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Highlights
• Biomass estimation models developed for Diospyros mespiliformis.
• Models based on DBH alone predicted aboveground biomass with 97.11% accuracy.
• Published models had relative error between –72% and +98%.
• Models for branch and stem biomass were more accurate than those for leaf biomass.

Abstract
Accurate estimates of aboveground biomass (AGB) strongly depend on the suitability and preci-
sion of allometric models. Diospyros mespiliformis Hochst. ex A. DC. is a key component of most 
sub-Sahara agroforestry systems and, one of the most economically important trees in Africa. 
Despite its importance, very few scientific information exists regarding its biomass and carbon 
storage potential. In this study direct method was used to develop site-specific biomass models 
for D. mespiliformis tree components in Burkina Faso. Allometric models were developed for 
stem, branch and leaf biomass using data from 39 tree harvested in Sudanian savannas of Burkina 
Faso. Diameter at breast height (DBH), tree height, crown diameter (CD) and basal diameter 
(D20) were regressed on biomass component using non-linear models with DBH alone, and DBH 
in combination with height and/or CD as predictor variables. Carbon content was estimated for 
each tree component using the ash method. Allometric models differed between the experimental 
sites, except for branch biomass models. Site-specific models developed in this study exhibited 
good model fit and performance, with explained variance of 81–98%. Using models developed 
from other areas would have underestimated or overestimated biomass by between –72% and 
+98%. Carbon content in aboveground components of D. mespiliformis in Tiogo, Boulon and 
Tapoa-Boopo was 55.40% ± 1.50, 55.52% ± 1.06 and 55.63% ± 1.00, respectively, and did not 
vary significantly (P-value = 0.909). Site-specific models developed in this study are useful tool 
for estimating carbon stocks and can be used to accurately estimate tree components biomass in 
vegetation growing under similar conditions.
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1 Introduction

Biomass estimates remain essential for understanding the role of forests as carbon sinks and sus-
tainable forest management (IPCC 2006; Pan et al. 2011). Tropical forests play an important role 
for the climate change as a main carbon sink for the whole world. Biomass and carbon accounting 
in natural and semi-natural vegetation types has rapidly become the focus over the last decades 
(Brown 2002; Chave et al. 2005; Chauhan et al. 2010, 2012), as being paramount step towards 
the implementation of the emerging carbon credit market mechanism such as Reducing Emission 
from Deforestation and Forest Degradation (REDD+) (Bernard et al. 2014). Aboveground biomass 
(AGB) is a useful measure for comparing structural and functional attributes of forest and savanna 
ecosystems across a wide range of environmental conditions (Brown et al. 1999). AGB also serves 
as an indicator for the distribution and abundance of vegetation above the ground.

Tree biomass can be estimated by: (1) destructive methods (Balima et al. 2019; Dimobe et 
al. 2018a,b; Bayen et al. 2015), (2) Non-destructive methods (Dimobe et al. 2018c,d, 2019), and 
(3) remote sensing techniques (Qureshi et al. 2012; Galidaki et al. 2017). Destructive methods 
which involve harvesting of trees, drying and weighing different components (Brown 1997) are 
time consuming and costly. They are also not applicable to large areas and are restricted in protected 
areas or for species that are endangered compared to non-destructive methods, while remote sens-
ing is limited by access to technology and cloud cover. Allometric biomass models are statistical 
formulas relating tree biometric variables (e.g. diameter at breast height, tree height, basal diameter 
or crown diameter) to tree dry biomass. These models can be developed by destructive sampling 
(Kuyah et al. 2013; Dimobe et al. 2018a,b), semi-destructive (Mensah et al. 2016, 2017) and 
non-destructive (MacFarlane et al. 2014; Dimobe et al. 2019), and used based on predictors such 
as diameter at breast height (DBH), tree height, wood density, crown diameter or basal diameter, 
or the combination of these variables. Although allometric models are developed by destructive 
sampling, once developed, they allow non-destructive estimation of biomass over a large area at 
relatively low cost. Allometric models for estimating AGB can be linear, logarithmic, exponential 
or power law (Návar 2009; Bayen et al. 2015; Mensah et al. 2016). Power law however remain 
the most common used model because it is supported by growth that assumes a constant scaling 
rate across ontogenies (Mensah et al. 2017).

A limited number of studies have developed allometric models for species in dryland envi-
ronments. These are based on data derived from wider geographical range; for example Brown 
(1997) developed allometric models from field measurements in savanna ecosystems of South 
America and dry forests of India; Chave et al. (2014) reported allometric models for pantropical 
forests. Recent studies (Shirima et al. 2011; Kuyah et al. 2012; Chave et al. 2014; Mensah et al. 
2017) have also reported allometric models specific to African ecosystems. However, few of them 
refer directly to Sudanian savanna ecosystems of West Africa (Sawadogo et al. 2010; Bayen et al. 
2015; Dimobe et al. 2018a,b). Accurate estimates of biomass in many tropical dryland regions are 
still lacking because of lack of allometric models. Challenges in obtaining measured field data in 
these species-rich ecosystems have made it difficult to develop models for predicting biomass of 
individual trees (Dimobe et al. 2018a,b). This is a major constraint given that accurate estimates 
of biomass depend on the appropriateness of the allometric models that are used (Sileshi 2014; 
Picard et al. 2015). There is mounting evidence that application of models not suitable to target 
vegetation results in large systematic deviations from observed data.

