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Highlights
• Differences between spectral reflectance of tree species are statistically significant in the 

sub-seasons of spring, first half of summer, and main autumn.
• Classification using multitemporal multispectral data is more productive than is classifica-

tion using a single hyperspectral image; the method improves recent forest mapping in the 
study regions.

Abstract
This study proposes an original method for tree species classification by satellite remote sensing. 
The method uses multitemporal multispectral (Landsat OLI) and hyperspectral (Resurs-P) data 
acquired from determined vegetation periods. The method is based on an original database of 
spectral features taking into account seasonal variations of tree species spectra. Changes in the 
spectral signatures of forest classes are analyzed and new spectral–temporal features are created 
for the classification. Study sites are located in the Czech Republic and northwest (NW) Russia. 
The differences in spectral reflectance between tree species are shown as statistically significant in 
the sub-seasons of spring, first half of summer, and main autumn for both study sites. Most of the 
errors are related to the classification of deciduous species and misclassification of birch as pine 
(NW Russia site), pine as mixture of pine and spruce, and pine as mixture of spruce and beech 
(Czech site). Forest species are mapped with accuracy as high as 80% (NW Russia site) and 81% 
(Czech site). The classification using multitemporal multispectral data has a kappa coefficient 
1.7 times higher than does that of classification using a single multispectral image and 1.3 times 
greater than that of the classification using single hyperspectral images. Potentially, classification 
accuracy can be improved by the method when applying multitemporal satellite hyperspectral 
data, such as in using new, near-future products EnMap and/or HyspIRI with high revisit time.
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1 Introduction

Monitoring of forests is one of the relevant and practical tasks effectively carried out on the basis 
of recent satellite optical–electronic multispectral (MS) and hyperspectral (HS) means (Boyd et 
al. 2005; Banskota et al. 2014; Transon et al. 2017). MS and HS data referencing spectra of woody 
vegetation and algorithms of data processing in (semi)automatic mode allow separation of forest 
from non-forest lands (Connette et al. 2016; Zhou et al. 2018); prediction of forest inventory char-
acteristics (McRoberts et al. 2007); and detection of forest damage due to fires, degradation, and 
pathological changes (Grigorieva 2014; Lausch et al. 2016; Brovkina et al. 2017).

Among the tasks related to forest monitoring, classification of forests by tree species com-
position is one of the most complex. That is because the spectral properties of different forest 
formations can vary significantly depending on the vegetation period, crown closure, growth, and 
conditions under which the data were acquired. The spectral variability within species may be even 
greater than is the variability between species (Grigorieva et al. 2012). Only few tree species can 
be distinguished with satisfactory classification accuracy based upon satellite data from a single 
vegetation period. Pax-Lenney et al. (2001) evaluated the ability of a neural network to identify 
coniferous forests using a Landsat thematic mapper (TM) midsummer data set and determined 
mean classification accuracy within a region of around 85%. Using maximum likelihood classifier, 
Shataee et al. (2004) showed a classification accuracy of 61% in identifying six forest types based 
on Landsat enhanced thematic mapper (ETM) data. Galidaki and Gitas (2014) investigated the 
potential of using Hyperion imagery and a nearest neighbor classifier to map four forest species. 
Their classification accuracy ranged from 72% to 83%.

Significant errors are observed in particular when processing a single satellite scene, because 
within one season, as a rule, it is impossible to reliably classify the entire diversity of the species 
composition for species having close spectral features in several spectral bands (Hovi et al. 2017). 
Shafri et al. (2007) found that classification of mixed forests into four tree species classes achieved 
accuracy ranging from 49% using a spectral angle mapper to 86% using an artificial neural network 
based on a single hyperspectral image. Immitzer et al. (2016) used an MS satellite Sentinel-2 scene 
with supervised random forest classifier to map seven different deciduous and coniferous tree 
species with a cross-validated overall accuracy of 65%. Waser et al. (2014) achieved a promising 
classification accuracy of 83% using high spatial resolution down to 2 m in a MS WorldView-2 
single summer scene to classify seven tree species.

