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Highlights
• Contextual Mann-Kendall test detects significant trends in time-series of forest maps.
• Trends become more consistent as the areal unit size used for test input increases.
• Changes in different scales reflect different phenomena in forests.
• Significant trends were detected even after multiple testing correction.

Abstract
Since the 1990’s, forest resource maps and small area estimates have been produced by combining 
national forest inventory (NFI) field plot data, optical satellite images and numerical map data 
using a non-parametric k-nearest neighbour method. In Finland, thematic maps of forest variables 
have been produced by the means of multi-source NFI (MS-NFI) for eight to ten times depending 
on the geographical area, but the resulting time series have not been systematically utilized. The 
objective of this study was to explore the possibilities of the time series for monitoring the key 
ecosystem condition indicators for forests. To this end, a contextual Mann-Kendall (CMK) test 
was applied to detect trends in time-series of two decades of thematic maps. The usefulness of 
the observed trends may depend both on the scale of the phenomena themselves and the uncer-
tainties involved in the maps. Thus, several spatial scales were tested: the MS-NFI maps at 16 × 
16 m2 pixel size and units of 240 × 240 m2, 1200 × 1200 m2 and 12 000 × 12 000 m2 aggregated 
from the MS-NFI map data. The CMK test detected areas of significant increasing trends of 
mean volume on both study sites and at various unit sizes except for the original thematic map 
pixel size. For other variables such as the mean volume of tree species groups, the proportion 
of broadleaved tree species and the stand age, significant trends were mostly found only for the 
largest unit size, 12 000 × 12 000 m2. The multiple testing corrections decreased the amount of 
significant p-values from the CMK test strongly. The study showed that significant trends can be 
detected enabling indicators of ecosystem services to be monitored from a time-series of satellite 
image-based thematic forest maps.
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1 Introduction

National forest inventories (NFIs), provide data for natural resource management information 
needs in national and regional scales (Corona et al. 2011). NFIs also provide information on indi-
cators of ecosystem condition such as the number of tree species and the stand age (Winter et al. 
2011). Assessing sustainability of the forest use, however, requires time series of data rather than 
a snapshot from one timepoint and thus periodical data are needed.

In smaller scales, remote sensing is the only available data source supporting change moni-
toring. In addition, remote sensing forms an important resource in sustainable forest management, 
because it provides spatially explicit information on various forest attributes used as ecosystem 
service indicators (Haakana 2017; Vauhkonen and Ruotsalainen 2017). Czúcz and Condé (2018) 
list, among others, forest tree species richness, deadwood, forest age and growing stock as the key 
ecosystem condition indicators for forests; most of them can be assessed employing remote sensing. 
Rocchini et al. (2019) used a measure of spectral diversity of remote sensing images in a spatial 
domain as a proxy, in order to produce a time series of indicators of biodiversity. Using suitable 
remote sensing data, the biophysical characteristics of species’ habitats, distribution of species 
and spatial variability in species richness, may be identified and monitored at various scales from 
individual landscapes to large geographical areas (Kerr and Ostrovsky 2003). In forest manage-
ment, the natural units are forest stands, forest estates, municipalities and regions or provinces.

Remote sensing data are cost-effective and readily available for forest inventory purposes 
(McRoberts et al. 2010; Wulder et al. 2012). The free and open access to Landsat image archives 
has made it possible to produce large-area pixel-based composites and their time series, capturing 
the temporal autocorrelation between time points (White et al. 2014; Saarinen et al. 2018). There 
has been a huge increase in studies using Landsat time series and many of them have focused on 
change detection methods (Zhu 2017). Abrupt changes can be detected by comparing images from 
two different time points (Pitkänen et al. 2020). Long-term decline or growth, however, requires 
more images and poses more challenges (Coops et al. 2020). For instance, there is variance in the 
image data due to seasonal differences and atmospheric variability (Gómez et al. 2011; Zhu 2017).

The Finnish multi-source NFI (MS-NFI) produces thematic maps and statistics for small 
areas by using NFI field plot data, optical satellite images and numerical map data. The NFI field 
plots are measured by following a systematic cluster sampling design. Mostly Landsat 5–8 satellite 
series images have been used as satellite data. A non-parametric k-nearest neighbour (k-NN) method 
is used in the estimation (Tomppo et al. 2008; Tomppo and Halme 2004; Mäkisara et al. 2016). 
Finland has the longest history of producing small-area estimates and thematic maps by means of 
an MS-NFI. The first operative Finnish MS-NFI results were calculated in 1990 (Tomppo 1990) 
and the first results for the entire country were published in 1998 (Tomppo et al. 1998). Since 2005, 
almost the entire country has been covered by an MS-NFI every second year. The eighth MS-NFI 
results (corresponding to 2015) are the latest published (Mäkisara et al. 2019) and the ninth results, 
MS-NFI-2017, are already available (Forest resource maps and municipal statistics 2020). This 
study shall employ a time series of thematic forest maps covering both abrupt and gradual changes 
and considering spatial domain of the data to detect significant trends.

