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Highlights
• We predicted visually bucked factual sawlog volumes at the 30 × 30 m plot-level with several 

alternatives.
• The lowest root mean squared error value of approximately 21% was obtained with a linear 

mixed-effects model that employed factual sawlog volume as a response variable and airborne 
laser scanning metrics as predictors.

• The sawlog reduction model commonly used in Finland performed poorly.

Abstract
The aim in the study was to compare alternatives for the prediction of factual sawlog volumes 
using airborne laser scanning (ALS) data in Scots pine (Pinus sylvestris L.) dominated forests in 
eastern Finland. Accurate estimates of factual sawlog volume are desirable to ease the planning of 
harvesting operations. The factual sawlog volume of pines was derived from visual bucking, i.e. 
a procedure where the defects were located on each stem during sample plot measurements. For 
other species, the theoretical sawlog volume was considered also as the factual sawlog volume due 
to data restrictions. We predicted factual sawlog volume with eight alternatives that were based 
on either linear mixed-effects models or k-nearest neighbour imputations. An existing sawlog 
reduction model, commonly used in Finland, was also tested individually and combined with a 
number of the alternatives, and site type information was also utilised. Model fitting and predic-
tion was implemented at the 15 × 15 m level, but accuracy was assessed at the 30 × 30 m level. 
The relative root mean squared error (RMSE%) values for the factual sawlog volume predictions 
varied between 20.9% and 33.5%, and the best accuracy was obtained with a linear mixed-effects 
model. These results indicate that factual sawlog volumes in Scots pine dominated forests can be 
predicted with reasonable accuracy with ALS data.
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1 Introduction

1.1 Background

Airborne laser scanning (ALS) based information has been used in numerous studies to estimate 
forest characteristics, such as total tree volume and aboveground biomass (Næsset 1997; Næsset 
2011). However, the size distribution and quality characteristics of the growing stock are often also 
needed, especially in harvest planning. The distribution of timber assortments provides essential 
information, especially from an economic point of view. For example, the value of sawlog in 
Finland is usually 3–4 times greater than the value of pulpwood.

Sawlog and pulpwood recovery can be estimated by ALS based diameter and height distribu-
tions applying taper curves (Peuhkurinen et al. 2008), but this approach does not provide qualitative 
information about the trees. However, in many cases, qualitative factors such as thick branches, 
decay and curves in the tree cause sawlog recovery to be considerably smaller than theoretical 
sawlog recovery might imply. All in all, the prediction of the total value of growing stock prior to 
harvesting is highly susceptible to errors.

The reduction in factual sawlog volume due to defects can be considered with different sawlog 
reduction models (Mehtätalo 2002). However, these models usually employ variables that have a 
tenuous relationship with tree quality (e.g. age, location). Moreover, as they have been fitted from 
large datasets, the performance on a single stand can be poor. This kind of information is usually 
adequate for forest planning on large areas (Mehtätalo 2002; Malinen et al. 2007), but knowledge of 
wood quality in the stand to be harvested is important in the planning of harvest operations. Thus, 
wood quality data would increase the overall value of forest resource information. The relation-
ship between ALS and wood quality has already been studied to some extent, but there are some 
fundamental issues that are difficult to overcome. For example, the quality criteria (e.g. minimum 
diameter and maximum allowed branch thickness) for sawlogs may differ in a case by case basis, 
meaning that “quality” is difficult to define unambiguously.

1.2 Acquisition of factual sawlog volume data

The main reason for the paucity of research in regard to factual sawlog volumes is that collec-
tion of field data is a complicated and laborious task. For the study of factual sawlog volumes, 
i.e. the effects of different defects are considered, there are essentially only two avenues open for 
the collection of data. The first option is to use the stem data (stm-file) collected by the harvester 
(StanForD 2012). This file includes the taper curves of the harvested stems, and so also reveals 
the rates of sawlog and pulpwood recovery. However, the Cut-To-Length method applied in Fin-
land, for example, produces logs that are already cut in optimal lengths in the felling phase. This 
means that sawmills have their own preferences for sawlog lengths (and diameters), e.g. minimum 
length can be 3.7 m and the next approved length is 4.0 m. In such a case, the final 20 cm from a 
3.9 m long sawlog would end up in the next pulpwood-log even though it would otherwise fulfil 
the requirements for a sawlog. At the stand-level, uncertainty accrues from a range of factors that 
include, for example, the professional ability of the operator (e.g. the operator decides how the 
defective stems will be cut), the number of retention trees, variation in stump heights (Korhonen et 
al. 2008) and the mismatch in areas between harvester data and other datasets. The lack of accurate 
position of a felling head (Holmgren et al. 2012; Lindroos et al. 2015) is also an issue that, to date, 
has prevented examination of harvester data at the plot- or tree-level. However, e.g. Hauglin et al. 
(2018) recently used tree-level positioned harvester data to predict volume by ALS. The obtained 
accuracy level was comparable to field plot-based ground truthing.
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The second option to gather factual sawlog volumes is visual bucking of the standing stock, 
where all the defects that affect the sawlog-proportion of the trunk are detected and recorded 
during the field measurements. The factual tree-level sawlog volumes are then calculated with 
stem taper curve models for the parts that fulfil the quality requirements. For instance, this means 
that the crookedness of the stem for each tree must be evaluated whether it is within the acceptable 
limits or not, the height of the first excessively thick branch must be measured (assuming the stem 
diameter is still large enough), and so on. Visual bucking is always a laborious and time-consuming 
procedure, and should not be used in cases where the defects are mostly internal. However, with 
Scots pine (Pinus sylvestris L.) the visual bucking is a feasible method as most of the defects are 
external. The approach is also used in the Finnish National Forest Inventory (Metsäntutkimuslaitos 
2009).