Increased effectiveness in tree species classification can be achieved by processing satellite 
MS or HS data acquired in different phenological periods. Even using two satellite scenes from 
different phenological periods can provide significantly better classification results compared to 
processing a single satellite scene (Hill et al. 2010). Tigges et al. (2013) used a time series of Rapi-
dEye data including five dates to classify eight tree genera. The best classification they achieved 
was estimated at accuracy of 83%. Sheeren et al. (2016) used Formosat-2 images acquired on 17 
dates to classify 13 tree species with classification accuracies of 90–93%. Some studies have used 
seasonal statistics of vegetation indices and textural features as indicators of tree species (Sasaki 
et al. 2001; Arekhi et al. 2017). Seasonal variation of widespread biophysical indices coincide for 
some boreal tree species, however, and so their use is not effective (Grigorieva et al. 2017).

In the context of the studies cited above identifying tree species, the use of informative 
spectral bands of MS and HS data seems promising in the optimal seasons of the year, when the 
spectral difference of each tree species is at its maximum. The main objective of this study was to 
develop and implement a method for identifying tree species from MS and HS satellite data using 
1) a series of multitemporal satellite data acquired in determined phenological periods of tree 
species, and 2) a system of various spectral–temporal features of tree species. A specific objective 
was to compare the proposed method from multitemporal satellite data with existing methods of 
tree species classification from single MS and single HS images.
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2 Materials and methods

2.1 Study area

Study areas are located in the northeastern part of the Gulf of Finland (Baltic Sea) within the 
Leningrad Region, Russia (Berezovye Islands archipelago, 60°23´N, 28°26´E) and in the eastern 
Moravian–Silesian Region, Czech Republic (Těšínské Beskydy Mountains, 49°37´N, 18°47´E) 
(Fig. 1).

The forest stands in the Berezovye Islands archipelago are composed of Scots pine (Pinus 
sylvestris L.) predominating in the poorest, swampy soils, as well as Norway spruce (Picea abies 
(L.) H. Karst.), European white birch (Betula pendula Roth), and grey alder (Alnus glutinosa (L.) 
Gaertn.) (Bohn et al. 2000; Stepanchikova et al. 2011). Pine and birch cover the main part of the 
islands. All of the forests have several times been harvested using logging machinery, and many 
have been exposed to surface fires and crown fires. The length of the vegetation season in the 
region is about 150–170 days (Leningrad region. Nature and Economy 1958).

The forest stands in the Těšínské Beskydy Mountains are mainly composed of managed 
Norway spruce (P. abies) and European beech (Fagus sylvatica L.) as the dominant tree species. 
There exists also a scattered mixture of Scots pine (P. sylvestris), silver fir (Abies alba Mill.), Euro-
pean larch (Larix decidua Mill.), and ash (Fraxinus excelsior L.) (Michalko 1986). The length of 
the vegetation season in the region is about 186–190 days (Hajkova et al. 2012).

Fig. 1. Study areas: Berezovye Islands archipelago (Russia) and Těšínské Beskydy Mountains (Czech Republic).
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2.2 Data

Multispectral Landsat-8 satellite OLI data (NASA, http://earthexplorer.usgs.gov.) and hyperspectral 
Resurs-P satellite data (RosCosmos, http://eng.ntsomz.ru.) were used in the study (Table 1). Radio-
metric correction was made to reduce or correct errors in the raw digital numbers in the images. 
The raw digital numbers were converted to top-of-atmosphere radiance by rescaling the data with 
sensor-specific information and removing the effects of differences in illumination geometry (dif-
ferent solar angle, Earth–Sun distance). Atmospheric correction was done to remove the effects of 
the atmosphere and to produce surface reflectance values. The atmospheric correction of Landsat 
images was done in the FLAASH module of ENVI 4.4 software. The atmospheric correction of 
Resurs-P images was performed in MODTRAN 5.2 software using meteorological observations 
on the acquisition date and place (60°23´N, 28°26´E) and the method by Brovkina et al. (2016).

A geobotanical map of the Berezovye Islands (Volkova et al. 2016) provided the basis for 
construction of training samples as well as verification of the classification method. The map 
contained the main types of forest vegetation: coniferous, small-leaved, and broad-leaved forests. 
According to the prevalence of tree species, these types have been distinguished: spruce, pine, 
spruce–pine (as an independent unit), birch, aspen, and black alder. Based on the characteristics 
of grass–shrub and moss–lichen layers, five groups of associations were identified in the pine for-
ests: green pine forests, bilberry pine, herbaceous pine, sphagnum pine, and pine forests of sandy 
beaches and dunes.