Forest growing stock change components are the volume increment and drain (Tomppo et 
al. 2011). The major component of drain is removals from cuttings and natural hazards. The yearly 
area of intermediate and regeneration fellings covers approximately 3% of forest land (national 
definition) in Finland (Finnish Forest Research Institute 2014). The average size of managed stands 
in southern Finland is about 1.2 hectares (Parviainen and Västilä 2011). Thus, we can expect major 
changes in forest stands, possibly adjacent ones, over more than half of the forests available for 
wood production during a period of two decades. The average size of private owned forest property 
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entities, covering three-fifths of Finland’s total forest land area, is 30.5 hectares (Luke’s Statistics 
database 2019). Most of the forest owners aim to manage sustainably their forest estates.

Neeti and Eastman (2011) presented a contextual Mann-Kendall (CMK) test for assessing 
significant trends from a time series. The CMK test is an extension of the original Mann-Kendall 
sign test suitable for small sample sizes (Mann 1945; Kendall 1975). It uses spatial autocorrela-
tion to account for trends in neighboring pixels. Neeti and Eastman (2011) found the CMK test to 
reduce the amount of single isolated pixels with significant trends while increasing the significance 
of trends elsewhere when carrying out the test to mean annual normalized difference vegetation 
index products over 22 years in West Africa. Czerwinski et al. (2014) employed the CMK test to 
detect gradual and abrupt changes on a temperate mixed forests using thirteen Landsat 5 Thematic 
Mapper (TM) scenes from a growing season covering a 20-year time span.

A (large-scale) multiple testing problem arises from testing thousands or more pixels from 
geographical data simultaneously, such as thematic forest maps. Several methods to correct for 
multiple testing have been proposed and they differ in their ease of implementation and their strin-
gency (Goovaerts 2010). Additionally, tests over geographical units might not be independent, so 
a correction which is robust against correlated tests is preferable (Benjamini and Yekutieli 2001).

The aim of this study is 1) to test whether statistically significant changes can be found on 
a time series of the MS-NFI thematic maps over a period of about two decades and 2) to assess 
the effect of spatial scale on the significance and 3) to address the multiple testing problem in the 
resulting large number of simultaneous statistical tests. The CMK test was employed (Neeti and 
Eastman 2011). The potential of the method to detect trends in the forest variables used as indica-
tors of ecosystem services, and finally the potential of using the detected trends as indicators of 
sustainability is discussed.

2 Materials and methods

The study sites consist of two rectangular areas from South Finland and North Finland called 
Häme and Kainuu, measuring 182 × 144 km2 and 191 × 191 km2, respectively (Fig. 1). The study 
sites are characterized by typical boreal forests dominated by Scots pine (Pinus sylvestris L.) and 
Norway spruce (Picea abies (L.) Karst.). Birch (Betula spp.) and other deciduous species occur 
often as mixed species. Pine and spruce accounted for the largest proportion of the total volume 
at the Kainuu and Häme sites, respectively.

2.1 Multi-Source estimates

The multi-source thematic maps used in this study are from the MS-NFI-8 (Tomppo et al. 1998), 
MS-NFI-9 (Tomppo et al. 2008), MS-NFI-2002 (only Häme site) (Mäkisara et al. 2001), MS-NFI-
2005 (Tomppo et al. 2009), -2007 (Tomppo et al. 2012), -2009 (Tomppo et al. 2013), -2011 
(Tomppo et al. 2014), -2013 (Mäkisara et al. 2016), -2015 (Mäkisara et al. 2019) and -2017 (Forest 
resource maps and municipal statistics 2020). NFI field plot data from four to five years time period 
was typically used in the MS-NFI. During the MS-NFI-8 and MS-NFI-9, the NFI progressed by 
region and field plots were mostly from the same year as the satellite images. Since the tenth NFI 
(2004–2008), one-fifth of the clusters have been measured annually in major parts of Finland. 
Therefore, the NFI plots from the last five years have been employed in the MS-NFI as training 
data since MS-NFI-2005 (Table 1). In addition to NFI field plots, the data sources behind these 
estimates are high-resolution multispectral satellite images with pixel sizes of about 10–30 meters 
(Landsat TM, ETM+ and OLI, Spot XS HRV, IRS-1 LISS–III, Sentinel-2A MSI) and digital map 
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Fig. 1. The Häme and Kainuu study sites (rectangles) and two 
subareas within them. The regions of Finland. Digital map data: 
contains data from the National Land Survey of Finland general 
map 1:4.5 M 06/2015 and municipal division 1:4.5 M 01/2018.

Table 1. The multi-source national forest inventories (MS-NFI) used, the measurement years of the training data and 
the mean (x̄) and the standard deviation (sd) of the mean volume maps on intersecting forestry land (FRYL) masks of 
the MS-NFIs on the two study sites.

