependent function for analysis of the spatial point pat-
tern	(Van	Lieshout	and	Baddeley	2006).	The	idea	of	this	function	is	to	compare	distances	from	an	
arbitrary point to the nearest neighbor (empty space F-function) and distances from typical point 
of the pattern measured by the nearest-neighbor distance G-function. This can be written as:

( ) ( )= −
−

≥ ≠J r G r
F r

r F r1 ( )
1 ( )

for 0 and 1 (6)

where F(r) is the empty space function; G(r) is the nearest-neighbor distance function.
Then, if J(r)	≡	1	the	distance	distribution	follows	the	Poisson	process.	Deviation	J(r) > 1or J(r) < 1 

indicates	spatial	regularity	and	clustering,	respectively	(Van	Lieshout	and	Baddeley	1999;	Paolo	et	
al.	2002;	Fortin	and	Dale	2005;	Van	Lieshout	and	Baddeley	2006).	Because	practically	observation	
of points is restricted to some bounded area (measurement plot) the estimate of the J-function is 
hampered also by the edge effect. As a consequence, edge correction should be applied (Baddeley et 
al.	2000).	The	inference	about	the	significance	of	departures	from	1	can	be	done	by	the	Monte	Carlo	
procedure and the null hypothesis of spatial independence or random labeling can be tested. Fig. 
7 is an example of the J-function indicating regularity in distribution of 60 years old beech (Fagus 
sylvatica	L.)	trees	in	a	managed	beech	stand.	More	examples	of	the	J-function	application	may	be	
found	in	references	cited	above	and	also	in	Paolo	et	al.	(2002)	and	Wu	and	Li	(2009).	

The G, F and J functions can be extended to analyze multivariate spatial point patterns (Van 
Lieshout	and	Baddeley	1999;	Baddeley	and	Turner	2008;	Wu	and	Li	2009).	

The Ripley’s K function is a very common method used to examine spatial point patterns and 
it uses distances between all individuals in the population, not only between the nearest neighbors. 
It makes possible to examine and summarize a point pattern, test hypotheses on the models, estimate 
parameters	and	fit	models	(univariate	cases)	and	describe	relationships	between	two	or	more	types	
of	points	(bi-	or	multivariate	cases)	at	different	spatial	scales.	The	formula	for	the	K-function	is	
(Dixon 2001; Illian et al. 2008; Grey and He 2009):

Fig. 7. The J-function indicating regular point pattern for 60 years old man-
aged European beech stand indicating regularity (dashed line – the 
J-function for CSR; solid line – empirical J-function).
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λ [ ]= −K d E d( ) number of extra points within distance  of a randomly chosen point (7)1

and	the	unbiased	estimator	of	K-function	is:

∑∑= − −

≠

K r n A w I uˆ ( ) ( ) (8)ij r ij
i j

2 1

where n is the total number of objects (e.g. trees) in the plot area A, uij denotes the distance between 
the i-th tree and j-th tree. I(uij) is an indicator function equaling 1 if uij ≤d (or 0 otherwise) and wij 
is edge correction factor. This function determines the consistency of the observed distribution of 
distances among all objects located in the spatial window (sample plot) with the theoretical dis-
tribution	for	the	Poisson	model	(CSR)	as	a	benchmark.	Usually	measurements	are	taken	only	on	
the sample plot, therefore different methods of edge effect correction should be applied to get an 
unbiased estimator of the function (e.g. Szwagrzyk 1992; Haase 1995; Illian et al. 2008). Results are 
usually	presented	as	a	graph	of	the	K-function	plotted	against	different	distances	r (spatial scales) 
and the shape of the graph provides valuable information on the point distribution. Because of 
the	cumulative	character	of	the	K-function	it	usually	indicates	spurious	clustering,	resulting	from	
many	inter-point	distances	at	large	distances.	Interpretation	of	the	K-function	is	easier	if	one	uses	
its standardized L(r) version, which stabilizes its variance and it is approximately constant under 
CSR.	Its	formula	is	(Dixon	2001):

π
= −L r K r rˆ( )

ˆ ( ) (9)

In	random	populations,	in	literature	referred	to	as	CSR,	K(r)	=	πr2 (L(r) = 0). If objects within the 
spatial	window	are	clumped,	then	the	K-function	receives	higher	values	(K(r)	>	πr2 or L(r) > 0), 
and	if	they	are	regularly	(evenly)	spaced	–	the	K-function	shows	low	values	(K(r)	<	πr2 or L(r) < 0) 
(Illian	et	al.	2008;	LeMay	et	al.	2009).	In	the	first	case	the	typical	point	is	a	part	of	the	cluster	and	
has few nearest neighbors and the local density is larger than λ. In the second variant the point is 
isolated from the nearest neighbors and local density is smaller than λ	(Illian	et	al.	2008).	Cluster-
ing	in	yew	distribution	based	on	K-	and	L-function	is	presented	in	Fig.	8	and	Fig.	9.