Diospyros mespiliformis Hochst. ex A. DC. is a species of the family Ebenaceae providing 
important ecosystem services to local population in sub-Saharan Africa. The tree serves as wind 
breaks, controls soil erosion and provides a habitat for other organisms. It also has potential for 
climate mitigation through carbon sequestration – a function that has not been quantified. The role 
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of D. mespiliformis in climate change mitigation is therefore poorly understood. Carbon storage 
potential of the species can be underestimated or overestimated depending on the allometric model 
chosen for biomass estimation. To fill this gap, we developed allometric model for prediction of 
aboveground biomass and the biomass of tree components for D. mespiliformis in Burkina Faso. 
The specific objectives were to (i) develop species-specific allometric models for estimating total 
biomass and biomass of tree components (stem, branch, leaf) using basal diameter, DBH, total 
height and crown diameter, (ii) compare the performance of the selected model to predict the AGB 
with previously published and well‐established global models, and (iii) predict the carbon content 
in leaf, branch, stem components of D. mespiliformis trees.

2 Material and methods

2.1 Study area

The study was conducted in three protected areas located in the Eastern and Southwestern Regions 
of Burkina Faso, namely, Boulon, Tapoa-Boopo and Tiogo (Fig. 1). Description of the biophysical 
contexts of the three forests areas are presented in Table 1. Boulon and Tiogo forests were clas-
sified by the colonial administration in 1955 and 1940, while that of Tapoa-Boopo was classified 
in the 80s (FAO 2004). In terms of climate, the forest of Boulon is located in the Sudanian zone 
while Tapoa-Boopo and Tiogo are located in the Sudano-Sahelian zone (Guinko 1984). All three 
locations experience a single rain season from May to October with annual precipitation ranging 

Fig. 1. Location of the study area (Bolon, Tapoa-Boopo and Tiogo forests) in Burkina Faso.
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between 600–1000 mm; the rest of the year is dry. The mean annual temperature across the three 
sites is 35 °C; temperatures above 35 °C occur during peak period in the month of April (Bognounou 
2009). Vegetation is dominated by shrub savannas, tree savannas and woodlands.

2.2 Description of the species

Diospyros mespiliformis is a mesopharenophyte that belongs to the family of Ebenaceae with 
a maximum height of 25 m (Arbonnier 2002). The species is widely distributed in sub-Saharan 
Africa, occurring from Senegal east to Eritrea, Ethiopia and Kenya, and south to Namibia, northern 
South Africa and Swaziland, but it is nearly absent in the more humid forest zones of West and 
Central Africa. It is also found in Yemen. D. mespiliformis is widely distributed in agroforestry 
parklands, woodlands, savannas and along riverbanks. Also known as African ebony or jackalberry, 
D. mespiliformis is a multipurpose species. For instance, the wood of D. mespiliformis is used 
for posts in construction, making musical instruments (e.g. drums) and household utensils (e.g. 
cups, spoons, pestles and mortars). The fruit are directly consumed for their vitamins and energy 
contents. The seeds are also eaten. The leaves are occasionally eaten as vegetable and serve as 
fodder for livestock. D. mespiliformis is commonly managed as a crop, but also grows in the wild 
and parklands across the sub-Saharan African savannas. It contributes ecosystem service such as 
wind breaks, controls soil erosion, and climate regulation.

2.3 Forest inventory and biomass sampling

Data were collected through two phases of sampling. For the first phase, forest inventory was 
conducted using 180 plots (60 plots for each site) of 1000 m² (50 m × 20 m) to collect data on 
DBH, total tree height, crown diameter and basal diameter on all individual trees of D. mespili-
formis with DBH ≥ 5 cm inside each plot. The plots were established based on a stratified random 
sampling design. For the second phase, a destructive sampling of the species was carried out for 
quantification of tree biomass in 39 plots (13 plots for each site). Thirteen (13) individual trees 
of the species (one felled tree per selected plot) were harvested at each of the three sites (Boulon, 
Tapoa-Boopo and Tiogo), giving a total of 39 trees for measurements of biomass and subsequent 
development of allometric models (Table 2). To facilitate sampling, the individuals in each site were 
grouped into seven stem diameter classes: 10–20 (4 individual trees in Boulon, 6 in Tapoa-Boopo 
and 5 in Tiogo), 20–30 (5; 1 and 3), 30–40 (2; 3 and 1), 40–50 (1; 1 and 1), 50–60 (1; 0 and 2), 
60–70 (0; 1 and 0) and 70–80 (0; 1 and 1). Individual trees were selected during the rainy season 
in June 2018 when all vegetation was in leaf. Prior to the harvesting, biometric variables, including 

Table 1. Biophysical characteristics of Bolon, Tapoa-Boopo and Tiogo forests (Guinko 1984).

Protected areas Boulon Tapoa-Boopo Tiogo

Region Cascades Eastern Central-West 

Location 10°15´–10°22´N; 12°10´–12°23´N; 12°10´–12°25´N;
4°20´–4°38´W 0°58´–1°13´W 2°39´–2°54´W

Area (ha) 13 521.70 36 202.30 30 339
Climate Sudanian Sudano-Sahelian Sudano-Sahelian
Annual rainfall (mm) 900–1100 600–900 600–900
Rainfall regime Unimodal Unimodal Unimodal
Temperature range (°C) 17–36 25–33 25–35
Main vegetation Dense dry forest, savannas Tree and shrub savannas Tree and shrub savannas
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DBH, total height, crown diameter and basal diameter were measured for all individual trees of 
D. mespiliformis. Crown diameter, DBH and basal diameter were measured using a diameter tape 
graduated in cm. Total tree height was measured from the base of the trunk to the tip of the tree 
using a clinometer. To avoid measurement error and to account for structural variety, the crown 
diameter was measured twice, along the east–west direction and the north–south one (Meyer et al. 
2014). The diameter of all ramification was measured for tree forking below 1.30 m and quadratic 
mean diameter was computed.