1.3 Tree quality in previous studies

In earlier studies, tree quality was mostly studied by predicting factual sawlog volumes. In Fin-
land, Korhonen et al. (2008) used low point density ALS data and built mixed effect regression 
models to predict factual sawlog volumes at the stand-level. Instead of field determined factual 
sawlog volumes, they used sawlog reduction model-based estimates in the modelling. The models 
were tested with harvester data from 14 clear-cut stands. The resulting relative root mean squared 
error (RMSE%) value for factual sawlog volumes was 18%. The same ALS and harvester data 
were also used by Peuhkurinen et al. (2008), who first predicted the stand-level height-diameter 
distributions using ALS (and/or aerial photographs) and the k-Nearest Neighbour (k-NN) method. 
These predictions were then used to find the nearest neighbouring stands from a separate stem data 
bank (expanded from the original harvester data), and the final species-specific sawlog recoveries 
were then estimated based on these neighbouring stem data bank stands. The RMSE% value of 
the ALS-based sawlog volume was 61.9% for pine and 32.1% for Norway spruce (Picea abies 
[L.] H. Karst.). These results were not considered satisfactory. In Norway, Bollandsås et al. (2011) 
used low point density ALS and harvester-based data to create nonlinear mixed-effects models for 
several quality associated characteristics. Due to restrictions with the accuracy of positioning, the 
examination was made using grid cells with a size of 50 × 50 m. The prediction of total sawlog 
volumes resulted in a RMSE% value of 24%. In addition, the individual tree detection (ITD) 
approach has been used in a number of studies to predict factual sawlog volumes (Peuhkurinen et 
al. 2007; Maltamo et al. 2009; Barth et al. 2015). In general, the results of these ITD studies have 
been promising.

1.4	 The	effect	of	site	fertility	on	pine	quality

It is commonly known that the commercial quality of Scots pine is prone to be worse on fertile sites 
than on moderate or poor sites. For example, on fertile sites Scots pines often have thick branches 
also in the lower part of the main stem, and the stems are more often crooked (Lämsä et al. 1990). 
If strict requirements for sawlogs are applied, these properties may completely prevent the bucking 
of sawlogs. In Finland, site fertility is described with categorical site type index system presented 
by Cajander (1949). Site type index can easily be determined for each plot during field measure-
ments and this information is existing all over the country. Therefore, it can also be utilised in the 
modelling phase by using e.g. dummy variables.
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1.5 Aims of the study

In this study, we utilise ALS data and field measured data from Scots pine dominated stands in 
eastern Finland. Our main aim is to predict factual sawlog volumes with different alternatives at 
the 30 × 30 m level (considered as proxies for stands) by using ALS data, an existing sawlog reduc-
tion model and site type information. Additionally, we evaluate the performance of this sawlog 
reduction model in our dataset.

2 Material and methods

2.1	 Study	area	and	field	data

The study area is located in the regions of North Karelia and South Savonia in eastern Finland 
(±30 km around the point 62°28´N, 29°01´E). The forests in the area are mostly privately owned 
and the level of silvicultural activity varies considerably. These forests are mostly dominated 
by Scots pine or Norway spruce, whereas deciduous trees, such as silver birch (Betula pendula 
Roth), downy birch (Betula pubescens Ehrh.), and aspen (Populus tremula L.), are usually found 
in minor proportions.

The field data were collected in the summer of 2017 from 41 square shaped sample plots 
(size: 30 × 30 m). There were at least five sawlog sized Scots pines in each plot. From these 
sample plots, the diameter at breast height (dbh) and height (h) of all the trees with dbh ≥ 5 cm 
were measured. Detailed quality assessment was made only for Scots pines with dbh ≥ 16 cm. In 
these assessments, the start and end points for each defect on the trunk (that affect the final sawlog 
proportion of the trunk) (Table 1) were determined and the diameter at a height of 6 m (d6) was 
measured. The location of each tree was also determined, as described in Karjalainen et al. (2019). 
Also different site attributes, such as dominant age and site type index (Cajander 1949) were visu-
ally determined on each plot. From the 41 field plots, two were located on Oxalis-Myrtillus Type 
(OMT = fertile), 25 were located on Myrtillus Type (MT = moderate) and 14 were located on 
Vaccinium Type (VT = poor) sites.

Table 1. Applied quality requirements for Scots pine sawlog.