MS-NFI Reference Häme c Kainuu d

Tr. data years 
 

x̄ sd Tr. data years 
 

x̄ sd
m3 ha–1 m3 ha–1 m3 ha–1 m3 ha–1

MS-NFI-8 (Tomppo et al. 1998) 1994 144.3 77.7 1990, 1992 56.5 55.6
MS-NFI-9 (Tomppo et al. 2008) 1996–1999 147.0 78.7 1996, 2000–2002 67.0 55.8
MS-NFI-2002 (Mäkisara et al. 2001) 1996–1999 a 148.2 82.9  
MS-NFI-2005 (Tomppo et al. 2009) 1996–1999 a, 

2004–2005 a
151.7 80.5 1996 a, 2000–2002 a, 

2004–2005 a
74.4 54.1

MS-NFI-2007 (Tomppo et al. 2012) 2005–2008 141.6 81.6 2005–2008 73.9 56.5
MS-NFI-2009 (Tomppo et al. 2013) 2006–2010 b 151.2 83.5 2006–2010 b 76.2 54.6
MS-NFI-2011 (Tomppo et al. 2013) 2007–2011 b 157.5 84.1 2007–2011 b 84.3 60.0
MS-NFI-2013 (Mäkisara et al. 2016) 2009–2013 b 163.6 85.3 2009–2013 b 86.6 59.8
MS-NFI-2015 (Mäkisara et al. 2019) 2012–2016 b 161.7 96.3 2012–2016 b 86.1 60.2
MS-NFI-2017 (Forest resource maps 

and municipal statistics 
2020)

2013–2017 b 162.1 97.0 2013–2017 b 88.8 66.0

a Field plots computationally updated to the date of the satellite image data.
b Field plots computationally updated to 31 July of the MS-NFI year.
c The area of the intersecting FRYL masks was 1 394 908 ha.
d The area of the intersecting FRYL masks was 2 541 772 ha.
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data of land use from the National Land Survey of Finland. The survey’s topographic database has 
been the digital map data source since MS-NFI-2005. The digital map data are used to separate 
forestry land (FRYL) from other land classes (an output is a FRYL mask) as well as to stratify 
FRYL and corresponding field plots into open bogs and fens, mineral soil and peatland strata for 
k-NN estimation purposes (Katila and Tomppo 2002; Tomppo et al. 2008).

Multi-source predictions for the pixels on FRYL masks are weighted averages or modes of 
k-NN (NFI field plots) to the pixel. The weights are based on distance metrics defined in the feature 
space of the satellite image data and, since MS-NFI-9, the coarse scale forest variable map values 
have been also used as features. The weight wi,p of plot i for each image pixel p is determined by 
a k-NN method (Tomppo and Katila 1991) and, after MS-NFI-9, by an improved k-NN method 
(Tomppo and Halme 2004; Tomppo et al. 2008). The pixels that cover the centre of a field plot 
i belonging to the training data are called field plot pixels pi, and wi,p  ≠ 0 if field plot pixel pi is 
among the nearest neighbours of pixel p to be predicted. The training data are restricted to the same 
satellite image and map stratum (mineral soils and peatlands), within a given upper limit to the 
geographical distance from the target pixel (Tomppo et al. 2008; Mäkisara et al. 2016). Typically, 
anywhere from several hundred to a few thousand NFI field plots exist on FRYL (national defini-
tion) as training data to a satellite image (Mäkisara et al. 2019). For example, 67 264 and 55 029 
field plots were measured on FRYL employed across Finland in the MS-NFI-9 and MS-NFI-2015, 
respectively.

Thematic forest maps of the most important forest variables are produced in raster format 
for the MS-NFI. These include variables considered as indicators for biodiversity or provision of 
ecosystem services, such as proportion of broadleaved trees (which often occur as mixed species 
and thus increase the number of tree species) of the mean volume and stand age (Winter et al. 2011) 
as well as volume of growing stock and mean volume of tree species groups (forest tree species 
richness) (Czúcz and Condé 2018). The mean and the standard deviation of the mean volume 
predictions on FRYL masks are presented in Table 1 for each MS-NFI used.

2.2 Creation of maps of various unit size

The original MS-NFI thematic maps were first re-rectified, if necessary, to the ETRS-TM35FIN 
coordinate system (MS-NFI-2009 and prior) with a spatial resolution of 16 m by 16 m (MS-NFI-
2005 and prior were originally of pixel size 25 × 25 m2 and MS-NFI-2007 – MS-NFI-2011 of 
pixel size 20 × 20 m2). The maps of various unit sizes were created by aggregating (i.e., calculat-
ing a mean value) the thematic maps of pixel size 16 × 16 m2 to 240 × 240 m2, 1200 × 1200 m2 
and 12 000 × 12 000 m2. The unit sizes were selected to be multiplicative to both 16 m and 20 m 
resolutions. In this way the aggregated units followed the original MS-NFI map grids, at least for 
the MS-NFI-2009 and later. The smallest unit, the original pixel, represents a sub-stand scale (the 
average forest stand area in southern Finland is about 1.2 hectares or 110 × 110 m2), the second 
smallest unit represents a large stand or a group of stands, the next unit size represents a large forest 
estate (an average estate size is about 30 hectares or 550 × 550 m2 (Luke’s Statistics database 2019)).