Selected trees were cut at ground level using a chain saw. Felled trees were separated into 
stem, branches and leaves. Branches were removed from the stem and cut into weighable sec-
tions. Leaves were separated from branches and collected into bags for weighing. Fresh weights of 
stem, branches and leaves for each individual tree were separately determined in the field using a 
100 kg scale balance. Subsamples of leaves, stem and branches were taken, and their fresh weight 
determined using a 5 kg electronic balance (precision 0.5 g). The subsamples of branches and stem 
were taken as discs of 5 cm thickness depending on the diameter of the trunk or branch. The fresh 
weight of each disc was recorded in the field immediately after harvesting the trees. Two hundred 
grams (200 g) of leaf subsample for each tree was collected into bags to facilitate weighing.

The discs and leaf samples were transported to the laboratory where they were oven dried 
to a constant weight at 105 °C (samples of branches and stems) or 75 °C (samples of leaves). The 
dry weight of the samples was recorded immediately after removal from the oven. The sample 
dry weight was divided by corresponding fresh weight to obtain the dry–to–green weight ratio for 
each tree component. Component dry weight (biomass) was computed by multiplying subsample 
dry–to–fresh weight ratio by the fresh weight of the respective tree component. Total aboveground 
biomass of the tree was calculated as the sum of the biomass of all components in kilograms.

2.4 Estimation of carbon content and carbon stocks

Carbon content in selected individuals of Diospyros mespiliformis was estimated using ash method 
(Allen et al. 1986; Jana et al. 2009; Chavan and Rasal 2011) as follows. Composite samples were 
obtained from the dry matter samples of leaves, branches and stems for determination of their total 
carbon content. The samples were crushed in a cutting mill. Five 2-g samples of each component 
were then collected and submitted for analysis to the Laboratory of Plants and Soils at the Univer-
sity Ouaga1 Joseph Ki-Zerbo (Burkina Faso). Each 2-g sample was placed in a lidless porcelain 
crucible and placed for 2 h inside a muffle furnace set at 550 °C, until calcination was completed. 
The samples were then removed and cooled in a desiccator to be weighed later. After cooling, 
the crucible with ash was weighed and the percentage of carbon was calculated according to the 
formula by Allen et al. (1986):

% / , ( )Ash � �� � �� ��W W W W3 1 2 1 100 1

% % % . , ( )Carbon Ash� �� ��100 0 58 2

where W1 is weight of crucibles, W2 is weight of oven-dried grind samples with crucibles, and W3 the 
weight of ash with crucibles; 0.58 is the content of carbon in dry organic matter (Allen et al. 1986).

The carbon stock in leaves, branches and stems of each individual tree was calculated 
separately and summed up to determine the total organic carbon stock for each individual tree.
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2.5 Data analysis

Biomass data were screened for outliers in scatter plots that assisted also in visually assessing 
the relationships between dependent variables (aboveground biomass and the biomass of compo-
nents) and independent variables (basal diameter, crown diameter, DBH and total tree height). We 
examined the relationship between dependent variables and independent variables using linear, 
logarithmic, exponential and power models. Scatter plots were set to identify the theoretical dis-
tribution that fitted well with the data. As a result, the power law model (Eq. 3) outperformed the 
linear, logarithmic and exponential models; and therefore, was used to fit the biomass data. We, 
therefore, developed site-specific allometric models for each of the tree biomass components (leaf, 
branch, and stem) using the following linearized form of the power-law model (Eq. 4).

Y X� � �� ��
0 1 3, ( )

where Y denotes the leaf biomass, branch biomass or stem biomass; X stands for D20, DBH or CD; 
β0 and β1 the parameters, and ε is the random error.

This model was logarithmically transformed into its linear equivalent form defined as fol-
lowed:

ln( ) ln( ) ln( ) ´ , ( )Y X� � �� � �0 1 4

where ε′ is the additive error.
Based on the selected aboveground biomass model, we developed allometric models for 

stem, branch, leaves and aboveground components based on (i) DBH or basal diameter as lone 
predictor variable, (ii) DBH2 × H, and (iii) DBH2 × H and CD, as independent variables for equa-
tion (5), (6) and (7), respectively:

ln( ) ln( ) ln( ) , ( )Yi DBH� � � �� � �0 1 5

ln( ) ln( ) ln( ) , ( )Yi DBH H� � � � �� � �0 1
2 6

ln( ) ln( ) ln( ) ln( ) , ( )Yi DBH H CD� � � � � �� � � �0 1
2 7

where Yi represents stem biomass, branch biomass and leaf biomass.
We tested whether additional use of total height or/and crown diameter as predictor would 

improve the precision of the prediction. As separate use of potentially correlated independent vari-
ables in regression models could give rise to collinearity (Sileshi 2014), we only considered the 
allometric model that combined DBH (or basal diameter) with tree height and crown diameter as 
single predictor variable. DBH and height were used as combined predictor to account for varia-
tion of height for the same value of diameter while solving collinearity issue in linear regression 
(Dimobe et al. 2018a).

The use of natural logarithmic transformations helped to normalize the response variable, and 
thus to meet the prerequisites of linear regression for simple estimation of the parameters (Dimobe 
et al. 2018a). However, the use of natural logarithmic transformations, induces a systematic bias 
in the final estimation of the response variable, which can generally be corrected (predicted values 
were back-transformed into the original values) by applying the correction factor (Baskerville 1972):

CF RSE� � �exp , ( )2 2 8

where RSE is the residual standard error of the regression.
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Normality and homoscedasticity of the residuals were tested using the Shapiro-Wilks nor-
mality and Breusch-Pagan tests, respectively. The performance of the fitted models was compared 
using adjusted determination coefficient (R2), residual standard error (RSE), Akaike information 
criterion (AIC), a likelihood criterion that penalizes the number of parameters (Burnham and 
Anderson, 2002) and root mean squared error (RMSE), calculated as:

RMSE AGB AGBobs est� �� ���
1

9
2

1N i
N

, ( )

where AGBobs is the observed AGB and AGBest is the estimated AGB.
The site-specific AGB models were compared to four published global models in predicting 

the individual AGB. Published models selected were:
1 0 0673 2

0 976
. .