Crookedness, curves - Max. 1 cm within 1 m distance
Technical defects (e.g. scar) - Allowed outside log cylinder
Min. length 37 dm
Min. diameter 15 cm
Max. diameter of branches:
- Dead/dry 4 cm
- Living 6 cm

Not allowed: - Curves on multiple directions
- Decay
- Blue stain -fungi infection
- Insect holes
- Cracks
- Internal items
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Theoretical sawlog volumes were estimated for each tree by integrating species-specific 
stem curve models (Laasasenaho 1982) until the minimum sawlog-diameters were reached. The 
requirement for allowable sawlog lengths (3.7–6.1 m) was also considered, and the birch model 
was used for all deciduous trees. In the spruce and birch stem curve models, only dbh and h were 
used as predictors, whereas in the pine stem curve model also the d6 was employed if it was avail-
able (i.e. if dbh was ≥ 16 cm). Furthermore, the factual sawlog volumes of sawlog-sized Scots 
pines were calculated by subtracting the volume of defective parts from the theoretical sawlog 
volume. A minimum length of 3.7 m was required for all sawlog-sized parts. In the case of spruce 
and deciduous trees, the theoretical sawlog volume was also used as the factual sawlog volume, 
because our field data only included factual sawlog volumes for pines. This decision was sup-
ported by prior knowledge of strong pine dominance at the study sites, and, thus, the minor effect 
of other species. Information about the quality of visually bucked pines with respect to different 
site types are shown in Table 2.

Given that our field data also included the exact position of each tree, we divided each plot 
into four smaller 15 × 15 m plots to be used in modelling. This almost corresponds to the cell size 
(16 × 16 m) used in Finnish area based approach (ABA) forest inventories. Therefore, the original 
30 × 30 m plots are considered in this study as stand approximations (henceforth “stand”) and the 
smaller 15 × 15 m plots are considered as the training data (henceforth “plot”). The species-specific 
plot-level theoretical and factual sawlog volumes were summed from individual trees within the 
plot in question. The main characteristics of both plots and stands are shown in Table 3.

Table 2. The distribution of quality assessed Scots pines by site type index. Calculated with all 
pines and different subsets of pines. Relative proportions in parentheses. The mean and the standard 
deviation of the observed relative sawlog reduction are also shown. The study area is located in 
boreal forest in eastern Finland.

All OMT MT VT

All pines 1235 46 787 402
Flawless pines 346 (28.0%) 4 (8.6%) 211 (26.8%) 131 (32.6%)
Partly defective pines 625 (50.6%) 21 (45.7%) 406 (51.6%) 198 (49.3%)
Fully defective pines 264 (21.4%) 21 (45.7%) 170 (21.6%) 73 (18.1%)
MeanSR 39.8 64.1 40.1 36.4
SdSR 36.9 37.8 37.0 35.6

OMT = fertile, MT = moderate, VT = poor, Sd = standard deviation, SR = sawlog reduction (%).

Table 3. Main characteristics of the studied plots (15 × 15 m, n = 164) and stands (30 × 30 m, n = 41). Stand-level 
values are shown in parentheses. The study area is located in boreal forest in eastern Finland. 

 Min Max Mean Sd

Theoretical sawlog V (m3 ha–1) 13.7 (21.0) 742.8 (557.3) 175.1 (175.1) 129.7 (121.2)
Factual sawlog V (m3 ha–1) 0 (8) 631.9 (519.0) 124.3 (124.3) 105.6 (100.0)
Pine prop. of the theoretical sawlog V (%) 8.8 (42.5) 100.0 (100.0) 84.5 (84.6) 23.4 (18.8)
Pine prop. of the factual sawlog V (%) 0 (28.6) 100.0 (100.0) 79.4 (78.8) 28.9 (24.3)
Mean dbh (cm) 10.9 (12.0) 35.5 (28.8) 18.0 (17.6) 4.7 (4.1)
Mean h (m) 9.7 (10.8) 31.3 (25.6) 16.3 (16.1) 3.9 (3.4)
Basal area (m2 ha–1) 6.5 (10) 60.0 (45.5) 24.4 (24.4) 9.0 (7.9)

Sd = Standard deviation, V = volume, prop. = proportion, dbh = diameter at breast height, h = height.
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2.2 Airborne laser scanning data

An Optech Titan sensor was used to acquire ALS data from the study area at the beginning of July 
2016, i.e. one year prior to field measurements. Optech Titan provides multispectral ALS data 
from three different wavelengths, but in this study we used only the channel with a wavelength 
of 1064 nm (near-infrared). This wavelength is often used in ALS devices (Pfennigbauer and 
Ullrich 2011), and it has been concluded earlier that it performs well in the prediction of many 
forest attributes (Dalponte et al. 2018). The main scanning parameters were as follows: flying 
altitude 850 m, scanning angle 40 degrees, pulse frequency 250 kHz and strip overlap 55%. The 
strip width on the ground was 650 m and the pulse density with channel 2 was approximately 13 
pulses per square meter.

The ALS echoes were classified into ground hits and other hits, as proposed by Axelsson 
(2000), and the digital terrain model (DTM) was interpolated with Delaunay triangulation by means 
of ground classified echoes. Echo heights were scaled to above ground level by subtracting the 
DTM from the corresponding location.