Statistical	tests	to	verify	whether	deviations	from	CSR	are	significant	can	be	performed	using	
two	methods.	One	method	relies	on	the	constant	confidence	envelopes	around	CSR	(Szwagrzyk	
and	Ptak	1991;	Haase	1995)	and	the	second	is	based	on	the	Monte	Carlo	procedure	(Haase	1995;	
Wiegand and Moloney 2004; Illian et al. 2008). If the empirical function exceeds the upper (lower) 
simulated	envelopes,	the	objects	indicate	a	significant	clustered	(regular)	distribution	at	a	certain	
distance	r.	Usually,	the	rejection	of	the	null	hypothesis	about	CSR	is	enough	to	make	the	statements	
about the distribution of individuals in the population, but it can also lead to the application of other 
theoretical null models, such as the Neyman-Scott cluster model, the Strauss model, the double 
cluster model, etc. (Stoyan and Penttinen 2000; Wiegand and Moloney 2004; Wiegand et al. 2007). 

The pair correlation function – referred to as g(r) – is a more informative second-order 
summary	characteristic.	It	is	related	to	the	K-function,	but	it	is	non-cumulative	in	character.	The	
relation	to	the	K-function	is	(Stoyan	and	Stoyan	1996):

π
=g r

K r
r

( )
( )

2
(10)

d
dr

and the probability that each disc dx and dy contains an object of the process is:

λ=p r g r dxdy( ) ( ) (11)2
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For a random population g(r)≡1,	 the	 clustered	 population	 g(r) > 1 and the regularly spaced 
population g(r)	<	1.	The	pair	correlation	function	can	take	any	value	from	0	to	infinity.	For	large	
distances g(r)	trends	to	be	1.	This	function	identifies	the	distances,	at	which	(not	to	which,	as	in	
the	cumulative	K-function)	deviations	 from	CRS	occurs	 (Pretzsch	2010).	The	pair	 correlation	
function is a suitable tool to indicate a range of correlation, the distance up to which individuals 
interact with one another. In the cluster process the correlation range describes the size of clusters 
(cluster diameter). In case of a regular process (inhibition process) g(r) indicates the minimum 
distance (g(r) = 0) between objects (the so-called hard-core distance) (Illian et al. 2008). Similarly 
to	the	K-function,	envelope	tests	based	on	the	Monte	Carlo	procedure	can	be	used	to	detect	the	
significance	of	departures	from	1	(Stoyan	and	Stoyan	1996;	Illian	et	al.	2008;	Getzin	et	al.	2011).	
Fig. 10 presents the typical shapes of g(r) for different types of distribution.

Both functions can be extended to bi- or multivariate forms, facilitating interpretation of 
interactions between different types of individuals (e.g. tree species, different sizes, sexes, etc.). 
These forms are shortly described below.

Fig. 9. The L-function for English yews 
(males) indicating clustering (dashed 
line – the L-function for CSR; solid line 
– empirical L-function).

Fig. 8. Ripley’s K-function for English yew 
(males) trees indicating clumping disti-
bution (dashed line – K-function for CSR; 
solid line – empirical K-function).