A forest inventory map provided by the Forest Management Institute (www.uhul.cz) was 
used in the Těšínské Beskydy study area (49°37´N, 18°47´E). Forest management planning data 
contained more than 30 characteristics for each forest compartment collected in compliance with 
the Czech forest management planning standard (Stanek et al. 1997). In this study, we used the 
information about the type of forest, tree species, share of tree species, and forest compartments.

2.3 Method for tree species classification from multitemporal satellite data

The proposed method for tree species classification based on multitemporal data consisted of two 
main stages (Fig. 2). At the first stage, image fragments (background) not related to the forest were 
excluded from the further processing based on an analysis of seasonal changes in the normalized 
difference vegetation index (NDVI). At the second stage, changes in the spectral signatures of 
forest classes were analyzed and new spectral–temporal features were created for the classification 
(Grigorieva et al. 2017).

2.3.1 Vegetation mask

Phenological phases (or phenophases) of forest vegetation were used in the study. Phenological 
phase refers to a specific time period in the annual life cycle of trees that can be defined by a start 
and end point. Because the maximum NDVI values refer not only to forest vegetation in the active 
vegetation phenophase but also to other plant species, an additional feature was used to distinguish 

Table 1. Satellite multispectral (MS) and hyperspectral (HS) acquisition dates used in the study.

Study area Acquisition date in 2015
MS HS

Berezovye Islands 11.04 6.05 13.05 14.06 30.06 15.08 31.08 11.10 30.05
Těšínské Beskydy 23.04 30.04 16.05 12.07 19.07 13.08 14.09 1.11 6.06

http://earthexplorer.usgs.gov
http://eng.ntsomz.ru
http://www.uhul.cz
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image pixel(s) with forest: the function NDVI = f(F) approximated by a quadratic function NDVI 
= aF2 + bF + c, where F is number of phenophase (paragraph 2.3.4). To obtain the phenophase 
corresponding to the date of acquired satellite images, the table data is interpolated:

F = 0.023DOY + 0.74 ,

where DOY is day of year. For example, for Berezovye Islands archipelago the end of phen_3 lie 
between 11.4 and 15.5, which is correspond to 102 and 129 DOY. The next satellite images were 
acquired for mentioned period: 11.04, 06.05 and 13.05 (105, 127 and 134 DOY). Using linear 
interpolation, F obtained for these images were: F = 3.15, F = 3.66 and F = 3.82.

The following rule was applied to decide whether an image pixel does or does not belong 
to forest: If seasonal variations of NDVI can be approximated by a quadratic function with a 
confidence value of p = 0.95 and its value in the most active phase of vegetation is greater than 
or equal to the NDVI threshold value, then the pixel belongs to the forest. For each species, the 
threshold was the lowest NDVI from all training samples. NDVI threshold value was calculated 
from the reference spectrum at the corresponding phenophase.

In the case of only two satellite images from two phenophases, the following rule is applied: 
If the correlation between the spectra of the two phenophases was high (k ≥ 0.97) and NDVI in 
the most active vegetation period was less than the NDVI threshold, then the pixel belongs to the 
background and it was excluded from further processing.

Fig. 2. Structure of the proposed method for tree species classification from multitemporal multispectral satellite data. 
F is a number of phenophase, a,b,c are approximation coefficients, NDVI is normalized difference vegetation index.
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2.3.2 System of new spectral–temporal features for forest classes

New spectral–temporal features created for the classification included a reflectance difference (Δ) 
for each pixel of each pair (i, j) of images from corresponding phenophases: �F F F Fi j i jr r� � �� �( ) ( ),  
where λ is a wavelength, and r is a reflectance value. As a result, M diagonal matrices Λλ of size 
N × N are obtained, where M is the number of spectral bands, and N is the number of images 
acquired in the corresponding phenophases:
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M matrices are transformed into one matrix, Λ, of size ((N2 – N)/2) × M for further cal-
culation of correlation kFFi j  between spectral signatures for each pair (i, j) of phenophase. The 
correlation characterizes how the reflectance depends on the phenophase. As a result, matrix K of 
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Matrix K is transformed into the vector of features K of size ((N2 – N)/2) × 1 for further 
calculations.

Coefficients of the cross-correlation function between reflectance at various phenological 
periods are calculated as:
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where r(λ,F) is the reflectance function of two variables: wavelength λ = λ1,…,λM and phenological 
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tion r(λ,F); S[r(λ,F)] is the mathematical expectation of the reflectance r(λ,F); σr(λ,F) is the mean 
square deviation of function r(λ,F); n is offset value relative to phenophase; and m is offset value 
relative to the spectral band.