The largest unit is the size of a small municipality (the smallest municipality in Häme is 
125 km2 or 11 200 × 11 200 m2). For the 16 × 16 m2 pixel size maps, subareas of the study sites were 
used (Fig. 1) in the calculation of CMK tests due to the otherwise excessive data size if whole areas 
had been used. All the other land use pixels were converted to zero to avoid comparison between 
the FRYL mask delineation of the subsequent MS-NFIs. However, a minimum proportion of FRYL 
mask pixels was defined to have the following unit values: 80% for 240 × 240 m2 and 50% for 
1200 × 1200 m2 and larger. Otherwise, a missing value was attached to the unit. The aggregated 
mean values for the units thus covered both FRYL mask and, to some extent, other land use.
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2.3 The CMK test

The Mann-Kendall test examines the slopes between all pair-wise combinations of a sample and 
tests for a monotonic trend. The H0 is that there is no trend. The pair-wise observations are ranked 
with reference to time in the forward direction. The Kendall’s S is:
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where n is the number of observations of the time series data and xi and xj are the observations at 
time points i and j. The S statistic is approximately normal when n ≥ 8. Without ties, the variance 
of S depends only on the number of observations and takes the form σ2 = VarS = n(n–1) (2n+5) / 18  
(with ties additional correction term appears, see Neeti and Eastman (2011)).

The standardized Z test statistic is:
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The Z statistic follows the standard normal distribution approximately. As the observa-
tions are ordered in time the statistic S is the number of pairwise comparisons where the later 
value is higher so a positive Z-value indicates an upward trend, for example, and a p-value for 
statistical significance of the trend can then be calculated using the normal cumulative distribute 
function.

The CMK test incorporates spatial autocorrelation, which is often present in remote sensing 
images and forests (Wallerman 2003), into the test statistic. The test statistic S is smoothed locally: 
Let Sp denote the test statistic at pixel p, and let N(p) be the neighborhood of pixels around p with 
n(p) = #N(p) denoting its size. Note that the pixel here represents any size of map unit used in this 
study. We used the 3 × 3 neighbourhood consisting of the pixel p and its 8 adjacent neighbors. 
Pixels at the mask edge have less neighbors accordingly. The new locally averaged test statistic 
is then defined as:

S
n p
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and its normalized version is:
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To account for the correlation in the neighbouring pixels’ time series, the variance needs to 
be calculated as:
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Here, VarSp = σ2 and the cross-covariances are computed as Cov(Sp',Sp")  where 
is the sample cross-correlation coefficient of the time series at pixels p' and p".
With thousands or more pixels to test simultaneously, we must correct for the systematic 

increase of false positives. The problem is known in statistics as the multiple testing problem 
(Benjamini and Yekutieli 2001; Goovaerts 2010). Controlling the family-wise error rate (which in 
practice amounts to lowering the globally applied p-value threshold) by avoiding false positives 
is too stringent a criterion when we can assume at least some true positives to occur. We therefore 
applied the less conservative false discovery rate (FDR) adjustment, minimising instead the pro-
portion of false positives. We also chose FDR as geographical units can be correlated, especially 
after local smoothing, and FDR allows some correlation between tests (Benjamini and Yekutieli 
2001). An R (2020) package of Contextual Mann-Kendall trend test for raster image stacks was 
constructed and is freely available at GitHub repository (Open Geospatial Information Infrastruc-
ture for Research 2020).

3 Results

The significance of a trend in time series of various MS-NFI forest variable maps was tested on the 
two study sites. The primary forest variables reported in the MS-NFI (Mäkisara et al. 2019) were 
selected: the mean volume of growing stock, the mean volume of pine and spruce, the proportion 
of broadleaved tree species of the mean volume and the stand age.

The CMK test showed significant (p < 0.05) trends for mean volume of the 240 × 240 m2, 
1200 × 1200 m2 and 12 000 × 12 000 m2 units at the Häme study site (51.4, 46.3 and 76.1% of the 
units, respectively) and at the Kainuu site (66.0, 82.0 and 99.5%, respectively). For the 16 × 16 m2 
pixels in subareas of the Häme and Kainuu study sites, respective proportions of units with sig-
nificant trend were 30.8% and 36.7% (Table 2). In general, the proportion of units with significant 
trend increased as unit size increased.

Table 2. The proportion of units with a significant (p < 0.05) trend from the contextual Mann-Kendall 
test statistic and the proportion of positive S statistic in the case of significant trend. MS-NFI time series 
1994–2017 (n = 10) of thematic maps at the Häme study site and 1992–2017 (n = 9) at the Kainuu study 
site. The mean volume, mean volumes of pine and spruce, proportion of broadleaved tree species of the 
mean volume and the stand age are listed variables for both sites.

Site Variable 16 × 16 m2 a 240 × 240 m2 1200 × 1200 m2 12 000 × 12 000 m2

p % (of which S positive %)

Häme Volume (m3 ha–1) 30.8 (81) 51.4 (97) 46.3 (98) 76.1 (100)
   pine (m3 ha–1) 31.1 (86) 32.5 (96) 50.0 (100)
   spruce (m3 ha–1) 29.9 (83) 26.3 (63) 37.7 (44)
Prop. of broadl. spp. % 32.0 (68) 49.4 (95) 79.0 (100)
Stand age (y) 24.4 (47) 36.2 (5) 65.2 (0) 