17

Silva Fennica vol. 48 no. 1 article id 1008 · Szmyt · Spatial statistics in ecological analysis…

The bivariate K-function	is	defined	as	the	expected	number	(E)	of	n-type	points	within	the	
distance r of an arbitrary point of type m divided by the intensity of n-type points (Wiegand and 
Moloney 2004):

λ [ ]= −K r E r( ) number of points of 2 type within distance  from point of 1 type (12)12 2
1

where E is the expectation operator.
The	estimator	of	bivariate	K-function	is:

∑∑( )= − −

==

K r n n A w I u( ) ( ) (13)ij r
j

n

ij
i

n

12 1 2
1 1

11

21

It indicates attraction between two types of objects if more than the expected number of 2-type 
points occur close to 1-type points (K12(r)	>	πr2). If the reverse is true (K12(r) < r2), then repulsion 
between two different types of individuals can be stated. In case of K12(r)	=	πr2 both types of objects 
are	spatially	independent	(Wiegand	and	Moloney	2004;	Getzin	et	al.	2006;	LeMay	et	al.	2009).	
Again, interpretation is easier when the L12(r)	modification	is	used.	Then:

π
= −L r k r rˆ ( ) ( ) (14)12

12

values L12(r) > 0 points out the attraction between different types and L12(r) < 0 indicates repulsion 
(separation) between them. L12(r) = 0 states spatial independence between objects of different types 
(Wiegan and Moloney 2004).

The bivariate pair correlation function – gnm(r) – is an analogue of Ripley’s bivariate one 
(Wiegand and Moloney 2004):

π
=g

r2
(15)nm

dK r
dr

( )nm

A general interpretation of the bivariate pair correlation function is as follows: for gnm(r) = 1 spatial 
independence of two types of points is stated, if gnm(r) > 1 – attraction and gnm(r) < 1 – repulsion 
between	individuals	of	different	types	is	observed.	Significance	of	the	deviations	from	the	null	
model	is	estimated	by	the	Monte	Carlo	procedure.

Fig. 10. Shape of pair correlation g-function for different 
types of point patterns (dashed line – the g-function for 
CSR; dashed line – clustering; solid line – regularity) 
(Pommerening 2002).
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5 Testing complete spatial randomness – envelope or deviation tests?

Testing	the	hypothesis	of	CSR	is	 important	for	exploratory	analysis	 in	point	process	statistics.	
Acceptance	of	CSR	means	that	a	given	point	pattern	has	two	main	features:	there	is	no	need	to	use	
models	more	complicated	than	the	Poisson	one,	and	it	is	not	possible	to	find	causes	of	an	interac-
tion between points based on geometry of the observed pattern alone (Illian et al. 2008, p. 83). It is 
known	that	in	natural	populations	a	true	Poisson	pattern	is	seldom	observed,	so	the	CSR	hypothesis	
means	that	the	analyzed	pattern	is	only	close	to	the	Poisson	process	model.	If	the	CSR	is	rejected,	
then other models have to be searched for.

Tests	are	based	on	the	differences	between	values	of	the	test	function	obtained	from	the	field	
data and theoretical values. A problem occurs when one wants to handle these differences for dif-
ferent distances. In point process statistics simulation envelope test and deviation test can be used 
in	testing	the	null	hypotheses	and	both	of	them	are	Monte	Carlo	significance	tests	(Grabarnik	et	al.	
2011; Myllymäki et al. 2013a). Avoiding statistical details these tests are shortly described below.

The	envelope	test	is	based	on	some	functional	summary	characteristics,	e.g.	the	K-function	or	
L-function.	The	idea	of	this	test	is	to	compare	observed	summary	characteristic	obtained	from	the	
observed pattern to estimates from simulations upon the null model, using the estimated parameters 
in the same window. The null model is usually simulated n times and the estimate of Kmin(r) and 
Kmax(r) of estimator K rˆ ( )i , for i = 1…k, is calculated for each simulation. Extreme values from the 
simulations are determined and plotted together with K rˆ ( )i . Kmin(r) and Kmax(r) are usually called 
envelopes of estimator K rˆ ( ) (Illian et al. 2008; Grabarnik et al. 2011). Then, if K rˆ ( ) exceeds upper 
or lower envelopes at distance r, the null hypothesis is rejected for that distance r, otherwise the 
null model holds. Grabarnik et al. (2011) stated that the choice of a suitable number of simulations 
for	constructing	envelopes	is	difficult,	because	the	I-type	error	(rejection	of	the	null	hypothesis	
even though it is true) is not known a priori. A single distance test (for a certain distance) and 
the global test for all distances can be very different. Many tests, one for each distance, result in 
weaker	than	expected	statistical	performance	(Loosmore	and	Ford	2006;	Illian	et	al.	2008).	Usually	
envelope tests require a large number of simulations (e.g. n = 999) to be the minimum for obtaining 
the I type error probability close to 5% (Grabarnik et al. 2011). Myllymäki et al. (2013a) propose 
new global envelope tests providing both the p-value and the graphical representation. This new 
method offers a new way to calculate the global envelope test on the whole range of distances and 
is	based	on	the	ordering	of	the	test	function	(e.g.	the	K-function)	and	the	simultaneous	envelopes,	
which have the graphical interpretation. It facilitates the rejection of the null hypothesis even if 
the data function is not completely inside the constructed envelopes. If the data function is outside 
the rank envelopes (based on ranking the test function) for some distance, the null model is to be 
rejected. Simultaneously the envelopes show the distances where the data function denies the null 
hypothesis. More details on this new approach can be found in Myllymäki et al. (2013a).