As a result, a matrix С of size (2M − 1) × N2 is obtained that allows tracking reflectance 
changes from one vegetation phase to another and estimating these changes for various spectral 
bands:
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2.3.3	Comparison	of	the	reflectance	difference	obtained	with	reference	reflectance	difference

Depending on the classification method, three measures were used to compare the reflectance 
difference obtained (matrix C) with the reference reflectance difference: Mahalanobis metric 
(MHλ), Euclidian distance (E) (Schowengerdt 2006), and Terebizh’s metric (Tλ) (Terebizh 2005). 
The Euclidian distance is only effective in the case of small linear dimensions, and it was used to 
calculate the proximity measure of the reference value and pixel:

E k kF F F Fj
N

i
N

i j i j
� �� ��

�� �� 11

2

2, ( )

where kFFi j  and k
FFi j
∋  are elements of the matrix K for image and reference, respectively. Mahalano-

bis and Terebizh’s metrics were used to compare matrices Λ and C. These metrics were calculated 
for each spectral band as follows:

MH T C C C
T

� � � � � � � � � �� �� � � � �� � � �� �� � � � � ��� � � �Cov
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where ��  and ��
�  are columns of matrix Λ for image and reference, respectively; and Cov��  is 

the covariance matrix of features ��
�  for reference. The class to which a pixel belongs was defined 

based on the highest frequency of occurrence of such event, Pk, where the selected measure took 
the minimum values:

kλ = argmin(MHλ) and kλ = argmin(Tλ); Pk = nk /M; k = argmaxPk ,

where k – class number, kλ – class number for which the selected measure took the minimum 
values at the wavelength λ, nk – class number, for which the selected measure took the minimum 
values at all wavelengths.

2.3.4 Database of tree species spectral features

The method proposed in this study involves a specialized tree species spectral features database 
(DB) based on long-term ground-based and remote-sensing observations of phenology. Use of the 
DB can help to reduce temporal and regional variability in the spectra of forest vegetation caused 
by the diversity of natural conditions in different areas. Phenophases of main tree species were 
derived based on ground-based and remote-sensing observations of phenology for both study 
sites. For Těšínské Beskydy, the atlas of phenological conditions of the Czech Republic also was 
used (Hájková et al. 2012). The DB of reflectance spectra takes into account peculiarities of the 
beginning and end of phenophases of the main tree species across study areas (Grigorieva et al. 
2012). The DB is integrated with a geographic information system, where a specially created ter-
rain model with attribute fields of phenophases is implemented. The phenophases used were the 
following (Saidov 2012):

- phen1 – phenophase 1 – winter rest period and early spring during snow melting;
- phen2 – phenophase 2 – pre-vegetation period after snow melts on the fields but before the grass 

and trees begin to get green (8–15 days);
- phen3 – phenophase 3 – sub-season of spring vegetation (“young leaf” and “full leaf”, winter crops);
- phen4 – phenophase 4 – first half of summer (flowering and maturation of grasses, appearance of 

young, light-colored shoots on coniferous trees and bushes, greening of spring crops);
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- phen5 – phenophase 5 – second half of summer (winter crops are yellowing, steppe and desert 
grasses are turning brown and dry);

- phen6 – phenophase 6 – beginning of autumn, a sub-season of autumn vegetation (shoots of winter 
crops and some grasses appearing, yellowing and reddening of deciduous trees and shrubs);

- phen7 – phenophase 7 – main period of autumn, characterized by leaf fall, yellowing and lodging 
of grass in meadows, winter crops turn green;

- phen8 – phenophase 8 – final period of autumn before snowfall, only coniferous and deciduous 
evergreen plants are green.

2.3.5	Training	samples	for	classification

Multitemporal data was classified using random forest decision tree as an accurate classifier that 
is robust against noise (Breiman 2001) and allows classification under conditions of uncertainty. 
Uncertainty arises from the presence of forest patches that can be directly attributed to two or more 
selected classes (especially for mixed forest types, such as pine forests with birch and spruce). Class 
centers were determined based on training samples (Table 2) for classifier training. We collected 
the samples from the geobotanical map (Berezovye Islands) and forest inventory map (Těšínské 
Beskydy). The size of the samples were determined by the share of each type of forest in the study 
areas. The same training samples were used for the classification of MS and HS data.