Kainuu Volume (m3 ha–1) 36.7 (92) 66.0 (99) 82.0 (100) 99.5 (100)
   pine (m3 ha–1) 62.0 (98) 76.5 (100) 98.1 (100)
   spruce (m3 ha–1) 32.2 (94) 27.7 (99) 38.3 (100)
Prop. of broadl. spp. % 13.7 (13) 11.0 (11) 4.9 (0)
Stand age (y) 29.7 (90) 19.7 (89) 9.7 (100)

a Results cover a subarea of the study site (Fig. 1).
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Of the other variables, the largest proportions of significant trend were found for the propor-
tion of broadleaved trees of the mean volume in the Häme study site and for the pine volume in the 
Kainuu study site. The proportion of significant trend also increased with the unit size except for 
the proportion of broadleaved trees and the stand age at the Kainuu study site (Table 2). The sign 
of the S statistic for the units where significant trend was detected was counted and, for both study 
sites, it was positive in almost all cases. A negative trend (S < 0, Eq. 1) was detected for the Häme 
study site’s spruce mean volume and stand age as well as for the proportion of broadleaved trees 
of the mean volume at the Kainuu study site. The sign of the trend was more polarized towards 
positive or negative as the unit size increased.

When multiple testing correction was applied to the p-values, no significant trend was 
detected for the mean volume at the original pixel size, and for the other unit sizes, the proportion 
of significant trend decreased at both study sites (Table 3). This is partly due to the fact that the 
correction for p-values was stronger when the number of tests was larger (i.e., the size of the units 
got smaller). The trend detected by pmulti in the units was almost always positive. (Table 3). How-
ever, at the Häme site, the detected trend for spruce mean volume was negative for most cases and 
negative for all cases of stand age. At the Häme study site, a significant trend was found only for 
the largest size units when measured with pmulti < 0.05, except for the mean volume and propor-
tion of broadleaved trees of the mean volume. At the Kainuu study site, the positive trend in pine 
volume was strong. For the other variables, there was no trend at any scale except for the spruce 
mean volume at 12 000 × 12 000 m2 resolution (Table 3). In the following results, the multiple 
testing corrected values (pmulti) are applied.

A longitudinal plot of values for randomly selected units, where significant trend in the 
CMK test was detected, is presented for various unit sizes in Fig. 2. There is more variation in the 
time series for the 240 × 240 m2 units and some abrupt changes can be seen among the units with 
a negative trend (Fig. 2b). Nevertheless, the trends of all scales are in accordance with the sign of 
the S statistic. The trends become more consistent when the unit size increases, despite deviations 
in the time series; for instance, the MS-NFI-2007 estimates seem to deviate systematically down-
wards in the time series. Deviation can be seen for the Häme study site also in Table 1.

Table 3. The proportion of units with significant trend, given multiple testing corrected p-values (pmulti 
< 0.05), from the Contextual Mann-Kendall test statistic and the proportion of positive S statistic in the 
case of significant trend. MS-NFI time series 1994–2017 (n = 10) of thematic maps at the Häme study 
site and time series 1992–2017 (n = 9) at the Kainuu study site. The mean volume, mean volumes of pine 
and spruce, the proportion of broadleaved tree species of the mean volume and the stand age are listed 
variables for both sites.

Site Variable 16 × 16 m2 a 240 × 240 m2 1200 × 1200 m2 12 000 × 12 000 m2

pmulti % (of which S positive %)

Häme Volume (m3 ha–1) 0 39.8 (98) 26.2 (99) 72.5 (100)
   pine (m3 ha–1) 0 0 37.0 (100)
   spruce (m3 ha–1) 0 0 10.1 (36)
Prop. of broadl. spp. % 0 33.3 (99) 75.4 (100)
Stand age (y) 0 0 49.3 (0)

Kainuu Volume (m3 ha–1) 0 59.6 (99) 79.6 (100) 99.5 (100)
   pine (m3 ha–1) 54.0 (99) 72.0 (100) 98.1 (100)
   spruce (m3 ha–1) 0 0 6.8 (100)
Prop. of broadl. spp. % 0 0 0
Stand age (y) 0 0 0 

a Results cover a subarea of the study site (Fig. 1).
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Fig. 2. A random sample of 10 units from a subset of units with significant trend (pmulti < 0.05) from the 
contextual Mann-Kendall test applied to time series of multi-source NFI mean volume thematic maps 
at the Häme study site dated 1994–2017. 240 × 240 m2 units and positive S statistic (a), 240 × 240 m2 
units and negative S statistic (b), 1200 × 1200 m2 units and positive S statistic (c), 1200 × 1200 m2 units 
and negative S statistic (d), 12 000 × 12 000 m2 units and positive S statistic (e), mean volume of spruce, 
12 000 × 12 000 m2 units and negative S statistic, 9 units (f).
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Fig. 3. Contextual Mann-Kendall test to ten multi-source national forest inventory (MS-NFI) 
mean volume thematic maps, dated 1994–2017, for a subset of Häme test area. The Z statistic 
for 16 × 16 m2 units (a), 240 × 240 m2 units (b), and 1200 × 1200 m2 units (c). Threshold clas-
sification of regeneration cutting areas is shown using the difference between mean volume 
estimates of growing stock in MS-NFI-8 and MS-NFI-2017 in grey.
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Positive or negative trend with different unit sizes is visualized with the standardized Z sta-
tistic of the CMK in Fig. 3. At the original pixel size, 16 × 16 m2, the delineation of forest stands 
is visible. A clear decline, negative Z statistic –2.0, can be seen on areas where a regeneration 
cutting (which is typical for even-aged forest stands in Finland) or a removal of the major part of 
the growing stock has occurred between 1992 (MS-NFI-8 volume map) and 2017 (MS-NFI-2017 
volume map), according to a regeneration cutting mask (grey color in Fig. 3). The regeneration 