The deviation test transforms information from the functional summary statistic (e.g. the 
K-function)	into	the	scalar	test	statistic	by	calculating	a	measure	of	deviation	between	the	observed	
(or simulated) function and the expectation under the null hypothesis (Grabarnik et al. 2011). 
The deviation tests resolve multiple hypothesis testing by summarizing differences between the 
observed and theoretical functions for all analyzed distances into a single number by the so-called 
deviation measures (Myllymäki et al. 2013b). Two types of deviation measure (u) being applied 
are the integral and maximum one, which correspond to two-sided envelope tests (Grabarnik et 
al. 2011). After calculation of the deviation measure for the observed and simulated data, the 
p-value	of	the	deviation	test	can	be	easily	estimated	(Loosmore	and	Ford	2006;	Grabarnik	et	al.	
2011). This estimate is based on the rank of the deviation measure among all the values of u and 
its precision can be calculated, since each possible ranking of u is equally likely under the null 
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model (Grabarnik et al. 2011). Although the deviation test overcomes the multiple testing prob-
lem	(occurring	in	envelope	tests)	due	to	the	simultaneous	verification	of	the	test	function	for	all	
distances analyzed, it is sensitive to unequal variance and asymmetry of the test function over all 
analyzed distances (Myllymäki et al. 2013b). A disadvantage of this test is that it does not indicate 
the distance, at which the rejection of the null hypothesis is possible and it is rather impossible to 
detect the reasons why the data set contradicts the null model (Grabarnik et al. 2011; Myllymäki 
et al. 2013b). The application of the deviation test must involve three steps: choosing a suitable 
test	function	(e.g.	K-function,	the	F-function,	etc.),	choosing	the	suitable	transformation	of	the	
summary function or scaling of the differences, and calculation of the global deviation measure 
(Myllymäki et al. 2013b). Fig. 11 shows the pair correlation function and the critical region based 
on	199	Monte	Carlo	simulations	for	clustered	distribution	of	yew	seedlings.	

6 Suitable null models prevent misinterpretations

A successful application of Ripley’s or pair correlation functions is to select a suitable null model, 
with which the empirical function is compared (Degenhardt 1999; Wiegand and Moloney 2004; 
Illian	et	al.	2008;	Bieng	et	al.	2011).	In	other	words,	the	statistical	test	makes	it	possible	to	find	
out	if	the	observed	point	pattern	has	characteristics	similar	to	those	of	a	specified	null	model.	In	
ecological analysis the simplest and the most commonly used null model is the homogenous and 
isotropic	Poisson	model	 corresponding	 to	 the	CSR	hypothesis.	This	model	 assumes	 that	 each	
point of the process has the same intensity of occurring at any place in the studied region and the 
position of a point is independent of the position of other points (no interactions between points 
exist).	If	the	first	stage	of	the	analysis	indicates	that	the	CSR	hypothesis	should	be	rejected,	then	
other	classes	of	models	have	to	be	implemented	(e.g.	Cox	models,	Gibbs	models,	etc.).	The	choice	
of the suitable model is not easy. Illian et al. (2008) indicated that information on clustering or 
regularity observed at different spatial scales combined with a priori knowledge may indicate 