.
AGB DBH H � � � �� ��  by Chave et al. (2014) for pantropical forests,

where AGB is the aboveground biomass per tree in kg per tree, DBH is the diameter at breast 
height, ρ is wood density in g cm–3, and H is the total height of the tree.

2 0 0776 2
0 940

. .
.

AGB DBH H � � � �� ��  by Chave et al. (2005) for dry forest stands.

3 0 016
2 013

0 204

2

2

. .
.

.

AGB H CD � � �� �� �e  a global tree model proposed by Jucker et al. (2017) 
for angiosperms, using tree height and crown diameter as predictive variables,

where AGB is the aboveground biomass per tree in kg per tree, H is the total height of the 
tree, and CD is the mean crown diameter.

4 13 2579 4 8945 0 6713 2. . . .AGB DBH DBH � � �� � � �� �  a model proposed by Brown et al. 
(1989), using DBH as the only predictor.

Differences between the selected model developed in this study and published models were 
assessed graphically, and the models were also compared using adjusted R2, RMSE and mean 
prediction error. The average relative systematic error was calculated as follow:

Mean predictionerror
AGB AGB

AGB

est obs

obs

�
��

�
�

�

�
����

1
1001N i

N
,

where AGBest and AGBobs are the estimated and observed aboveground biomass, respectively.
The significance of the estimated parameters at α < 0.05 was considered. Allometric models 

with greater adjusted R2, and smaller RMSE and AIC were considered to be the best fitting.
All statistical analyses were performed using R statistical software version 3.4.2 (R Core 

Team 2018).

3 Results

3.1 Allometric models for estimating stem, branch and leaf biomass

Allometric models fitted to stem, branch and leaf biomass of Diospyros mespiliformis showed AIC 
values between 7.35 and 34.79, adjusted R2 between 64.93 and 96.70, and RMSE between 0.256 
and 0.677 (Table 3). Candidate allometric models and their regression coefficients are presented 
in Table 3. The coefficients of log-transformed allometric biomass models were significant for all 
biomass components (p < 0.001, Table 3). In general, the fitted allometric models for the biomass 
components were more accurate for branch and stem biomass than for foliage biomass (Table 3). 
For instance, the fitted models explained more than 90% of the total variations, except for leaf. Stem 
biomass was more accurate predicted in Tiogo and Tapoa-Boopo when DBH and height were used 
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Table 3. Allometric models developed for estimation of biomass of stem, branches and leaves of Diospyros mespili-
formis in Burkina Faso. ln(β0), β1 and γ represent the intercept and regression coefficients of the models, and their 
respective standard errors. The indicators of performance for the models include the adjusted coefficient of determina-
tion (Adj.R2), residual standard error (RSE), root mean squared error (RMSE), Akaike information criterion (AIC) and 
correction factor (CF).

Regression coefficients Performance criteria
Equation Predictors ln(β0) β1 γ Adj.R2 RSE RMSE AIC CF

Boulon (Sudanian zone)
Stem biomass

Eq(5) DBH –3.25***±0.48 2.22***±0.15 94.70 0.327 0.300 11.62 1.055
D20 –4.27***±0.48 2.39***±0.14 96.02 0.283 0.260 07.89 1.041
CD 0.29ns ±0.53 2.14***±0.31 79.85 0.637 0.586 28.98 1.225

Eq(6) DBH2×H –3.08**±0.84 0.84***±0.10 84.83 0.552 0.508 25.28 1.165
DBH2×CD –2.22***±0.49 0.76***±0.06 92.76 0.382 0.351 15.68 1.076

D202×H –3.68**±0.96 0.87***±0.11 83.61 0.574 0.528 26.29 1.179
D202×CD –2.85***±0.51 0.79***±0.06 93.59 0.359 0.330 14.09 1.067

Eq(7) DBH2×H; CD –2.11ns ±1.14 0.56*±0.24 0.78ns ±0.65 85.48 0.540 0.474 25.48 1.157
D202×H; CD –2.37ns ±1.28 0.54ns ±0.24 0.90ns ±0.62 85.17 0.546 0.479 25.75 1.161

Branch biomass

Eq(5) DBH –4.47***±0.64 2.73***±0.20 93.93 0.591 0.395 18.77 1.097
D20 –5.58***±0.81 2.89***±0.24 92.37 0.482 0.444 21.76 1.123
CD –0.32ns ±0.50 2.76***±0.29 87.91 0.607 0.558 27.73 1.202

Eq(6) DBH2×H –4.62***±0.72 1.07***±0.09 92.49 0.478 0.440 21.55 1.121
DBH2×CD –3.32***±0.50 0.94***±0.06 95.03 0.389 0.358 16.18 1.079

D202×H –5.32***±0.95 1.10***±0.11 89.42 0.568 0.522 26.00 1.175
D202×CD –4.02***±0.60 0.98***±0.07 94.06 0.425 0.391 18.49 1.095

Eq(7) DBH2×H; CD –3.30**±0.87 0.69**±0.19 1.08ns ±0.49 94.41 0.413 0.362 18.46 1.089
D202×H; CD –3.36*±1.08 0.62*±0.21 1.34*±0.52 93.00 0.462 0.405 21.39 1.112