We separated our ALS point cloud into first (first of many + only), last (last of many + only) 
and intermediate echo groups, and computed the plot level ALS metrics separately for these groups. 
The derived ALS metrics are shown in Table 4.

2.3 Prediction of factual sawlog volume

2.3.1 General approaches

In this study, a total of nine alternatives (see next sub-chapter) were tested to predict plot-level 
factual sawlog volumes. The three approaches on which these nine alternatives were based, i.e. 
tree-level sawlog reduction model (SRM), linear mixed-effects (LME) models, and tree list (TL), 
are described and justified next. We encourage readers to look at the cited references for more 
detailed information.

Sawlog reduction model approach (“SRM approach”). This approach employs a national 
tree level sawlog reduction model for Scots pines in southern Finland (Mehtätalo 2002) (Eq. 1 
and 2). This approach was chosen, because the model is commonly used in Finland, and we are 
interested of its performance in our data.

Table 4. Airborne laser scanning (ALS) metrics derived from the ALS point cloud.

ALS metric Definition Echo type

hmax/intmax Maximum H/I F + L
hmin/intmin Minimum H/I F + L
hstd/intstd Standard deviation of H/I F + L + Interm.
hmed/intmed Median H/I F + L
hmean/intmean Mean H/I F + L + Interm.
hskew/intskew Skewness of H/I F + L
hkurt/intkurt Kurtosis of H/I F + L
hi/inti ith percentile of H/I F + L
dj Density at height j F + L
echo_prop Proportion of echoes F + L + Interm.

i = 10, 20…80, 90; j = 0.5, 2, 5, 10, 15, 20; H = height; I = intensity; F = first; L = last; Interm. 
= Intermediate.
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where l(x) = temporary value; t = age (years); d = diameter at breast height (cm); y = latitude in the 
Uniform Coordinate System (km, here in the range of 6912–6948); kmp = height above sea level 
(m, here in the range of 91–164); suo = 1 if the plot is located on peatland; reh = 1 if the site type 
is fertile (OMT or more fertile); kar = 1 if the site type is very poor (Cladina Type or poorer). The 
results of Eq. 1 were further used to calculate tree level sawlog reductions (Eq. 2).
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exp( ( ))

exp( ( ))
( )�
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where si(x) = sawlog reduction, l(x) is the outcome of Eq. 1 and εi = error. During the field work, 
age was visually evaluated only at the stand-level, which was used for all the trees in the plot. Ter-
rain height was fetched from the DTM provided by the National Land Survey of Finland (Elevation 
model 10 m, 04/2018). The value of si(x) is always between 0 and 1 and it describes the relative 
reduction in sawlog volume. The final estimates for the factual tree level sawlog volumes were, 
therefore, calculated by subtracting the product of si(x) and theoretical sawlog volume from the 
theoretical sawlog volume. Finally, these tree-level volumes were summed to the plot-level and 
converted to the hectare level (m3 ha–1). The performance of the sawlog reduction model was also 
tested at the tree-level to examine our additional aim. This performance evaluation was made by 
inspecting different subsets of pines (e.g. partly defective pines, flawless pines).

Linear	mixed-effects	model	approach	(“LME	approach”). Linear mixed-effects models 
were constructed to predict i) factual sawlog volume (m3 ha–1), ii) theoretical sawlog volume 
(m3 ha–1), and iii) sawlog reduction (m3 ha–1) at the plot-level. Linear models have been commonly 
used to predict different forest attributes by means of ALS (Næsset 1997). LME approach was 
used instead of regular linear models, because our data had hierarchical structure (each stand was 
composed of four plots). The grouped structure of the data was considered by adding stand specific 
random intercepts into models. However, the utilisation of the random intercept in the prediction 
would require local measurements, which would not be available in practice. Therefore, only the 
fixed parts of the models were used for predicting. Ground truth sawlog reduction needed in the 
modelling was calculated by subtracting the factual sawlog volume from the theoretical sawlog 
volume. The effect of site fertility was also tested by employing site type dummy variables as 
additional predictors. Thus, six different LME models were eventually constructed. These models 
were then used in three different ways to predict factual sawlog volumes. All the models were 
constructed in the R statistical computing environment (R Core Team 2016) using the nlme package 
(Pinheiro et al. 2018). The models were fitted with Restricted Maximum Likelihood (Fahrmeir et 
al. 2013) and had the form as follows (Eq. 3).

where Xki is the vector of the fixed predictor variables (i.e. ALS metrics and possible site type 
dummy variables) for plot i in stand k,	β is the vector of the regression coefficients for the fixed 
effects, uk is the random effect for stand k, and eki is the residual error for plot i in stand k.

The predictor variables were chosen from the set of all derived ALS metrics in a process 
whereby the least significant predictors were deleted in steps until the p-value of each remaining 
predictor was < 0.001. After this point, the best combination of 2–3 predictors, in terms of RMSE%, 

 (3)ki ki k kiy u e  X β
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BIAS% and overall homoscedasticity of the residuals, was examined manually. In addition, the 
leave-one-out cross-validation (LOOCV) was used for all models at the stand-level, which ensured 
that we always ignored the selected 30 × 30 m stand in turn, and fitted the models with the rest of 
the data. A square root transformation of the response variable was used with every model, so the 
bias correction was added to the estimates.

