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Highlights
• Airborne laser scanning is used to assess forest road quality.
• High-pulse data analysis classified roads with good performance.
• Two-step classification further improved the accuracy.
• A reference surface improved the classification results of the low pulse data.
• 66–75% of the roads were correctly classified using the reference surface.

Abstract
Two different pulse density airborne laser scanning datasets were used to develop a quality assess-
ment methodology to determine how airborne laser scanning derived variables with the use of 
reference surface can determine forest road quality. The concept of a reference DEM (Digital 
Elevation Model) was used to guarantee locally invariant topographic analysis of road roughness. 
Structural condition, surface wear and flatness were assessed at two test sites in Eastern Finland, 
calculating surface indices with and without the reference DEM. The high pulse density dataset 
(12 pulses m–2) gave better classification results (77% accuracy of the correctly classified road 
sections) than the low pulse density dataset (1 pulse m–2). The use of a reference DEM increased 
the precision of the road quality classification with the low pulse density dataset when the clas-
sification was performed in two-steps. Four interpolation techniques (Inverse Weighted Distance, 
Kriging, Natural Neighbour and Spline) were compared, and spline interpolation provided the 
best classification. The work shows that applying a spline reference DEM it is possible to identify 
66% of the poor quality road sections and 78% of the good ones. Locating these roads is essential 
for road maintenance.
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1 Introduction

The accessibility of forest sites is important for forest operations (Coulter et al. 2006). An adequate 
forest road network and good quality roads will provide easy access for silvicultural and harvesting 
operations, forest workers and machinery, and access for recreational purposes, the collection of 
non-wood products, firefighting and other rescue operations.

1.1 ALS and DEM interpolation

Airborne laser scanning provides a high-density, accurate 3-dimensional point cloud, which after 
interpolation and filtering can produce high precision DEMs (Digital Elevation Models). The IDW 
(Inverse Distance Weighting) method (Watson and Philip 1985) is a multivariate interpolation 
that estimates cell values by averaging the neighbourhood values for each cell using a distance 
dependent weight. The natural neighbour method (NN) (Sibson 1981) identifies the closest points 
and weights them based on areas proportional to their values. NN method provides a smoother 
surface than the nearest-neighbour method. As with IDW, the interpolated values do not exceed the 
minimum and maximum values of the original data. Spline interpolation (Smith 1979) minimizes 
the overall surface curvatures and outputs a smooth surface that retains the input points values. The 
interpolated values can be lower or higher than the original range of values. In Kriging interpolation, 
the interpolated values are modelled by a Gaussian process and the weights are calculated using 
semi-variogram models, minimizing the estimation error. This gives the best linear unbiased pre-
diction for the intermediate values (Williams 1998). The different interpolation methods have their 
advantages and disadvantages, including wide range of computation times and different precision 
(Montealegre et al. 2015). The best method found for forestry application for sparse data is Krig-
ing, and IDW is generally well performed among the tested six interpolations. Other researchers 
had different findings. There was not one universally better interpolation method in several studies 
(Bater and Coops 2009; Lloyd and Atkinson 2002) as LiDAR (Light Detection and Ranging) data 
parameters, raster pixel sizes, terrain morphology differ from each other significantly.

1.2 Forest road mapping with LiDAR data

Airborne laser scanning (ALS) has an advantage over terrestrial scans when scanning roads in 
remote areas, and it also takes a shorter time to acquire information about larger areas or areas 
where the road network is dense. As ALS data are more often collected for forest inventory pur-
poses, these could also be used for forest road inventory purposes. The sensors are usually carried 
by airplanes, but in small scale, Unmanned Aerial Vehicles (UAVs) can be used to collect data. 
UAVs equipped for mobile laser scanning can provide more flexible scanning and can lead to cost 
reduction (Zhu 2013), and, for example, can perform fine-scale mapping (Lin 2011), which includes 
intensity-based road extraction from dense point clouds. UAVs can be used as a planning tool for 
forest road constructions (Buğday 2018). There are novel approaches of Hand-Held Mobile Laser 
Scanning (HMLS) too, e.g. Bauwens et al. (2016).