Leaf biomass

Eq(5) DBH –3.71***±0.58 2.09***±0.18 91.65 0.390 0.359 16.26 1.079
D20 –4.58***±0.70 2.22***±0.21 90.48 0.417 0.383 17.97 1.091
CD –0.53ns ±0.43 2.10***±0.25 84.94 0.524 0.482 23.92 1.147

Eq(6) DBH2×H –3.85***±0.62 0.82***±0.07 90.76 0.411 0.378 17.57 1.088
DBH2×CD –2.82***±0.48 0.72***±0.06 92.44 0.371 0.342 14.97 1.071

D202×H –4.39***±0.78 0.85***±0.09 88.05 0.467 0.429 20.92 1.115
D202×CD –3.37***±0.55 0.75***±0.06 91.73 0.389 0.357 16.14 1.078

Eq(7) DBH2×H; CD –2.95**±0.81 0.56**±0.17 0.74ns ±0.46 91.93 0.384 0.336 16.58 1.076
D202×H; CD –3.03*±0.97 0.51*±0.19 0.93ns ±0.47 90.60 0.414 0.363 18.56 1.090

Tapoa-Boopo (Sahelo-Sudanian zone)
Stem biomass

Eq(5) DBH –3.89*** ±0.63 2.39***±0.20 92.19 0.401 0.369 16.96 1.084
D20 –4.37***±0.71 2.40***±0.21 91.43 0.420 0.386 18.17 1.092
CD –0.97ns ±0.64 2.77***±0.38 81.58 0.616 0.567 28.12 1.209

Eq(6) DBH2×H –4.50***±0.51 0.99***±0.06 95.43 0.307 0.282 09.99 1.048
DBH2×CD –3.15***±0.61 0.85***±0.08 91.07 0.429 0.394 18.69 1.096

D202×H –4.89***±0.59 0.99***±0.07 94.64 0.332 0.305 12.06 1.057
D202×CD –3.48***±0.67 0.85***±0.08 90.33 0.446 0.410 19.73 1.104

Eq(7) DBH2×H; CD –4.66***±0.74 1.05***±0.19 –0.17ns ±0.57 95.02 0.320 0.281 11.88 1.053
D202×H; CD –5.06**±0.89 1.05**±0.21 –0.16ns ±0.63 94.15 0.347 0.304 13.97 1.062

Branch biomass

Eq(5) DBH –4.99***±0.49 2.83***±0.16 96.39 0.316 0.291 10.78 1.051
D20 –5.56***±0.58 2.84***±0.17 95.65 0.347 0.319 13.21 1.062
CD –1.68* ±0.54 3.36***±0.32 90.15 0.522 0.480 23.83 1.146



10

Silva Fennica vol. 54 no. 1 article id 10215 · Ouédraogo et al. · Allometric models for estimating aboveground …

Table 3 continued.

Regression coefficients Performance criteria
Equation Predictors ln(β0) β1 γ Adj.R2 RSE RMSE AIC CF

Eq(6) DBH2×H –5.46***±0.69 1.15***±0.08 93.97 0.408 0.376 17.44 1.087
DBH2×CD –4.17***±0.43 1.02***±0.05 96.70 0.302 0.278 09.62 1.047

D202×H –5.90***±0.76 1.15***±0.09 93.20 0.434 0.399 19.00 1.099
D202×CD –4.56***±0.50 1.02***±0.06 95.96 0.334 0.307 12.23 1.057

Eq(7) DBH2×H; CD –4.34***±0.85 0.76***±0.22 1.23 ns ±0.65 95.12 0.367 0.322 15.45 1.069
D202×H; CD –4.53**±1.02 0.73*±0.24 1.31ns ±0.71 94.41 0.393 0.345 17.22 1.080

Leaf biomass

Eq(5) DBH –4.64***±0.65 2.17***±0.21 90.17 0.412 0.379 17.65 1.088
D20 –5.09***±0.70 2.18***±0.21 89.93 0.417 0.383 17.95 1.091
CD –2.19* ±0.47 2.62***±0.28 88.10 0.453 0.417 20.12 1.108

Eq(6) DBH2×H –5.02***±0.74 0.88***±0.109 88.63 0.443 0.407 19.53 1.103
DBH2×CD –4.04***±0.55 0.78***±0.07 91.60 0.381 0.350 15.59 1.075

D202×H –5.38***±0.79 0.88***±0.09 88.29 0.449 0.413 19.92 1.106
D202×CD –4.36***±0.58 0.78***±0.07 91.24 0.389 0.357 16.14 1.078

Eq(7) DBH2×H; CD –3.85**±0.93 0.47ns ±0.24 1.30ns ±0.71 90.62 0.402 0.353 17.79 1.084
D202×H; CD –3.99**±1.06 0.46ns ±0.25 1.33ns ±0.74 90.25 0.410 0.359 18.29 1.088
D202×H; CD –3.82***±0.52 0.84***±0.12 0.76ns ±0.36 97.09 0.201 0.176 –0.285 1.020

Tiogo (Sahelo-Sudanian zone)
Stem biomass

Eq(5) DBH –5.11***±0.91 2.75***±0.28 89.44 0.348 0.318 12.54 1.062
D20 –5.78***±1.10 2.82***±0.33 86.95 0.387 0.353 15.08 1.078
CD –0.74ns ±0.97 2.49***±0.54 64.93 0.634 0.579 26.94 1.223

Eq(6) DBH2×H –5.58***±0.93 1.09***±0.11 90.10 0.337 0.308 11.77 1.058
DBH2×CD –3.92**±0.95 0.93***±0.12 85.36 0.410 0.374 16.46 1.088