Fig. 11. Example of g(r) function for statistically significant clumped dis-
tribution of yew seedlings (solid line – empirical g-function; shaded 
area – critical region based on 199 Monte Carlo simulations; dashed 
line – g-function for CSR).
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which class of models are the most appropriate. They underlined that – as a general rule – in the 
first	step	one	should	use	the	basic	classical	models,	since	they	can	be	easily	fitted	and	simulated.	
Once	the	model	is	fitted	to	the	data,	goodness-of-fit	tests	should	be	performed	to	assess	the	model	
suitability	(Loosmore	and	Ford	2006;	Wiegand	et	al.	2007;	Illian	et	al.	2008;	Grabarnik	et	al.	2011).	
It is worth noting that functions described above have two main assumptions: homogeneity and 
isotropy	of	the	process.	The	first	assumption	refers	to	a	lack	of	significant	differences	in	intensity	
(first-order	property	of	the	process)	of	the	population	and	the	second	means	that	the	process	is	
invariant with respect to rotations. To deal with non-homogenous populations, other null models 
(e.g. a heterogeneous Poisson model) or delineating homogenous sub-regions into homogenous 
regions are required (Wiegand and Moloney 2004).

Applications	of	other	than	CSR	null	models	can	be	found	in	Boyden	et	al.	(2005),	Camarero	
et	al.	(2005),	Wiegand	et	al.	(2007),	Jacquemyn	et	al.	(2009),	Comas	et	al.	(2009),	Law	et	al.	(2009),	
Picard et al. (2009), Wiegand et al. (2009), Eichhorn (2010), Martínez et al. (2010), Zhang et al. 
(2010) and Réjou-Méchain et al. (2011).

7 Marks and mark hypothesis testing

The raw analysis of spatial patterns of individuals is often supported by the analysis of spatial pat-
terning of their attributes (Mateu 2000; Illian et al. 2008). Assigning marks to the points facilitates 
the	use	of	methods	from	the	field	of	marked	point	process	statistics.	Different	correlation	functions	
described below can be applied for that.

The mark connection function (pij) is applied to analyse correlations between qualitative 
(e.g. species, sexes, etc.) marks (Gavrikov and Stoyan 1995; Illian et al. 2008). It is a measure of 
the dependence between the types of two points (e.g. two species) of the process. The value of 
pij is interpreted as “the conditional probability that two points at distance r have marks i and j, 
given that these points are in the point process N” (Illian et al. 2008). If marks attached to points 
are independent and identically dispersed, then:

=p r p r p r( ) ( ) ( ) (16)ij i j

where pi denotes the probability that the point is of type i. If pij > pi(r)pj(r), then a positive association 
between two types of points can be stated, while smaller values of pij indicate a negative association 
(Gavrikov and Stoyan 1995). Examples of the use of the mark connection function can be found 
in Gavrikov and Stoyan (1995), Paluch and Bartkowicz (2004), Illian et al. (2008), Raventós et al. 
(2010) and Pommerening et al. (2011). It should be noted that bivariate pair correlation functions 
gij(r) and pij(r) provide different information, although they describe relations between two types 
of points. Due to the small number of pairs of points of both types as well as the small number 
of points in general at a certain inter-point distance gij(r) can take small values, while pij(r) can 
still be close to 1 if the pairs of points are mainly of both types i and j (Illian et al. 2008, p. 332).

Individuals can be described not only by qualitative marks, but also quantitative marks (e.g. 
diameter, height, crown width, etc.) can be attributed to points (Penttinen et al. 1992; Gavrikow and 
Stoyan	1995;	Stoyan	and	Penttinen	2000;	Penttinen	2006;	Illian	et	al.	2008).	Correlations	between	
these types of marks can be analyzed by the mark correlation function and the mark variogram and 
both functions can answer different ecological questions.

The mark correlation function – kmm(r) – relies on inter-point distances in a population 
and it considers correlations among marks relative to the case of independent marks. It helps to 
detect correlations in the sense of mutual stimulation or inhibition of individuals (Pommerening 
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2002; Illian et al. 2008). The mark correlation function is a conditional association of marks and 
the expectation is conditional (Eox) on that there is a point at o and x at the inter-point distance r 
(Penttinen et al. 1992; Pommerening 2002; Penttinen 2006).