The application of airborne LiDAR on larger scale than short road sections includes road 
extraction and feature analysis. Tien et al. (2008) tested a semi-automated workflow to extract the 
centreline and edges of forest roads using a surface elevation model and a ALS intensity image 
derived from all the ALS returns. Other studies also confirmed road extraction using intensity dif-
ferences of road surface and its surrounding (Beck et al. 2015). White et al. (2000) used data with 
a sampling density of 6 ground pulses m–2 to analyse the position, length and gradients of forest 
haul roads with an accuracy of 1.5 m. High resolution, 0.2 m DEMs were generated from the ALS 
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data and used to extract features from it by adaptive contour method. Craven and Wing (2014) also 
employed high-density ALS data to assess forest road characteristics under four types of canopy 
cover, while Ferraz et al. (2016) used ALS data with 2 to 4 pulses m–2 in forested mountain areas in 
France to identify the centrelines of roads based on a set of morphometric features using Random 
Forest classification. Clode (2004) extracted roads from a 1.3 pulses m–2 dataset by binary classifica-
tion, using morphological filtering and intensity values, as more compact roads have higher intensity 
return. The method had difficulties classifying roads on bridges, under canopy cover, car parks and 
private roads. Topographic Position Index (TPI) and Standardized Elevation Index (SE) (Jenness 
Enterprises 2013) were originally used for landscape analysis, to analyse water catchments, canyons 
etc., and were applied for analysing smaller topographic differences using high-pulse density ALS 
data (Kiss et al. 2015). The indices could be applied well to roads with minor elevation differences.

There are alternative approaches and a range or different equipment (Talbot 2017) to deter-
mine forest road quality. One of the methods assessed forest road surface roughness by Kinect 
depth imaging (Marinello 2017). The road surface and road geometry can also be modelled using 
a profilograph and vehicle-based system with LiDAR scanners, e.g. Svenson and Fjeld (2016) who 
analysed 320 km of road roughness and geometry.

1.3 Forest road maintenance in Finland

Finland has a dense and extensive forest road network with the total length of forest roads of 
130 000 km (Metsätilastollinen vuosikirja 2013). The majority of these roads are privately owned 
and were built in 1970–1990 with public funds. Metsähallitus, the state-owned enterprise that man-
ages the state forests, owns about 30 000 km of forest roads. Regardless of ownership, the focus of 
the Finnish forest road network is mainly on maintenance and renovation. Each year about 3000 km 
of road are subject to basic improvement (Metsätilastollinen vuosikirja 2013). Road maintenance 
costs vary in Finland between 6 and 243 euros per km per year, the average in Southern Finland 
being 59–83 euros per km (Piiparinen 2003). The condition of the forest road network is a matter 
of concern for the whole forest sector, as round wood transport for the forest industries has to 
continue throughout the year, through heavy rains, winter conditions and frost heave.

Forest road quality assessment criteria are developed by Metsäteho, the research consortium 
set up by the Finnish forest industries (Korpilahti 2008). Finnish forest road quality assessment 
is based on eight categories such as structural condition, seasonal damage, drying, surface wear, 
visibility problems, vegetation, bridges and road surface flatness. The quality assessment is done 
by visual inspections and empirical observations.