D202×H –6.18***±1.06 1.12***±0.12 88.67 0.360 0.329 13.38 1.067
D202×CD –4.37***±1.07 0.95***±0.13 83.71 0.432 0.395 17.74 1.098

Eq(7) DBH2×H; CD –6.02***±1.20 1.23***±0.25 –0.41ns ±0.66 89.44 0.348 0.301 13.28 1.062
D202×H; CD –6.56**±1.44 1.22**±0.28 –0.30ns ±0.71 87.66 0.376 0.326 15.15 1.073

Branch biomass

Eq(5) DBH –4.58***±0.85 2.80***±0.27 90.93 0.326 0.298 10.99 1.055
D20 –5.32***±1.00 2.89***±0.29 89.49 0.351 0.321 12.75 1.064
CD –0.63ns ±0.66 2.83***±0.37 84.16 0.431 0.394 17.68 1.097

Eq(6) DBH2×H –4.98***±0.94 1.11***±0.11 90.08 0.341 0.312 12.06 1.060
DBH2×CD –3.63***±0.65 0.98***±0.08 93.30 0.280 0.256 07.35 1.040

D202×H –5.63***±1.03 1.14***±0.12 89.46 0.352 0.321 12.79 1.064
D202×CD –4.13***±0.73 1.00***±0.09 92.50 0.297 0.271 08.69 1.045

Eq(7) DBH2×H; CD –3.77***±1.04 0.73***±0.22 1.10*±0.57 92.19 0.303 0.262 09.92 1.047
D202×H; CD –4.13**±1.19 0.74*±0.23 1.15ns ±0.59 91.80 0.310 0.269 10.52 1.049

Leaf biomass

Eq(5) DBH –4.90***±1.07 2.23***±0.33 80.10 0.407 0.372 16.30 1.086
D20 –5.31** ±1.31 2.25***±0.38 74.64 0.459 0.419 19.19 1.111
CD –1.84* ±0.66 2.29***±0.37 77.52 0.433 0.395 17.76 1.098

Eq(6) DBH2×H –5.27***±1.11 0.89***±0.13 80.36 0.405 0.369 16.14 1.085
DBH2×CD –4.18**±0.86 0.79***±0.10 83.41 0.372 0.339 14.11 1.072

D202×H –5.64**±1.30 0.89***±0.15 76.53 0.442 0.404 18.28 1.103
D202×CD –4.48**±1.01 0.79***±0.12 79.82 0.410 0.374 16.46 1.088

Eq(7) DBH2×H; CD –4.11*±1.32 0.53*±0.28 1.05ns ±0.73 82.26 0.384 0.333 15.65 1.077
D202×H; CD –3.98*±1.57 0.45ns ±0.30 1.27ns ±0.77 79.97 0.408 0.354 17.11 1.087

Models selected as most appropriate are indicated in bold.
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(DBH2 × H) as compound variable (Table 3) than in Boulon. In Boulon, stem biomass was more 
accurately predicted using basal diameter (D20) alone than in Tiogo and Tapoa-Boopo. Similarly, 
leaf biomass was more accurately predicted when using DBH and crown diameter (DBH2 × CD) 
as single variable in Tiogo and Tapoa-Boopo while in Boulon addition of crown diameter to basal 
diameter as compound variable (D202 × CD) provided accurate estimation of leaf biomass (Table 3). 
However, in the three sites, branch biomass was more accurately predicted when DBH and crown 
diameter were used as compound variable (Table 3). The predictive ability and accuracy of these 
models are demonstrated by the homoscedastic trend and good coincidence to the y = x linear equa-
tion shown in the diagnostic graphs of residuals (and observed values) versus predicted values of 
stem biomass, branch biomass and leaf biomass (Fig. 2).

3.2 Allometric models for estimating aboveground biomass

For each study site, nine allometric models were developed for aboveground biomass (AGB). 
Metrics for evaluation the performance of candidate allometric models developed for estimating 
AGB of D. mespiliformis in Burkina Faso are presented in Table 4. The adjusted coefficient of 
determination for the selected models was greater, explaining between 92.26–98.92% of the vari-
ance observed in the biomass. The AIC and RMSE values ranged from –9.02 to 21.76 and 0.119 
to 0.425, respectively. In the three sites, DBH alone was the most suitable predictor variable than 
basal diameter and crown diameter for AGB (Table 3). Compared with model based on DBH as 
single predictor, adding tree total height to DBH as compound variable (DBH2 × H) did not sig-
nificantly improve the statistical fits (Table 4). However, addition of DBH to crown diameter and 
height as compound variable (DBH2 × H × CD) in Tiogo and Tapoa-Boopo reduced the RMSE, 
AIC and RSE and made further significant change except in Boulon where DBH provided greater 
adjusted R2, smaller RSE, smaller RMSE and smaller AIC (Table 3 and 4). Graphs of residuals 
(and observed values) versus predicted values of aboveground biomass for the selected models 
(Fig. 3) suggested homogeneity of residuals and y = x linear trend. These results indicate that 
the selected models were the most suitable and can be used to predict aboveground biomass of 
D. mespiliformis in the study area.