Fig. 4. Contextual Mann-Kendall (CMK) test to ten multi-source national forest inventory (MS-NFI) mean volume the-
matic maps 1994–2017 at the Häme study site. 1200 × 1200 m2 units and the Z statistic (a), areas with significant trend 
(pmulti < 0.05) (b), 12 000 × 12 000 m2 units and the Z statistic (c), pmulti < 0.05 (d). CMK test to 9 MS-NFI mean volume 
thematic maps 1992–2017 at the Kainuu study site. 1200 m units and the Z statistic and a subarea marked (e), pmulti < 
0.05 (f). Digital map data: contains data from the National Land Survey of Finland municipal division 1:4.5 M 01/2018.
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cutting mask was obtained using a threshold classification of the image difference between the two 
MS-NFI mean volume maps on pixels that belonged to the forest mask in both images. In the 240 
× 240 m2 units, the largest cutting areas are still visible as a negative Z statistic. In the larger 1200 
× 1200 m2 units, single cutting areas are no longer visible, partly due to contextual information. 
Therefore, negative trends are rare in this scale.

At the Häme study site, the trend is positive (Z statistic) in the majority of the 1200 × 1200 m2 
units. In the southeast, areas with negative or no trend can be detected (Figs. 4a,b), which can be 
explained partly by a high proportion of regeneration cuttings visually detected from the regenera-
tion cutting mask. In this area only few units were found with significant (pmulti < 0.05) values. The 
proportion of non-FRYL masks is relatively high in this area, but that should not affect the sign 
of the trend in the mean volume map. Changing the unit size to 12 000 × 12 000 m2 retained the 
geographical patterns of the significant trend and signs of the standardized Z statistic (Figs. 4c,d). 
However, the total area covered by significant units (pmulti < 0.05) was larger (cf. Table 3). The trend 
for the mean volume was even more positive and significant in the Kainuu study site (Figs. 4e,f), 
cf. Table 3. An area deviating from the general trend is pinpointed in Fig. 4e. This area is a large 
peatland complex containing large open bogs and fens that are difficult to predict in the MS-NFI 
when using spectral values only.

4 Discussion

The CMK test showed areas of significant trend (p < 0.05) in a time series of two decades for 
all the MS-NFI thematic maps analysed at various unit sizes, starting from 16 × 16 m2 pixels. 
However, multiple testing correction was applied to p-values to guarantee reliable inference from 
the CMK test, which decreased the number of units with detectable significant trend. The largest 
proportion of pixels with significant trend (pmulti < 0.05) was found for the mean volume of grow-
ing stock. For other variables, significant trends were mostly found for the largest unit size only, 
12 000 × 12 000 m2. This unit size represents a small municipality in southern Finland and part 
of a northern Finland municipality. The sign of the trends was in accordance with the changes in 
large area estimates from the NFI field data. The employed methods enabled geographical loca-
tion monitoring for significant changes and trends over time. The declining trends correlated with 
the predicted areas of regeneration cutting within the time period of the MS-NFIs, particularly for 
units measuring 240 × 240 m2 and smaller.

In general, the proportion of significant p-values increased with unit size (Tables 2 and 3). 
However, there is decrease in the proportion at the 1200 × 1200 m2 size units before increasing 
again at the 12 000 × 12 000 m2 units for some variables: the mean volume in the Häme study site 
and for the mean volume of spruce on both sites (Table 2). After the multiple testing correction for 
the p-values (which result we consider more reliable) this phenomenon was seen only for mean 
volume in Häme study site. We can expect an overall increasing trend for the volume of grow-
ing stock based on the NFI time series. On yearly basis, cuttings occur on approximately 3% of 
forest stands, of which one-third are regeneration cuttings (0.8%) with almost total removal of the 
growing stock (Finnish Forest Research Institute 2014). If a pixel belongs to a cutting area during 
the period of the constructed time series, there will be a sudden change in the trend, making it 
less probable to detect a monotonic trend. The 240 × 240 m2 units cover an area of 5.76 ha and 
could contain a stand – given an average 1.2 ha stand in southern Finland and a larger stand size in 
northern Finland – or a group of stands where a cutting has been carried out within the period. It 
would still affect largely the observed trend. Within the 1200 × 1200 m2 size, there may be several 
cutting areas and over a period of 23 years (the Häme study area), almost 20% of the stands would 
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be treated with regeneration cutting and nearly 70% would be treated with some type of felling. If 
the cuttings were located randomly, a positive trend would be expected for the mean volume and 
even more predominantly for the largest units of 12 000 × 12 000 m2. It is not clear why in some 
cases the 1200 × 1200 m2 size units have the smallest proportion of significant p-values (Tables 2 
and 3). One or more forest estates may be located within this unit size and the drain and volume 
increment may vary significantly between the estates. Yet the size of the unit is too small to follow 
the (often positive) large area trend.