µ= ⋅k r E m o m x( ) ( ( ) ( )) / (17)mm ox
2

This function is scaled by dividing by squared mean mark (µ) to make the interpretation easier 
(Gavrikov and Stoyan 1995; Illian et al. 2008; Grabarnik et al. 2011):

If marks assigned to points are independent, then the function is equal to 1 for all distances. 
If kmm(r) > 1 it means that points located apart at distance r tend to have on average a larger mean 
mark indicating a mutual stimulation or positive correlation. An opposite situation, kmm(r) < 1, indi-
cates mutual inhibition between points (negative correlation) and points tend to have on average 
smaller marks than the mean mark for the population (Illian et al. 2008; Getzin et al. 2008; Wälder 
and	Wälder	2008;	Grabarnik	et	al.	2011;	Ledo	et	al.	2011).	In	plant	populations	inhibition	results	
mostly from competition between close individuals, resulting in smaller values of their marks (e.g. 
diameter,	height).	Mutual	stimulation	suggests	that	individuals	benefit	from	being	close	to	each	
other. This type of a correlation function is a good tool to verify the strength of competition in such 
cases when competition does not result in the death of individuals, but it only reduces their growth. 

The mark variogram – γ(r) – makes it possible to answer the question whether individuals 
are similar or different at a certain distance r from one another. This function is suitable to identify 
the effect of interactions between points (e.g. plants, trees) and environmental factors on their sizes. 
It characterizes squared differences between marks (m) of pairs of points within the distance of r 
under the condition that there are points at locations x and x + r (Stoyan and Penttinen 2000; Stoyan 
and Wälder 2000; Suzuki et al. 2008; Gonçalves et al. 2011; Pommerening and Särkkä 2013): 

γ = − + >r E m x m x r r( ) 1
2

( ( ) ( )) for�  0 (18)2

It has small values if the marks are similar (positive autocorrelation, similar sizes of nearest neigh-
bours) at a certain distance r, and large values if they differ strongly (negative autocorrelation, 
large and small individuals are close to each other). The mark variogram provides two important 
characteristics:	the	range	of	correlation	and	the	strength	of	interaction.	The	definition	of	a	mark	
variogram is very similar to that in geostatistics. The difference is that a mark variogram is meas-
ured	at	some	specific	locations	(trees)	not	for	the	whole	space,	and	that	is	why	the	shape	of	a	mark	
variogram can be different from that of a geostatistical variogram (Illian et al. 2008; Pommeren-
ing and Särkkä 2013). Fig. 12 presents kmm(r)	and	γ(r) for the same old-growth mixed forest in 
Poland. Mutual stimulation indicated by kmm(r) at small distances corresponds to small values of 
γ(r), indicating that the nearest neighbors are similar in size.

In univariate analysis (regardless of the marks of points) the null hypothesis is pretty simple. 
The question is then whether the observed data set follows properties assigned to the selected null 
model. In bivariate spatial analysis (the marked point process) this is not the case, because ecolo-
gists are interested in spatial relationships between individuals in the population. The answer to 
the question focused on biological processes at the origin of a certain spatial pattern in the popula-
tion seems to be crucial (Goreaud and Pélissier 2003; Wiegand and Moloney 2004). Goreaud and 
Pélissier (2003), Rozas et al. (2009), Illian et al. (2008), Grabarnik et al. (2011) stated that at least 
two different null hypotheses can be considered: independence (also called random superposi-
tion) and random labeling. Wiegand and Moloney (2004) propose also the third null hypotheses 
– antecedent conditions.
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Spatial independence assumes a priori that there are two different and independent point 
patterns in the same spatial window assigned to two different types of points. The typical example 
for this hypothesis is the distribution of two species in a forest, different age categories, etc. In the 
spatial context it means that the position of points of type 1 (one population) must be independent 
of the position of type 2 (another population). Thus, the absence of an interaction between two 
types of points corresponds to the absence of interaction between two type patterns (Wiegand and 
Moloney 2004). The random labeling hypothesis means that points in an originally non-marked 
point	process	are	marked	independently	(a	posteriori	marking).	Concerning	the	spatial	structure	it	
states that the probability that one event occurs is the same for all points taken together (non-marked 
point process) and it does not depend on the neighbors. Here, a lack of interaction between two 
types of points corresponds to a lack of interaction in the occurrence of marks. A good example of 
the use of a random labeling hypothesis is the distribution of dead and living trees (the so-called 
random mortality hypothesis), infected vs. non-infected trees, healthy vs. ill trees, etc. (Goreaud 
and Pélissier 2003; Illian et al. 2008). Antecedent conditions can be applied for situations when 
two types of points are not created at the same time, but in sequence. It means that the spatial 
pattern	of	the	2nd	type	of	points	does	not	influence	the	pattern	of	the	1st	type	of	points,	but	the	
type	1	pattern	influences	the	2nd type pattern. Thus this null hypothesis involves the time aspect 
(Wiegand and Moloney 2004). Multitype spatial point patterns with hierarchical interactions were 
also considered by Högmander and Särkkä (1999).