1.4 Aim of the paper

Two airborne laser scanning datasets that has been recorded for forest inventory purposes, one with 
a high (12 pulses m–2) and the other a low pulse density (1.1 pulse m–2), were used in the evalu-
ation. The reference DEMs were interpolated by natural neighbour (NN), kriging (KR), inverse 
distance weighted (IDW) and spline (SP) methods. Surface quality indices such as TPI and SE 
were calculated using the same interpolation methods and variables derived from ALS height data 
to determine road quality. The focus was on the assessment of three of the road quality parameters, 
structural condition, surface wear and flatness, that are more related to the road itself. Poor quality 
roads need maintenance in the upcoming years, while good quality ones do not. The aim of the 
study was to evaluate how reference surfaces help a locally invariant topographic analysis of forest 
road quality, and which datasets, variables and interpolation methods are the best for identifying 
especially the poor and good quality roads.
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2 Material and methods

2.1 Field data

Two areas in Finland were assessed in Finnish Lakeland region, which is a coherent landscape 
region in Eastern Finland dominated by thousands of lakes and hilly, forest-covered landscape. 
The field assessment was carried out following the forest road quality inventory model developed 
by Metsäteho Oy (Korpilahti 2008). Both areas are located in the Lakeland Region. From Kiih-
telysvaara and Tuusniemi datasets, 13 and 49 field plots, respectively (Fig. 1), were visited and 
data were collected. Current study analyses the following variables: structural condition, surface 
wear quality and road flatness.

The field plots centres were selected to be respected to the whole road section. Their locations 
were logged by GPS receiver. Each plot was 10 metres long along the centreline of the road and 
varied in width with the width of the road and included side ditches and the status of the nearby 
vegetation too. Measurements of ruts and holes were carried out in these plots only. In order to 
avoid spatial accuracy problems of the centreline data to the ALS data, during the analysis the plots 
sizes were narrower than the road width. The area assessed included the road surface, shoulders 
and ditches (when present) and the roadside vegetation was assessed in 1 metre strips beyond the 
ditches or shoulders. No road maintenance had been carried out on these road sections at minimum 
for five years.

Following the quality standards for optimal forest road conditions developed by the 
Metsäteho organization (Korpilahti 2008), this study worked with the observations on structural 
condition, surface wear quality and flatness. The observations and measurements then were clas-
sified into one of three classes: good, satisfactory or poor. The classes are summarized in Table 1.

Fig. 1. The locations of the areas examined during the field inventories of unpaved forest road quality assessments. 
Both Tuusniemi and Kiihlelysvaara are located in the Finnish Lakeland region in Eastern Finland.
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Classifying the roads into good, satisfactory and poor quality can help decision makers to 
plan and schedule future road maintenance (Korpilahti 2008). Good quality roads do not require 
significant measures in the upcoming years, only basic maintenance. Satisfactory roads need 
follow-up and would benefit from targeted road improvements in addition to basic maintenance. 
Poor quality roads hinder transportation, and their conditions may further deteriorate, therefore 
urgent renovation is needed to reduce potential vehicle related damages, increase driving speed 
and driving times to save on transportation costs.

Poor quality roads were observed only during the second period of fieldwork (Table 2). The 
most frequent observation in both datasets was satisfactory quality, although poor quality with 
respect to surface wear was observed in six cases. The structural condition of the roads was the 
best: about two thirds of the observations being indicative of good quality and only three of poor 
structural condition.

Carefully planned and constructed forest roads maintain better quality for a longer period 
(Forest practices code: forest road engineering guidebook 2002; Korpilahti 2008). The observa-
tions on three road quality variables (structural condition, flatness and surface wear quality) were 
recorded during the field work. The structural condition of a road depends on the road body. Well-
constructed roads with a smooth surface may be said to be in good structural condition, but if the 
subgrade is not suitable, the road has a great deal of traffic on it or heavier vehicles use it than 
was expected, the surface may become damaged or rutted. In this case, it is necessary to drive 
carefully and reduce speed. Surface wear refers to the top layer of the road, that with which the 
vehicles make contact. The thickness of this layer is important, so that good wear means a thick, 
surface layer of good quality material. If it the material is too thin or too fine (satisfactory quality), 
it will soon be worn away (poor surface wear quality) and allow the other layers to be damaged. 