The multiple testing correction applied became stronger as the number of tests increased 
(i.e., the unit size decreased). The number of tests repeated at the Häme study site were 187 799, 
11 422 and 138, for the 240 × 240 m2, 1200 × 1200 m2 and 12 000 × 12 000 m2 units, respectively. 
However, the FDR adjustment of the p-values was a less conservative adjustment among available 
methods and the probability of finding false positives was not linearly related to the number of 
tests varying by unit size and given above. Nevertheless, the proportion of the significant p-values 
decreased 0–20 percentage units for the mean volume of growing stock and the more the smaller 
the unit size. At the Kainuu study site, the decrease was smaller. For the other variables, the number 
of units with pmulti < 0.05 went to zero in many cases for the units smaller than 12 000 × 12 000 m2.

The sign of the trends detected in the forest maps were verified at the regional level against 
the changes in the field data-based estimates. The increasing trend in the mean volume of growing 
stock agrees with the NFI field inventory statistics, which display increase in the mean volume 
between 1990’s and 2010’s. The growing stock on forest and poorly productive forest land has 
increased from the 1890 million m3 in NFI8 (1986–1994) (Tomppo et al. 2001) to 2473 million m3 
in NFI12 (2013–2017) (Luke’s Statistics database 2019). Particularly, the increase at the Kainuu site 
in the volume of growing stock has been large, such as the Kainuu region (number 18 in Fig. 1), 
where the drain has been only approximately 60% of the volume increment of the growing stock 
since 2000 (Korhonen et al. 2015b). The mean volume of growing stock for forest and poorly 
productive forest at the Häme-Uusimaa Public Service Units of the Finnish Forest Centre (cover-
ing regions 5 and 7 and northern parts of region 1, see Fig. 1) were 154.4 and 160.2 m3 ha–1 in the 
NFI9 (1998–1999) and NFI11 (2009–2013), respectively. Those mean volumes at the Kainuu Public 
Service Unit, which is approximately identical to region 18 (Fig. 1) were 63.9 and 91.2 m3 ha–1 
in the NFI8 (1990, 1992) and NFI11 (2009–2013), respectively. Consequently, the proportion of 
units with significant trend were higher at the Kainuu study site.

The decreasing trend of the mean volume of spruce discovered at the Häme study site 
agrees with the decrease in the field plot based total growing stock of spruce from 79.1 million m3 
to 71.7 million m3 between NFI9 (1998–1999) and NFI11 (2009–2013) at the Häme-Uusimaa 
Public Service Unit (Korhonen et al. 2000, 2015a). For the stand age, the trend was negative for 
the 12 000 × 12 000 m2 units, which is in agreement with the decrease in the mean stand age on 
forest land (national definition) from 56 years to 50 years between NFI9 (1998–1999) and NFI11 
(2009–2013) at the Häme-Uusimaa Public Service Unit (Korhonen et al. 2000, 2017). At the 
Kainuu Public Service Unit, the mean stand age of forest land decreased only slightly, from 62 to 
60 years, between NFI9 (2001) and NFI11 (2009–2013) and no trend was detected (pmulti < 0.05); 
(Tomppo et al. 2003; Korhonen et al. 2015b).

At smaller scale, where the various sizes of units are used, we rely on the CMK test. A set of 
simulations were used to validate the CMK tests before their application in this study. The CMK 
test was applied to a purely simulated set of spatial time-series data with combinations of noise, 
autoregressive model AR(1) and spatially correlated trends. In the course of the simulation study 
we confirmed the expected multiple testing issue, and after comparing several techniques (such 
as Bonferroni’s or Holm’s method) for correcting for it, decided on the FDR approach. Based 
on the simulation trial we could confidently proceed to the data analysis, as the CMK detected 
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trends and the multiple testing correction sharply reduced the false positive rate without being too 
conservative. The simulations also informed that the prewhitening step is beneficial only in case 
of strong autocorrelation.

The MS-NFI time-series covered 23 and 25 years containing 10 and 9 observations at dif-
ferent time points in Häme and Kainuu study sites, respectively. The time span in this study is 
long and significant changes (mainly cuttings) could be expected also at shorter time interval in 
the Boreal forests. However, the annual increment of growing stock in Finland is rather low, 4% 
on average on the forest and poorly productive forest land (national definition) (Luke’s Statistics 
database 2019). Czerwinski et al. (2014) tested the sensitivity of trend analysis to the time interval 
between images in their 20-year time-series set of Landsat data. The 4–5 year interval produced 
similar change results as 1–3 year interval of the time series. In our case, as the suggested number 
of observations is n ≥ 8 for the MK test we did not test for shorter time-series or longer time 
intervals. The intervals were longer between the first three MS-NFIs which was not taken into 
account formally in the calculations of the CMK test statistic. However, we assume that this will 
not largely distort the results.