Examples	of	applications	of	different	functions	mentioned	above	can	be	found	in	Kuulu-
vainen	et	al.	(1996),	Kenkel	(1997),	Rozas	(2003),	Getzin	et	al.	(2006),	Wiegand	et	al.	(2007),	Illian	
et al. (2008), Suzuki et al. (2008), Wälder and Wälder (2008), Gray and He (2009), Nuske et al. 
(2009),	Picard	et	al.	(2009),	Rozas	et	al.	(2009),	Zhang	et	al.	(2010),	Ledo	et	al.	(2011);	Nanami	
et	al.	(2011),	Iszkuło	et	al.	(2012)	and	Pommerening	et	al.	(2013).

Fig. 12. Mark correlation function (kmm(r)) and mark variogram (γ(d)) for old-growth 
mixed forest (dashed line – independence in mark correlation; solid line – empirical 
functions).
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8 Recommended software for spatial analysis

Up	to	now	there	have	been	few	software	packages	which	can	be	applied	in	spatial	analysis	of	popu-
lations. They differ from each other in terms of data set collection, types of data needed, methods 
of spatial analysis, time consumption and easiness of interpretation of results. The list below is 
subjective and expresses the opinion of the author of this paper.

•	 “Spatstat” package (Baddelley and Turner 2005) – the most commonly used statistical 
package for spatial analysis running in the R	environment	(R	Development	Core	Team	
2008). It provides creation, manipulation and plotting of point processes, exploratory data 
analysis,	model	fitting,	hypothesis	testing,	etc.	Other	less	known,	but	useful	R	packages	
such as “Spatial”, “Ecespa” or “ADS” also need to be mentioned here. 

•	 “Crancod”	(Pommerening	2012)	–	calculates	simple	structural	indices	as	well	as	correla-
tion functions. Suitable for rectangular and circular plots. Together with spatial analysis, 
non-spatial	statistics	are	simultaneously	calculated.	Output	files	can	be	converted	into	
easy to read spread sheets for further calculations and manipulations depending on the 
user’s needs.

•	 “spPack” (Perry 2004) – facilitates point pattern analysis in Excel with the Visual Basic 
for	Application	language.	Both	first-order	and	second-order	tests	are	available.	Also	other	
tests, not mentioned in this paper, such as Moran’s I index and variograms are available.

•	 “SPPA” (Haase 1995) – simple and easy to use software to calculate Ripley’s functions 
(uni- and bivariate ones). It makes it possible to calculate isotropic as well as anisotropic 
functions. Analysis can be conducted only for data sets from rectangular plots. Makes 
it	possible	to	compute	goodness-of-fit	tests.

•	 “Programita” (Wiegand and Moloney 2004) – more and more commonly used in eco-
logical analysis. It performs univariate and bivariate point pattern analysis with Ripley’s 
and O-ring statistics, makes it possible to use standard and non-standard null models (the 
heterogeneous Poisson model, cluster models, hard and soft core models) for univariate 
and	bivariate	analysis.	It	is	also	possible	to	test	different	null	hypotheses	(CSR,	different	
versions of random labeling, spatial independence, antecedent conditions). The latest 
version enables to compute the mark correlation function.

•	 “Passage – Pattern Analysis, Spatial Statistics and Geographic Exegesis” (Rosenberg 
and Anderson 2011) – this software is designated to make complex spatial pattern 
analysis,	 first-	 and	 second-order	 tests,	 correlogram	 analysis,	 spatial	 autocorrelation,	
variograms, etc.

•	 “SIAFOR”	 –	 Structural	 Index	Assessment	 in	 Forest	 stands	 (Kint	 2004)	 –	 software	
designed	 for	 the	 calculation	of	 nearest	 neighbor	 structural	 indices	 (the	Clark-Evans	
index, contagion index, size differentiation indices, mingling indices) in sample plots of 
different shapes (circular, rectangular, convex tetragonal plots) with completely stem-
mapped data sets. This software can be also used as a sampling simulator.
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