2.3.6 Statistical analysis

The differences between spectral characteristics of the main tree species in various phenophases 
were tested in a multiple group comparison using one-way analysis of variance (ANOVA, α = 0.05) 
followed by repeatedly applying Student’s t-test to determine exactly between which two data sets 
the differences existed.

Table 2. Number of training and verification samples, and number of pixel 
used for training and verification. Information is presented for each class in 
two study areas.

Class Training Verification
sample pixels sample pixels

Berezovye Islands
Spruce-pine bilberry-greenmoss 2 19 1 9
Spruce sphagnous and greenmoss 1 25 1 25
Tussock grass 1 4 1 4
Transistional (mesooligotrophic 
and mesotrophic) bogs

1 9 1 9

Raised (oligotrophic) bogs 1 6 1 6
Black alder ferny 1 7 1 7
Birch grassy 2 88 2 88
Pine bilberry 3 70 2 47
Pine greenmoss 2 200 1 100

Tešínské Beskydy
Spruce 90–99% 2 257 1 128
Spruce 75–85%, beech 20–25% 2 306 2 306
Spruce 50%, beech 50% 2 451 2 451
Spruce 20–30%, beech 70–80% 2 389 1 194
Beech 90–99% 2 344 1 172
Pine 90% 2 12 1 6
Spruce 40–60%, pine 40–60% 2 140 1 70
Spruce 70%, pine 20% 2 140 1 70
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2.3.7 Implementation

The method of tree species classification from multitemporal satellite data was implemented in 
the original software developed by Markov et al. (2015), because the functionality of widely used 
software (ENVI, Erdas Imagine, eCognition) does not allow for calculating the developed system 
of classification features. This software was integrated with the tree species spectral features data-
base and the QGIS geographic information system (https://qgis.org/en/site/).

2.4 Method for tree species classification from a single satellite image

Tree species classification from single MS data and tree species classification from single HS data 
acquired in one vegetation phenophase was performed using a modified fuzzy logic algorithm (Gri-
gorieva & Saidov 2018). The algorithm allows for analyzing uncertainty in forest areas that can be 
attributed to two or more classes at once. Such uncertainty occurs especially for mixed forest types 
(e.g., pine forests with birch and spruce), when analyzing an image with spatial resolution of 30 m 
or more, and when a non-linear spectra mixture of different tree species occurs in a single pixel. 
Results from fuzzy algorithm classification are highly dependent, however, on the initialization 
of class centers determined randomly. In our study, we used the modified fuzzy algorithm, where 
class centers were determined by training samples.

2.5 Assessment of classification accuracy

Quantitative assessment of the method developed for tree species classification was carried out 
based on the geobotanical map (Berezovye Islands) and the forestry map (Těšínské Beskydy) using 
Cohen’s kappa coefficient, k. Matrices for assessing the classification results were compiled for 
three classification options in each study area:

- classification using multitemporal MS data with the help of matrices Λ, K, and C;
- classification using a single MS image from the most informative phenophase; and
- classification using a single HS image from the most informative phenophase.

3 Results

3.1 Phenophases for the classification of forest stands

The analysis of tree species reflectance differences within the various phenological periods showed 
that the sub-seasons of spring vegetation (phen3), first half of summer (phen4), and main autumn 
(leaf fall) (phen7) can be recommended for tree species and forest type classification in both 
study areas (Fig. 3). The differences between spectral characteristics of the main forest types were 
statistically significant (ρ < α) in these three phenological periods. When classifying tree species, 
using HS data from phen4 can be more advantageous compared with MS data from phen4 due to 
the higher spectral resolution.

3.2 Assessment of classification accuracy

Confusion matrices are provided in Tables 3 and 4. Cohen’s kappa coefficient is provided in Table 5. 
Maps of forest stands resulting from implementation of the algorithm developed from satellite MS 
data and from satellite HS data are shown in Figs. 4 and 5.

https://qgis.org/en/site/
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Table 3. Confusion matrix for the classification with multitemporal multispectral Landsat data. Berezovye Islands.