3.3 Performance of published models

Models developed in this study performed more accurately than published models for general 
purpose (Figs. 4a,4b,4c). The performance of models developed in this study was comparable to 
that of Brown (1997) in terms of RMSE. However, it had less mean prediction error and greater 
adjusted R2 (Fig. 4a). The model by Brown (1989) had the less RMSE but a greater mean predic-
tion error (+97.18%; +80.34% ; and +60.92% for Tapoa-Boopo; Tiogo and Boulon respectively), 
while the models developed in this study presented comparatively a greater adjusted R2 and the 
lowest average systematic bias (+2.28%; +3.10% and –3.28% for Tiogo; Tapoa-Boopo and Boulon 
respectively). The comparison of model developed by Chave et al. (2014) with Brown’s model 
showed that Chave et al.’s model fitted the data more accurately than the model of Brown (1989), 
which leads to an overestimation of observed AGB (Figs. 4a,4b,4c). The model proposed by 
Jucker et al. (2017) was the least appropriate; it generally underestimated aboveground biomass 
with greater RMSE and average systematic bias. Compared to the model developed in this study, 
Brown’s model greatly overestimated the observed AGB, while the Jucker et al.’s underestimated it.
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Fig. 4a. Comparison of models’ performances using the fitting dataset in Boulon. (left) Predicted and observed above-
ground biomass values for the selected models. (right) Mean relative errors for the compared models across the ob-
served aboveground biomass values.

Fig. 4b. Comparison of models’ performances using the fitting dataset in Tapoa-Boopo. (left) Predicted and observed 
aboveground biomass values for the selected models. (right) Mean relative errors for the compared models across the 
observed aboveground biomass values.
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Fig. 4c. Comparison of models’ performances using the fitting dataset in Tiogo. (left) Predicted and observed above-
ground biomass values for the selected models. (right) Mean relative errors for the compared models across the ob-
served aboveground biomass values.

Fig. 5. Carbon content in Diospyros mespiliformis tree components (from 5 samples) in Boulon, Tapoa-Boopo and 
Tiogo forests.

3.3 Carbon content of Diospyros mespiliformis tree components

Carbon content in aboveground components of Diospyros mespiliformis in Tiogo, Boulon and 
Tapoa-Boopo was 55.40% ± 1.50, 55.52% ± 1.06 and 55.63% ± 1.00, respectively, and did not 
vary significantly (P-value = 0.909). The Fig. 5 showed that stem had the largest carbon content 
in Tapoa-Boopo (56.24 ± 0.61%) and Tiogo (56.72 ± 0.27%) while in Boulon the largest carbon 
content is stored in branches (55.95 ± 0.07%). Leaves had the smallest amount of carbon content 
in the three sites (Fig. 5). The mean carbon stocks were 125.13 kg C tree–1 (±164.9) in Boulon, 
141.48 kg C tree–1 (±15.74) in Tapoa-Boopo and 190.77 kg C tree–1 (±19.84) in Tiogo.
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4 Discussion

4.1 Allometric biomass components models

Several allometric models for estimating tree components’ biomass are used to describe the rela-
tionship between tree parameters and biomass (Kuyah et al. 2014; Mensah et al. 2016; Dimobe 
et al. 2018b). Power law model was used in this study to predict tree components’ biomass. This 
result is consistent with previous reports (Xiang et al. 2016; Dimobe et al. 2018a). The models 
tested to estimate the relationships between biomass and explanatory variables are of the log-
log form, which have been shown to predict the biomass of woody species with great accuracy 
(Chaturvedi et al. 2013). Chave et al. (2005) pointed out that biological data are heteroskedastic 
and that it is necessary to log-transform the variables to comply with the conditions of normality 
and homoscedasticity. The explained variance of the fitted allometric models at stem, branch and 
leaf level, ranging from 81.41% to 98.92% and was smaller for leaf biomass models than for branch 
and stem biomass models, as also reported by Mensah et al. (2017) and Morote et al. (2012) in 
previous studies. These results indicate that foliage allometries are less responsive to tree size than 
are branch and stem allometries(Dimobe et al. 2018a). This is probably because leaves are more 
sensitive to light exposure than branches and stem (Antin et al. 2013). These results also showed 
that the predictors for biomass components were not the same in the three sites. DBH and height 
used as compound variable appears to be good predictor for stem biomass in Tapoa-Boopo and 
Tiogo (Sahelo-Sudanian zone) whereas in Boulon (Sudanian zone), the reliable predictor is basal 
diameter. This finding accords with that of Balima et al. (2019) who also found in Burkina Faso 
that basal diameter is a good predictor for the stem biomass of Afzelia Africana in the Sudanian 
zone whereas in Sahelo-Sudanian zone, it was basal diameter and height (D202 × h), indicating 
that stem biomass vary according to climatic gradient. The somewhat smaller adjusted R2 values 
for component biomass in Sudanian zone compared to Sahelo-Sudanian zone seen in this study 
have also been reported by Balima et al (2019). The additional use of height and crown diameter 
in this study is expected to account for variation in biomass of trees having the same diameter. 
The inclusion of tree height as additional predictor in allometric models was studied by Picard et 
al. (2015) and Dimobe et al. (2018a). It helps accounting for variation in AGB among trees with 
same value of DBH (Picard et al. 2015), thus reducing the estimate errors (Chave et al. 2005). For 
instance, in this study, inclusion of tree height as additional predictor improved the models for 
stem biomass for both Tapoa-Boopo and Tiogo. Dimobe et al. (2018a) reported improved biomass 
models due to inclusion of tree height. Moreover, according to Mensah et al. (2017), the use of 
DBH2 × H as compound variable helps avoiding collinearity issues while accounting for within 
species variation of height for a given value of DBH. Other authors recommend the use of wood 
density, crown diameter, and site as additional predictor variables to improve biomass prediction 
(Chave et al. 20005; Fayole et al. 2013; Ngomanda et al. 2014; Chave et al. 2014;). We found in 
this study that inclusion of crown diameter reduced the RMSE of branch and leaf biomass estimates 
and improved the goodness of fit for the three sites.