Table 1. The road quality variables (structural condition, surface wearing and flatness) collected based on a Finnish 
Forest Road Quality recommendations (Korpilahti 2008) developed by Metsäteho Oy were classified to three quality 
categories in the study. The simplified table lists the road problems to be included in each category and the empirical 
assessment factors for good, satisfactory, and poor classes.

Assessed roads  
quality variables

Road quality issues 
to pay attention while 
assessing each variable

Road quality classes

Good Satisfactory Poor

Structural  
condition

The whole road body 
condition. Visibility 
of driving lines.

The road surface is 
smooth; therefore, 
the driving speed 

does not need to be 
reduced

Some road quality prob-
lems (such as ruts) are 

visible, driving lines must 
be chosen with care and 

speeds have to be slightly 
reduced.

There are clearly visible ruts 
so the driving lines must be 

chosen carefully, and driving 
speeds have to be significantly 

reduced.

Surface  
wearing

The road wearing 
layer’s quality and 
material (fine, coarse, 
not present).

The road’s wearing 
layer is sufficiently 
thick and of good 

quality.

The wear layer is too 
thin, or the material is 
either too fine or too 

coarse. These are hinder-
ing vehicle movement 

and require slightly 
reduced speed.

The wear layer has majorly 
been worn away, or the mate-
rial is too fine or too coarse. 

These factors are significantly 
hindering driving and speed 

reduction is necessary.

Flatness The evenness of 
the road surface. 
Depressions, grooves 
and side bulges are 
present or not. Road 
drainage status.

The road has an 
even surface. There 
is no risk or damage 

to vehicles. The 
drainage of the sur-
face is good. Road 
conditions will not 
hinder transporta-

tion or daily move-
ment. 

The wear layer is uneven, 
and the road has depres-
sions, grooves and lateral 
bulges. There is visible 
damage. Lower speeds 

may be required in some 
places, but the risk of 
damage to a vehicle is 

quite small and will not 
hinder transportation or 

daily movement.

The road has depressions, 
grooves and lateral bulges, 

and/or drainage of its surface 
does not function well. The 
wear layer is defective, and 
driving conditions are obvi-
ously poor. It is necessary to 
reduce speed and to change 

the driving line frequently to 
avoid vehicle damage. The 

poor condition of the road hin-
ders transportation and daily 

movement.
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If a road is of good quality in terms of flatness, there will be hardly any inequalities observed on 
the surface, so that no speed reduction is needed and there is no risk of damage to the vehicle. 
The quality is satisfactory if the road has grooves and depressions, so that a reduction in speed is 
necessary and care has to be taken. If the road is in poor condition, bulges at its sides may affect 
the drainage system as well and depressions and grooves may hinder driving (Korpilahti 2008).

Data on the centrelines of the roads were available from the Finnish Transport Agency 
(2013) for both datasets.

2.2 Laser scanning data

The first area, Kiihtelysvaara, was scanned on 26 June 2009, providing high pulse density ALS 
data. An Optech ALTM Gemini laser scanning system was used from 600 m above ground level. 
The scanner had a field of view of 26° and a pulse repetition frequency of 100 kHz, which resulted 
in a sampling density of about 12 echoes received per square metre. The scanning strip had a width 
of approximately 320 m and 55% of side overlap. The four-year time gap between the field data 
and ALS data was acknowledged and will be discussed below.

The second area, Tuusniemi, was mapped between 23 and 30 July 2014 using a Leica 
ALS50-II laser scanning system from about 2000 m above ground level. The device had a 20° 
field of view, a 114 kHz pulse repetition frequency, and a 20% side overlap. The average sampling 
density was 1.1 pulses m–2.

2.3 Methodology

The ALS data were used in two steps so that the current paper introduces reference DEMs to 
increase the accuracy of the method described by Kiss et al. (2015) and test its applicability to a 
low pulse density dataset as well.