Tree list approach (“TL approach”). We constructed the tree lists that include factual 
sawlog volumes for the target plots using nearest neighbour (NN) imputation (Packalen and Mal-
tamo 2008). The NN methods have been used in several studies (Packalen and Maltamo 2007; 
Hudak et al. 2008; Latifi et al. 2010) and in operational projects (Maltamo and Packalen 2014). 
The benefit of the NN imputation is that it allows the construction of tree lists from the trees of 
training plots (Temesgen et al. 2003; Packalen and Maltamo 2008). We predicted the tree lists by 
employing ALS metrics and factual sawlog volumes by tree species as predictor and response vari-
ables, respectively. A Most Similar Neighbour (MSN) distance was used as a similarity measure 
in the NN imputations (see Eq. 1 in Moeur and Stage 1995). The selection of predictor variables 
was implemented following the algorithm proposed in Packalen et al. (2012), which is based on 
a heuristic optimization algorithm known as a Simulated Annealing (Kirkpatrick et al. 1983). The 
aim of the algorithm is to minimize the cost function by solving the NN model repeatedly over a 
fixed number of times. Here, the minimised cost is the weighted mean RMSE% (see Eq. 5) value 
over all response variables, i.e. sawlog volume of Scots pine, sawlog volume of Norway spruce, 
and sawlog volume of deciduous trees. The proportions of theoretical sawlog volume by tree spe-
cies in the field data were used as weights (0.79 for pine, 0.16 for spruce, and 0.05 for deciduous 
trees, respectively).

We implemented the NN imputations at the plot-level, and the resulting tree lists were con-
structed from tree lists of selected neighbours (that also contain factual sawlog volumes) retrieved 
from the five most similar plots with stand-level LOOCV (k value fixed at 5). The weighting of 
neighbouring plots was evaluated as an inverse of the MSN distance (Eq. 4)

Wuj
uj

uj

k

D

D

�
�

1

1
4

2

21

( )

where Wuj is the weight between the plots u (target) and j (reference), k is the number of nearest 
neighbours and Duj2  is the squared MSN distance between plots u and j.

2.3.2 Alternatives for the prediction of factual sawlog volumes

The nine alternatives we tested are described below. All of them are applications of previously 
introduced SRM, LME, or TL approaches. The code in front of the definition (e.g. 2a) will be used 
henceforth when referring to the alternative in question.

1) Sawlog reduction model was subtracted from the theoretical sawlog volume that was 
first calculated by taper curves using field measured h, dbh, and d6. The estimated fac-
tual sawlog volume was calculated at the tree-level and summed to the plot-level. This 
alternative does not utilise ALS data and is applied here to show the theoretical level of 
accuracy that can be obtained without field information on tree quality reductions.

2a) Linear mixed-effects model for factual sawlog volumes.
2b) Alternative 2a + site type considered with additional dummy variables in the LME model.
3a) Linear mixed-effects model for theoretical sawlog volumes subtracted with the SRM.
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3b) Alternative 3a + site type considered with additional dummy variables in the LME model.
4a) Linear mixed-effects models for theoretical sawlog volumes and sawlog reduction. The 

factual sawlog estimate was then calculated by subtracting the latter from the former.
4b) Alternative 4a + site type considered with additional dummy variables in the LME 

models.
5) Factual sawlog volume imputation using the TL approach.
6) Theoretical sawlog volume imputation from the tree list subtracted with the SRM.

2.4 Accuracy assessment

The modelling was made at the plot-level (15 × 15 m) and the accuracy assessment was made at the 
stand-level (30 × 30 m), after the plot-level estimates had been first aggregated to the stand-level. 
Grid level predictions are aggregated to stand level also in operational area-based ALS inventories. 
We assessed the accuracy of the alternatives at the stand-level using the relative RMSE (Eq. 5) 
and BIAS (Eq. 6) values.

where n is the number of stands in the dataset, yi is the observed factual sawlog volume for stand i, ŷi
is the predicted factual sawlog volume for stand i and y  is the measured mean of the factual sawlog 
volume in the dataset. Scatterplots presenting observed vs. predicted values were also examined.

3 Results

3.1	 Linear	mixed-effects	models

Linear mixed-effects models were built to predict three different attributes: factual sawlog volume, 
theoretical sawlog volume, and sawlog reduction. In addition, the effect of site fertility was tested 
by simply adding dummy variables as predictors to the models. The fixed parts, significance of 
site type dummies, and standard deviations of random effects and residuals of the six models 
fitted with all data are shown in Table 5. With all models, a greater proportion of the variability 
not explained by the fixed part was associated with the model error than the random intercepts 
between stands. Due to square root transformations in the response variables, the right sides of the 
equations were squared in the prediction phase and a bias correction (standard deviation of random 
effects + standard deviation of residuals) was also added. RMSE% and BIAS% of the models after 
LOOCV are also presented in Table 5.