At the pixel level, the root mean squared error of the MS-NFI predictions can be large, with 
50–80% applying leave-one-out cross-validation (Tokola and Heikkilä 1997; Katila and Tomppo 
2002). The variation explained by the k-NN prediction of the mean volumes by tree species 
groups is usually lower than that of the mean volume of growing stock (Katila and Tomppo 2002). 
There are several error sources in the MS-NFI, including location errors, atmospheric effects and 
limitations in radiometric resolutions and imaging techniques of the satellite sensors (Tomppo et 
al. 2008). However, the seasonal and atmospherical effects (Zhu 2017) typical in multitemporal 
analysis are expected to be avoided in part because the best quality images were selected from the 
growing season and a careful manual cloud detection was carried out in the MS-NFI (Mäkisara 
et al. 2019). The MS-NFI prediction errors increase the variance in the time series of the forest 
variables between different time point MS-NFIs. The standard errors decrease as the pixel-level 
predictions are aggregated and the area size increases (Katila 2006). Trends become more consist-
ent as unit sizes increase (Fig. 2). This could be another reason, in addition to the distribution of 
the cutting areas, for the larger amount of significant test values at the largest unit size. There may 
be also systematic errors in the MS-NFI estimates between large regions, partly due to changes 
in the estimation methods. For example, MS-NFI-2007 seems to have smaller mean volumes in 
Table 1 and on longitudinal plots of a sample for single units (Fig. 2). Nevertheless, the CMK test 
managed to detect significant trends despite deviations of single observations in the time series.

It is known that peatlands may experience variation between earlier MS-NFIs and the latest 
ones on the level of mean volume predictions on open bogs and fens causing unwanted trends. These 
are often nearly treeless areas but have a large spectral variation in the satellite images (Tomppo et 
al. 2008). Therefore, the results for the open bogs and fens should be checked separately or masked 
to null as the expectation in the growing stock is no change.

Parts of non-FRYL masks were included in larger-than-pixel units. The non-FRYL mask 
pixels were set to zero in the calculation of the unit values. This decreased the mean values and the 
unit variation compared to the variation in original values on the FRYL mask. Hence, deforesta-
tion and afforestation also affected the unit values, but CMK tests only the sign of the trend and 
including non-FRYL pixels does not change the trend in the mean values of the units.

The map units used did not follow the forest stand delineation typical in the silvicultural 
practice of Finland. A delineation based on auxiliary data or segmentation methods could be used 
to form the units following stand boundaries to search for trends (Descle et al. 2006). This would 
probably decrease the variation within units. However, the rectification errors in the MS-NFI 
maps are only minor compared to the unit sizes tested (240 × 240 m2 and larger) and real trends 
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are assumed to be detected despite forest stands being split between the rectangular units used in 
this study.

Neeti and Eastman (2011) applied prewhitening (Wang and Swail 2001) to remove serial 
autocorrelation from time series data. However, there have been objections to the use of prewhit-
ening (Yue and Wang 2002). We observed in our simulation study that prewhitening increased the 
variance of the test statistic, reducing the power of the test. In addition, an exploratory analysis 
of a set of randomly selected pixels revealed no significant autocorrelation, so this study did not 
use prewhitening.

The results support the hypothesis that significant trends can be detected with the trend 
analysis from the scale of forest estates onwards. Significant trends can be detected from k-NN 
based forest maps, optical area satellite images covering sufficient number of time points from a 
regular time interval (in this case, a time span of two decades) and relatively consistent materials 
and methodology. The CMK test proved applicable for the task, but a more demanding task is to 
estimate the magnitude of change in measurable units, such as mean volumes or biomass.

The detected significant trends can be used as indicators of sustainability of forest man-
agement at various scales, specifically in smaller scales than possible with NFI field sample data 
only. For instance, in the mean volume a positive trend indicates that growth is higher than drain, 
which is considered as one indicator of sustainable use of forest resources. A positive trend in the 
proportion of broadleaved trees would indicate increasing proportion of mixed forests, which is 
one indicator for sustainable forest management. Thus, trend analysis can provide indicators for 
assessing sustainability with regards to such parameters that can be assessed with remote sensing. 
A significant positive trend is a strong indicator of the sustainability, and a lack of negative trend a 
weaker indicator of sustainability. Both interpretations support the assumption of sustainability at 
the study sites in the two largest scales with respect to the considered indicators. The two smaller 
scales are more suitable to assessment of abrupt changes, as harvests dominate the trend.

It needs to be acknowledged, however, that sustainability is hard – maybe impossible – to 
define in such a way that would account for all necessary aspects. Therefore, trend analysis like this 
can only provide indicative information supporting or not supporting sustainability of the forest 
use from certain perspectives. Yet, such information can be useful e.g. for local forest administra-
tion or policy processes.

Significant trends could be observed in the two largest scales, of which the 1200 × 1200 m2 
scale was assumed to represent a large forest estate. Yet, it cannot be assumed that sustainability 
would be possible or even desirable in all such pixels. Thus, when the scale becomes smaller, the 
proportion of positive and negative trends in a larger area would be a better indicator of sustain-
ability than the observed trend in each pixel. While for detecting the trends as such both the larger 
scales of this study seem appropriate, the role of scale in sustainability considerations requires 
more studies.
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