First, the reference DEM was created from the laser point cloud in the resolutions of 1 m and 
2 m. Last and single echoes were used to create the terrain models with the following interpolation 
techniques: natural neighbour, spline, kriging, and inverse distance weighted. The reference DEM 

Table 2. Distribution of field observations between the road quality classes (poor, satisfactory and good) 
of road sections in two study areas. In Tuusniemi all 3 road quality classes were present, while in Kiih-
telysvaara the road quality was better and only 2 classes were present.

Tuusniemi, year 2014
Road quality class Structural 

condition
Surface  
wearing

Flatness Total number of road sections of 
each road quality class

Poor 3 6 3 12
Satisfactory 13 27 22 62
Good 33 16 24 73
Total number of road sections of 
each road quality parameter

49 49 49 147

Kiihtelysvaara, year 2013
Road quality class Structural 

condition
Surface  
wearing

Flatness Total number of road sections of 
each road quality class

Poor 0 0 0 0
Satisfactory 3 7 6 16
Good 10 6 7 23
Total number of road sections of 
each road quality parameter

13 13 13 39
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was used as a smooth road surface to reduce the topographic effect of the height differences in 
the roads on slopes. In order to reach this, the reference DEMs cell’s height values were reclassi-
fied: all reference DEM cells were reduced by the minimum value of the reference DEM in each 
assessed area.

Then we created the second set of DEMs (0.5 m and 1 m) with the interpolation as men-
tioned above to use them as input data for TPI and SE index calculation. For the calculations 
using reference DEMs, the reclassified values of the reference DEMs were extracted from the 
higher resolution DEMs before further calculations. The 1 m reference DEM was used for 0.5 m 
TPI and SE index calculations, and 2 m reference DEM was used for the 0.5 m TPI and SE cal-
culations.

Secondly, we calculated TPI and SE. Furthermore, we calculated several ALS derived vari-
ables such as intensity of returns and height differences for the resolution 1 m and 0.5 m. Two 
surface quality indices were calculated: the Topographic Position Index (TPI) and the Standardized 
Elevation Index (SE) (Jenness Enterprises 2013). These were calculated for each cell in the DEM 
using a pre-defined neighbourhood size and shape of 3 m by 3 m rectangles. The TPI calculates the 
difference between the cell and the mean height of its neighbourhood, measured in the elevation 
units of the input data, e.g. in metres. Positive values mean a higher location than the neighbour-
hood, while negative values mean a lower location. The SE index calculates TPI divided by the 
standard deviation of the neighbourhood (Eqs. 1, 2). The SE index unit is in standard deviations.

TPI x
x

ni i
ii

n
� � �� 1 1, ( )

SE
x

x
n

i
i

ii
n

�
� �� 1

2
�

, ( )

where:
xi = the height of the cell,
n = number of cells in the neighbourhood,
σ = standard deviation of height in the selected neighbourhood.

The variables for the predictions (Table 3) included TPI, SE surface quality indices and 
mean intensity values. The standard deviation and the mean values of the surface quality indices 
were assessed.

For the assessment of height values, we have used different threshold values. The distances 
were calculated only if they exceeded the threshold values; otherwise, they were assumed to be 
zero. A threshold of 20 cm was the highest, and we applied it when we aimed to identify poor 
quality roads only. While lower threshold values of 3 cm and 5 cm were tested for separating good 
quality roads.

Thirdly, several variables were used as predictors: TPI, SE, height distances between ALS 
ground points and the DEM. We calculated the difference between ALS hits and the reference 
DEMs. See Table 3 for the calculated variables. Then they were assessed by LDA to find out 
which of them describes the road quality classes the best. The predicted road quality variables 
were structural condition, surface wear and surface flatness. In the LDA, classification into three 
quality classes (poor, satisfactory, good) and two quality classes (poor versus non-poor, and good, 
versus non-good) were carried out.