3.2 Accuracies associated with factual sawlog volume predictions

The resulting RMSE% values associated with the predicted factual sawlog volume at the stand-
level varied from 20.9% to 30.0% (Table 6). The alternative that employed only the LME model 
for factual sawlog volumes with site type dummy variables (2b) proved to be the most accurate, 
while the alternative in which the tree list based theoretical sawlog volume was subtracted with 

2

1

ˆ( ) 100% * (5)
n i i

i

y yRMSE
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1
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Table 5. Information of the linear mixed effects models when fitted with all data, excluding the RMSE% and BIAS% 
values which are after leave-one-out cross-validation. For the fixed parameters, the standard error is given in parenthe-
ses. The study area is located in boreal forest in eastern Finland and it is dominated by Scots pine.

LME-1 LME-2 LME-3 LME-4 LME-5 LME-6

Response (Factual sawlog V)1/2 (Theoretical sawlog V)1/2 (Sawlog reduction)1/2

Intercept 9.140 (1.496) 7.163 (1.492) 7.379 (1.863) 5.878 (1.855) 5.192 (1.109) 5.317 (1.717)
f_h902 0.021 (0.001) 0.021 (0.001) - - - -
l_h90 - - 0.810 (0.050) 0.804 (0.050) - -
f_h30 - - - - 0.283 (0.063) 0.283 (0.066)
l_d10 –9.082 (1.663) –10.008 (1.617) –14.393 (1.649) –15.077 (1.646) - -
f_d2 - - - - –8.592 (1.710) –8.580 (1.790)
MT - 2.718 (0.772) - 2.241 (0.784) - –0.124 (1.398)
VT - 2.843 (0.829) - 2.154 (0.841) - –0.141 (1.477)

var(u) 0.9742 0.8172 0.9132 0.8162 1.5992 1.6512

var(e) 1.2842 1.2812 1.3312 1.3292 1.8352 1.8362

p(MT) - 0.001 - 0.007 - 0.93
p(VT) - 0.002 - 0.015 - 0.92

RMSE% 30.85 29.46 29.18 28.18 82.45 83.27
BIAS% –0.44 –0.91 –0.14 –0.32 3.83 3.75

V = volume, f/l denotes whether the metric is derived from the first or last echoes, h30 and h90 are the 30th and 90th height percen-
tiles, d2 and d10 are the densities at heights of 2 and 10 m, MT and VT = site type dummy variables, var = variance, p(MT/VT) = the 
p-values of corresponding site type dummy variables.

Table 6. The root mean squared error (RMSE%) and BIAS% values for the predicted factual sawlog 
volumes with different alternatives at the stand-level (30 × 30 m) in Scots pine dominated boreal 
forests. Alternatives b always include the site type dummies. See Materials and Methods and Table 5 
for detailed definitions.

Alt. Definition RMSE% BIAS%

1 Observed theoretical sawlog volume - SRM 29.08 –10.26
2a LME-1 factual sawlog volume 22.69 –0.44
2b LME-2 factual sawlog volume 20.92 –0.91
3a LME-3 theoretical sawlog volume - SRM 27.16 –10.19
3b LME-4 theoretical sawlog volume - SRM 25.27 –10.50
4a LME-3 theoretical sawlog volume - LME-5 sawlog reduction 25.11 –1.77
4b LME-4 theoretical sawlog volume - LME-6 sawlog reduction 23.78 –1.98
5 TL factual sawlog volume 27.31 3.20
6 TL theoretical sawlog volume - SRM 30.03 –7.98

Alt. = alternative, LME = linear mixed-effects model, TL = tree list, SRM = sawlog reduction model of Mehtätalo 
(2002).

SRM (6), was the least accurate. The inclusion of the site type dummy variables into LME models 
improved the corresponding predictions (2–4). All the alternatives that included SRM (1, 3 and 6) 
yielded clear overestimates. The LME model based predictions (3) were also more accurate than 
the theoretical alternative based on actual tree dimensions (alternative 1).

In the observed vs. predicted values scatterplots at the stand-level (Fig. 1), only the versions 
that also included the site type dummies (b) are presented for alternatives 2–4. This was done for 
the sake of simplicity as the a and b versions were very similar. A general difference can be seen 
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between the alternatives based on the LME models (2–4) and the tree list (5 and 6). Moreover, 
all three alternatives that included the SRM (1, 3 and 6) also produced overestimates, which is 
evident in the scatterplots.

Fig. 1. Observed vs. predicted values for the factual sawlog volume (m3 ha–1) at the stand- level (30 × 30 m). For sim-
plicity, only the b versions of alternatives 2, 3 and 4 are shown. LME = linear mixed-effects model, TL = tree list, SRM 
= sawlog reduction of Mehtätalo (2002). See Materials and Methods for detailed definitions. The study area is located 
in boreal forest in eastern Finland and it is dominated by Scots pine.
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3.3 Performance of the national sawlog reduction model

We evaluated the performance of the SRM model with different subsets of pines (Table 7). The 
subset with pines that produced at least one acceptable sawlog (subset 1) resulted in RMSE% 
values approximately 5% smaller than the subset where all the flawless pines were excluded 
(subset 2). In addition, this exclusion led to clear overestimates; BIAS% value of subset 2 was 
–15.3%. However, subset 2 performed considerably better than the subset 4 with the pines that 
were not flawless. In terms of RMSE% values, the most accurate predictions (30.4%) originated 
from the subset with only flawless pines (subset 3), although in this case the factual sawlog volume 
was highly underestimated (BIAS%: 27.8%). The smallest and largest reductions were 15.4% 
and 63.1%, respectively, which produced standard deviation values three times smaller than the 
observed value. The BIAS% value was –18% when all pines were included, so the factual sawlog 
volume, in general, was notably overestimated.