 1 2 3 4 5 6 7 8 9

1 82.25 17.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 36.31 61.88 0.00 0.00 0.00 0.00 0.00 1.24 0.58
3 0.00 0.00 98.03 0.00 0.00 0.00 1.97 0.00 0.00
4 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 92.60 0.00 0.25 6.77 0.37
6 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
7 0.00 0.00 0.00 0.00 5.41 0.00 66.43 14.94 13.22
8 1.12 0.00 0.00 0.00 2.98 0.00 6.47 56.54 32.90
9 0.00 0.00 0.00 0.00 0.00 0.00 0.80 24.41 74.79

1 – spruce–pine bilberry–green moss; 2 – spruce sphagnous and green moss; 3 – tussock grass; 4 – transitional (mesooligotrophic 
and mesotrophic) bogs; 5 – raised (oligotrophic) bogs; 6 – black alder ferny; 7 – birch grassy; 8 – pine bilberry; 9 – pine green 
moss. Columns in the matrices are classes identified after processing within control sample. Rows are initial classes on the 
control sample (actual class). Diagonal elements indicate the number of points belonging to both the control and the resulting 
class of image processing.

Table 4. Confusion matrix for the classification with multitemporal Landsat data. Těšínské Beskydy.

1 2 3 4 5 6 7 8

1 88.00 5.00 0.68 2.59 3.97 0.16 0.00 0.43
2 1.40 71.00 4.90 3.30 4.98 5.73 5.90 3.68
3 4.50 7.00 68.10 7.00 3.95 3.83 2.50 3.51
4 3.05 6.84 6.05 74.00 6.30 2.30 1.02 0.91
5 1.60 4.52 0.71 7.50 86.00 0.00 0.20 0.00
6 0.00 0.00 1.32 4.53 4.26 79.00 8.50 2.60
7 2.80 1.33 7.01 1.96 1.94 3.05 80.20 2.30
8 4.18 1.03 6.71 1.08 0.39 5.89 2.70 79.00

1 – spruce 90–100%; 2 – spruce 80%, beech 20%; 3 – spruce 50%, beech 50%; 4 – spruce 20%, beech 80%; 5 – 
beech 100%; 6 – pine 90–100%; 7 – pine 50%, spruce 50%; 8 – pine 20%, spruce 80%. Columns in the matrices 
are classes identified after processing within control sample. Rows are initial classes on the control sample (actual 
class). Diagonal elements indicate the number of points belonging to both the control and the resulting class of 
image processing.

Table 5. Cohen’s kappa coefficient for the assessment of classification 
accuracy.

Satellite data used for classification Berezovye 
Islands

Těšínské 
Beskydy

Multitemporal multispectral data Λ 0.74 0.81
K 0.78 0.77
C 0.80 0.75

Hyperspectral data (single Resurs-P scene) 0.67 0.78
Multispectral data (single Landsat scene) 0.47 0.44

Λ, K and C are matrices used in the system of new spectral–temporal features 
for forest classes.
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Fig. 4. Map of forest stands in Berezovye Islands resulting (a) from multitemporal data, and (b) from a single hyper-
spectral image.

Fig. 5. Map of forest stand in Těšínské Beskydy resulting (a) from multitemporal data, and (b) from a single hyper-
spectral image.
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4 Discussion

The classification using multitemporal MS data had a higher kappa coefficient than did the clas-
sification using a single MS or single HS image for Berezovye Island. For Tešínské Beskydy, two 
of the feature types for multitemporal MS data (K, C) gave lower kappa values than did a single HS 
image, and classification using a single MS image had the lowest kappa coefficient (Table 5). Even 
though the single MS image was processed for the most informative phase of vegetation (pheno-
phase 5), during which the maximum reflectance differences between tree species were observed, 
the classification errors reached 50%. Hill et al. (2010) had reported that the ability to discriminate 
and map temperate deciduous tree species in airborne multispectral imagery increased using time-
series data: from kappa 0.67 for a single image to kappa 0.85 for three images combined (one from 
autumn, one from the green-up, and one from full-leaf phase). Miyoshi et al. (2017) showed that 
use of layer stacking from time-series images improved classification, and they achieved an 18% 
increase in kappa coefficient. Recent studies have used all available cloud-free satellite scenes 
during a year to classify tree species. For example, Sheeren et al. (2016) analyzed 17 images and 
Hill et al. (2010) combined three images. Our method revealed selected scenes for classification 
where the reflectance difference between main tree species was proven as statistically significant. 
These were the sub-seasons of spring vegetation, first half of summer, and main autumn (leaf 
fall). Considering the geographical locations and tree species compositions of the study areas, the 
phenophases distinguished can potentially be utilized for species classification of forests in central 
Europe and northwestern Russia.