4.2 Aboveground biomass model

In this study, nine allometric models were tested for their relative performance in predicting 
aboveground biomass. These models were satisfactory for predicting the AGB with explained 
variance ranging from 87 to 95%. Among the candidate allometric models, only the one with DBH 
as single predictor in Boulon (Sudanian zone) and the compound variable (CD × DBH2 × h) in 
Tapoa-Boopo and Tiogo (Sahelo-Sudanian zone) appeared to be the most suitable for estimating 
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the total aboveground biomass of D. mespiliformis. This concurs with for instance, Balima et al 
(2019) who found that DBH is the reliable predictor of AGB of Afzelia africana in the Sudanian 
zone of Burkina Faso while in the Sahelo-Sudanian zone it is DBH2 × CD. The difference in 
terms of predictors used in the two climatic zones might be due to rainfall impact on growth and 
morphology on individual trees of D. mespiliformis. In Boulon, the model with DBH as single 
predictor produced greater adjusted coefficient of determination (R2 = 97.11%) compared to the 
other predictors. This finding is in line with previous study that showed that DBH is the most 
commonly used independent variable (Henry et al. 2011; Mbow et al. 2013; Vahedi et al. 2014) 
since it is the easiest tree variable to measure. However, according to other authors such as Alvarez 
et al. (2012), models based on DBH only may underestimate the aboveground biomass and may 
show uncertainty. In Tapoa-Boopo and Tiogo, it was expected that the addition of tree height and 
crown diameter to DBH will improve the estimates of the allometric models. To account for that, 
the inclusion of tree height, crown diameter and DBH (CD × DBH2 × h) in the allometric models 
as a compound predictor reduced the RMSE, RSE and AIC, and produced greater adjusted R² in 
Tapoa-Boopo and Tiogo. Although the differences were small, the selected biomass models with 
CD × DBH2 × h as compound variable performed slightly more accurately in terms of adjusted 
R2, RSE, RMSE and AIC than the model with DBH alone.

4.3 Comparison with previously published models

We compared the models developed in this study with four previously published models developed 
by Brown et al. (1989), Chave et al. (2005), Chave et al. (2014), and Jucker et al. (2017). We choose 
these models for comparison with our own model because they are commonly used for biomass 
estimation in Burkina Faso by previous studies (Qasim et al. 2016; Dimobe et al. 2018d; Dimobe 
et al. 2019). The general lack of agreement between the models developed for D. mespiliformis in 
this study and the generic models, can only be viewed as discouraging. Actually, the previously 
published models of Brown et al. (1989), Chave et al. (2005), Chave et al. (2014), and Jucker et 
al. (2017) are not wrong; they are simply not right for this species or the study sites. Ducey et al. 
(2009) made similar observation in the eastern Amazon and found errors from –33% to +29% 
that occurred when using off-site relationships, indicating that site- and species specific allometric 
models differ with species, tree status, climate and soil (Zianis and Mencuccini 2004), and are 
generally preferred over generic allometric models (Montagu et al. 2005). Kim et al. (2011), in their 
study, emphasize that the site-specific allometric models are more accurate in predicting the forest 
biomass estimates on the local level as they take into account the site effects. Among the previous 
published models used in this study, Brown’s model greatly overestimated the observed AGB when 
applied to our dataset, while the Jucker et al.’s model underestimated it. This suggests that the 
models developed in this study are adequate for AGB estimation for D. mespiliformis in Burkina 
Faso. The previous published models were widely used because of the great goodness of fit to the 
sample data used to develop them (Nath et al. 2019). The limitation of these site-specific models 
inherent to the cost of biomass measurement and they are generally based on a small sample size.

4.4 Carbon stock

In this study, the predicted values of carbon content are greater compared to the one (0.5) which 
was recognized as an acceptable average to be used as conversion factor (Sarmiento et al. 2005; 
Redondo-Brenes 2007). Hence, the application of the recommended value would underestimate 
the value of carbon content in leaf biomass, branch biomass, stem biomass and AGB. Our findings 
are consistent to the observation in Central Panama (Elias and Potvin 2003), Costa Rica (Fonseca 
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et al. 2012), and in Burkina Faso (Bayen et al. 2015; Dimobe et al. 2018a) where authors detected 
underestimations of aboveground carbon when the recommended value of carbon, 0.5, is used or 
applied. Furthermore, our results revealed that the average carbon content varied among the differ-
ent parts of the tree. It has been reported that carbon content of tree components was dependent on 
the ash content which in turn, depends on the amount of structural components (Negi et al. 2003). 
The carbon content in stems of D. mespiliformis, was slightly greater than the amount in branches 
and leaves. This can be explained by the fact that woody tissues of trunk, roots, branches and twigs 
were greater carbon content pools than soft tissues of leaves, flowers and fine roots (Kraenzel et al. 
2003). The results are also in conformity with findings by Fonseca et al. (2012),Wani and Qaisar 
(2014), Bayen et al. (2015) and Dimobe et al. (2018a).

5 Conclusion

To our knowledge, this is the first attempt to develop site-specific allometric models for Diospy-
ros mespiliformis in Burkina Faso. Diameter at breast height alone is a good predictor of AGB in 
Boulon forest (Sudanian climatic zone), while in Tapoa-Boopo and Tiogo forests (Sahelo-Sudanian 
climatic zone), the inclusion of crown diameter and height are required to improve the AGB pre-
dictions. The models developed in this study can be used accurately to estimate the aboveground 
and tree components biomass in similar environments (climatic zones). The applicability of these 
models is therefore restricted to the climatic zones and range of data covered by trees used in this 
study. The results revealed also that D. mespiliformis contains greater amount of carbon than the 
reference value suggested by the IPCC, indicating a greater potential for carbon sequestration for 
mitigating adverse effects of climate change over large areas of West African savannas.
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