4 Discussion

4.1 Overview of the results and study conditions

Our results imply that under homogenous circumstances, a correlation between ALS metrics and 
factual sawlog volume exists, although the accuracy of the predictions might not be satisfactory. 
Also, the accuracy varied considerably between the different alternatives. The alternatives based 
on LME approach performed better than the alternatives based on TL approach.

While a comparison of our results with previous studies is a challenge due to widely varying 
conditions and methods, our overall results are in line with previous studies. For example, Bol-
landsås et al. (2011) predicted the factual sawlog volume at the 50 × 50 m level with a RMSE% 
value of 24%. At the tree-level, Maltamo et al. (2009) achieved lower RMSE% values with both 
NN imputation and Seemingly Unrelated Regression methods. However, in addition to a completely 
different approach, dataset and methods, they also predicted the proportion of sawlogs with respect 
to stem volume, which is not exactly the same as factual sawlog volume. In general, more studies 
that consider the prediction of factual sawlog volumes or other quality attributes are needed to 
distinguish the most applicable approaches and methods.

Table 7. Root mean squared error (RMSE%) and BIAS% values for the model of Mehtätalo (2002) 
when estimating the factual sawlog volume with different sets of Scots pines. Subset 1 = pines 
with factual sawlog volume > 0. Subset 2 = pines with factual sawlog volume > 0, but not flawless. 
Subset 3 = flawless pines. Subset 4 = all defective pines. The main characteristics of the relative 
sawlog reduction (%) at the tree-level for both observed and modelled values with different sets of 
pines are also shown. The study area is located in boreal forest in eastern Finland.

RMSE% BIAS% MinSR MaxSR MeanSR SdSR

Observed - - 0 100 39.8 36.9
All pines (n = 1235) 73.6 –18.0 15.4 63.1 32.4 10.4
Subset 1 (n = 971) 38.8 1.3 15.4 58.5 31.2 10.0
Subset 2 (n = 625) 43.7 –15.3 15.4 58.5 30.1 9.6
Subset 3 (n = 346) 30.4 27.8 16.1 58.2 33.3 10.2
Subset 4 (n = 889) 96.9 –46.7 15.4 63.1 32.1 10.5

Sd = standard deviation, SR = sawlog reduction (%).
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Our field data only included the factual sawlog volumes for large Scots pines. In addition to 
pines, the field data also included Norway spruce and birch trees, both of which have high economic 
value in Finnish forestry. However, as the study was conducted using ABA, other tree species and 
their factual sawlog volumes could not be just ignored. Therefore, based on the knowledge of 
strong pine dominance, we also used the theoretical sawlog volume as the factual sawlog volume 
for these other tree species. In other words, due to data restrictions, we expected that all spruce and 
birch trees to be flawless (i.e. the sawlog reduction model was not applied to them). In practice, 
this is obviously not a realistic assumption as different quality requirements apply to spruce- and 
birch sawlogs as well. This affects the results of alternatives 1, 3, and 6 on mixed-species plots 
especially, because the factual sawlog volume of spruce and deciduous trees on those plots was 
assumed to be predicted perfectly. Consequently, SRM had a smaller weighting when total sawlog 
volumes were predicted. Nevertheless, since the assumption of strong pine dominance holds true 
(Table 3), the overall effect can be expected to be relatively minor.

4.2	 Linear	mixed-effects	models	vs.	tree	lists

The alternatives based on LME models performed notably better than the TL alternatives (Table 6). 
There were some general differences between these approaches (described below), so the compari-
son between alternatives 2 vs. 5, and 3 vs. 6 is not completely straightforward.

Nevertheless, as the TL approach has traditionally performed well in the prediction of other 
forest attributes (Packalen and Maltamo 2008), the magnitude of the difference related to the predic-
tive performances was surprisingly high in favour of LME approach. Presumably this implies that 
the training data that was used in the TL method was not comprehensive enough and, therefore, 
suitable neighbours were not found. In addition, the NN imputation was conducted using three 
separate response variables (factual sawlog volume of pines, spruce and deciduous trees), and the 
eventual predictor variables were chosen by minimising the weighted average of the RMSE% values 
of all response variables. This means that the total factual sawlog volume of all species was not 
used as a response variable in the NN imputation, but was in the corresponding LME models with 
a square root transformation (LME-1 and LME-2 in Table 5). An additional minor difference was 
that alternative 6 was calculated from the same tree list with the species-specific factual sawlog 
volumes as the response variables, while the response variable in alternative 3 was the square root 
of total theoretical sawlog volume of all species (LME-3 and LME-4 in Table 5).