The feature type C that gave the highest kappa for Tešínské Beskydy gave the lowest kappa 
for multitemporal MS data for Berezovye Islands (Table 5). Every study site will be character-
ized by more or less uncertainty with regard to determining a specific best method for analyzing 
reflectance differences. We recommend to use all feature types described (Λ, K, C) and then to 
choose the one with the highest kappa for a specific forest site.

Most errors were related to the classification of deciduous trees and misclassification of birch 
as pine (Berezovye Islands), pine as mixture of pine and spruce, and pine as mixture of spruce 
and beech (Těšínské Beskydy) from the single multispectral image. This is consistent with recent 
literature. Confusion between deciduous tree species (ash and beech from classification of MS 
WorldView-2 data) was reported by Waser et al. (2014). Also reported are misclassification of oak 
as pine from MS Formosat-2 imagery (Sheeren et al. 2016) and misclassification of pine as spruce 
from MS Sentinel-2 (Immitzer et al. 2016).

The classification results from using a single HS image were close to those when multitem-
poral MS data were used and the cross-correlation function was applied (Těšínské Beskydy). The 
main classification error in the case of a single HS image was related to the identification of class 
“pine” and class “mixture of pine and birch”, with pine being classified incorrectly as mixture of 
pine and birch (Berezovye Islands). The error can be explained by the fact that the training samples 
had been obtained from a vegetation map that was more than 10 years old. During this period, a 
succession of birch forests with pine may have appeared.

The method improved recent forest mapping based on satellite data in regions that were 
geographically close to the study sites. Pine identification was more accurate using our method 
(75% in the Berezovye Islands) compared to pine identification from Ikonos satellite data (42% 
at a location close to Berezovye Islands) (Zhirin et al. 2009). However, spruce identification had 
lower accuracy in our study in Berezovye Islands (62%) than the 80% achieved by Zhurin et al. 
(2009). Birch was classified with 66% accuracy in both our study and that of Zhirin et al. (2009). 
Griffiths et al. (2014) produced a forest types map up to 73% accurate in a Carpathian ecoregion 
based on Landsat image, whereas our method produced maps up to 81% accurate there.
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The proposed method links ground-based observations of phenology to high-resolution land 
surface phenology products. Using a spectral DB in the proposed method reduces a gap between 
in situ phenological measurements collected at local scales and land surface phenology metrics 
(Jimenez et al. 2015). The DB from our study can be a useful addition to publicly open spectral 
libraries used in vegetation mapping, such as SPECCHIO and EcoSIS.

The proposed methodological approach allows analyzing the phenophases of forest stands 
and identifying their type using the dynamics of reflectance from satellite data. Use of the method 
reduces classification error compared to the classification on single satellite images. Species seg-
mentation of forest using the proposed method can potentially be more detailed in comparison 
with species segmentation from single satellite images. The classification accuracy can be further 
improved when the method will be applied with a number of new, near-future HS satellite products 
with high revisit time, like EnMap (Stuffler et al. 2007) and HyspIRI (Devred et al. 2013). The 
method can potentially be applied for purposes of forest inventory and assessing forest ecosystem 
stability, where the dynamics of changing species composition comprise one of the main adapta-
tion indicators.

5 Conclusions

The proposed method for tree species classification uses multitemporal multispectral (Landsat 
OLI) and hyperspectral (Resurs-P) data acquired from determined vegetation periods for two study 
sites located in the Czech Republic and northwest Russia. The method is based on an original 
database of spectral features taking into account seasonal variations of tree species spectra. The 
differences between spectral reflectance of tree species were shown to be statistically significant in 
the sub-seasons of spring, first half of summer, and main autumn at both study sites. Most of the 
errors were related to the classification of deciduous tree species and misclassification of birch as 
pine (northwest Russia site). Pine was classified as mixture of pine and spruce and as a mixture 
of spruce and beech (Czech site). Tree species are mapped with accuracy up to 80% (northwest 
Russia site) and 81% (Czech site). The classification using multitemporal multispectral data had a 
kappa coefficient 1.7 times higher than that from classification using a single multispectral image 
and a kappa coefficient 1.3 times higher than that from classification using a single hyperspectral 
image. Potentially, the classification accuracy can be improved by applying multitemporal satellite 
hyperspectral data for the method, such as the near-future products EnMap and/or HyspIRI with 
high revisit time.
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