We imputed the tree list using a multivariate response configuration that consists of factual 
sawlog volumes associated with Scots pine, Norway spruce and deciduous species. The multivariate 
response configuration has been showed to perform well in NN imputation when the MSN distance 
metric is used (Maltamo and Packalen 2014). The main reason for the selection of the multivariate 
response was that it ensured that the SRM was only applied to pines. Another reason for the selec-
tion of the multivariate response was that the response configuration comprising species-specific 
attributes is compatible with the operational ALS inventory as implemented in Finland. It is also 
worth noting that a great advantage of the TL approach is that it also allows (unlike LME models) 
species separation.

4.3 National tree level sawlog reduction model

All the alternatives that included the sawlog reduction model of Mehtätalo (2002) (1, 3 and 6) 
yielded clear overestimates (BIAS% –8.0 to –10.5%), which means that quality of pine in the study 
area is poorer than indicated by the model. This sawlog reduction model is not able to adapt to cases 
where the whole stem is so defective that quality requirements are not met, even for one sawlog, 
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or where the stem is completely flawless (Table 7). The effects of these two extremes, therefore, 
compensate each other. Other than that, the RMSE% and BIAS% values varied depending on the 
set of pines in question. The variation in the main characteristics between subsets was only minor 
and was not in agreement with the field data, e.g. mean of the relative sawlog reduction was largest 
with flawless pines (subset 3), although it should have been the smallest. This indicates that the 
model produces somewhat constant estimates regardless of tree quality. This was also expected, 
as the main variables in the model are age, diameter at breast height, latitude and the height above 
sea level, none of which varies notably within our dataset. The dummy variables that consider site 
type also have a small effect.

The predictions for factual sawlog volumes in alternatives 3 and 6 were obtained by subtract-
ing the SRM from the ALS based theoretical sawlog volume predictions. Therefore, in addition 
to SRM, the errors in these initial ALS predictions also affected the predictive performance. All 
the LME models were bias corrected and the tree list based theoretical sawlog volume predictions 
were almost non-biased (BIAS% was 0.1% and 0.4% with and without site type information, 
respectively). Consequently, the resulting BIAS% values of alternatives 3a and 3b at the stand-
level did not change notably compared to alternative 1, while the BIAS% value of alternative 6 
improved by about 2.3% points, respectively. Nevertheless, alternatives 3a and 3b with predicted 
theoretical sawlog volume at the stand-level yielded smaller RMSE% values than alternative 1 with 
the observed theoretical sawlog volume, which is somewhat surprising. However, this was not the 
case at the plot-level prior aggregations (data not shown) as the RMSE% values of alternatives 1, 
3a and 3b were 33.0%, 35.9% and 34.4%.

The models of Mehtätalo (2002) were tested also by Malinen et al. (2007), who compared the 
models with bucking-simulation based approach in the prediction of timber assortment recovery. 
They reported that in case of pine the sawlog reduction model produced clearly smaller estimates 
for sawlog recovery than the bucking simulation. This is contradictory to our findings, but com-
prehensive comparison is again difficult as the datasets originated from different geographical 
locations, and different methods were used. Nevertheless, the species-specific sawlog reduction 
models that are presented in Mehtätalo (2002) are in operational use in Finnish forest planning 
systems (Metsäkeskus 2017). In general, the results in our data were inaccurate, which empha-
sises the need for more accurate methods to predict factual sawlog volumes locally in operational 
planning processes.

4.4	 Effect	of	site	type

Scots pines are susceptible to branch thickness and crookedness of the stem related defects when 
they grow on fertile sites. Our field data supports this observation, as both the proportion of fully 
defective pines and the mean of observed sawlog volume reduction were clearly larger on fertile 
(OMT) plots than elsewhere (Table 2). The p-values of site type dummy variables were small in 
LME models for factual and theoretical sawlog volume indicating statistical significance (LME-2 
and LME-4 in Table 5). The corresponding large p-values in LME model for sawlog reduction 
(LME-6 in Table 5) are probably explained by the overall poor performance of the sawlog reduc-
tion model (LME-5 in Table 5). Nevertheless, the accuracies of the LME model based alternatives 
(2–4) clearly improved when site type information was utilised. Therefore, the use of site type 
information as auxiliary data is probably useful when the aim is to predict the quality associated 
attributes of Scots pine. For example, in Finnish practical large-scale ALS based forest inventories, 
site type information might be acquired from the existing stand database, which was collected and 
updated over decades in the previous inventory method.
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5 Conclusions

In general, the factors that cause the reduction in sawlog volumes are difficult to observe from above 
as they are located in the main stem (possibly also underneath the bark), or in the connection of 
stem and branches. Additionally, the defects may not show any relationship to crown characteris-
tics. Therefore, the potential for using ALS data to predict commercial tree quality may be limited, 
because the majority of the laser pulses hit the tree crowns or bare ground instead of the stems. 
Nevertheless, our results indicate that when an examination is carried out at the 30 × 30 m plot-level 
under relatively homogenous forest conditions, there is some degree of correlation between the 
ALS data, and the factual sawlog volume of Scots pine. The best predictive performance (RMSE%: 
21%) was obtained with a LME model for the factual sawlog volume. However, the acquisition of 
the training data with our method is a very laborious task, so a more practical alternative is needed 
to take account of tree quality attributes in operational ALS inventories.
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