The road quality classes were identified in one and two-step procedures as well. In the one-
step classification, the road section samples were classified into one of the three quality classes 
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(poor, satisfactory, good) at the same time. In order to improve the classification results, the clas-
sification was separated into two steps.

In the case of the low pulse density dataset, a two-step classification was applied. First, the 
good quality roads were identified from the data. Second, the poor quality ones were classified 
using different parameters. For the high pulse density data, only one step was used, as only two 
quality classes were involved. Fisher’s LDA, a supervised technique using quality information for 
classification purposes (Bishop 2006), was used here for dimension reduction before classification. 
LDA was used to determine variables for the three (poor, satisfactory, good) road quality classes 
in connection with the structural condition, surface wear and flatness. LDA was conducted in this 
analysis using the R package and leave-one-out evaluation. In the latter, the LDA was optimized 
once using leave-one-out cross-validation, and the same parameter was used in all the leave-one-
out evaluations.

Finally, cross-validation was used to assess classification accuracy. The reliability of the 
classification was also discussed. Due to the low number of observations in the poor categories, 
leave-one-out cross-validation was chosen over training data. Cohen’s kappa values (Foody 
2009) were calculated to assess the reliability of the classification, i.e. to measure the agreement 
between predicted classification and the field data. The test of differences was evaluated based on 
a confidence interval (CI) of 95% fitted to the estimated difference in the classification accuracy. 
McNemar’s test was run to assess marginal homogeneity. P-values were also calculated in relation to 
the classifications to assess whether there were any statistical differences between the road classes.

3 Results

3.1 High pulse density ALS dataset

The high and low pulse density ALS data showed different levels of accuracy in the quality clas-
sification as expected. The high pulse density data provided a better classification for the surface 
quality indices in all cases, for both the TPI and SE indices (Table 4).

Table 3. List of variables tested for prediction. In the table, dz: distance of height values 
from the reference DEM; dz5: distance of 5 random height values from the reference 
DEM SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance-weighted 
interpolation; NN: natural neighbour interpolation. Topographic Position Indices (TPI) 
and Standardized Elevation (SE) names are the following: Interpolation Technique for 
Reference DEM ‘_’ Interpolation for Surface Quality Index.

ALS derived values – applied 
for height values in one cell

Reference DEM  
interpolation methods

Interpolation methods used for 
DEMs for TPI and SE calculations

intensity SP SP
range KR KR
variance IDW IDW
dz NN NN
dz^2
dz^3
dz5
dz5 ^2
mean (dz)
mean (dz^2)
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Table 4. Accuracy (%) of the classification of the TPI and SE index values for the structural 
condition assessments with and without a reference DEM. Kiihtelysvaara, high pulse density 
laser scanning data. Resolutions of 1 and 0.5 m. In the table, SP: spline interpolation; KR: 
kriging interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour 
interpolation; TPI: Topographic Position Index; SE: Standardized Elevation Index.

Interpolation technique 
for surface index/refer-
ence DEM

No reference DEM Reference DEM
TPI index SE index TPI index SE index

1 m 0.5 m 1 m 0.5 m 0.5 m 0.5 m

IDW 92% 92% 77% 77% 77% 62%
KR 69% 92% 46% 62% 77% 54%
NN 92% 92% 77% 54% 69% 62%
SP 62% 77% 62% 77% 85% 54%

Fig. 2. Cross-sections of bad and good quality roads at 0.25 m resolutions. The Inverse Distance Weighted (IDW) in-
terpolation technique was used to create the surfaces.
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Generating a reference DEM (Fig. 2) increased the accuracy of the classification, and the 
TPI index performed better than the SE index in this respect (Table 4). The SE index includes the 
standard deviation of the surrounding neighbourhood and introducing a smooth reference DEM 
reduced the elevation differences in the neighbourhood and improved the performance of the TPI 
index in the case of the kriging and natural neighbour interpolations. Variables other than the surface 
quality indices did not show any higher accuracy. The best results were also related to the structural 
condition. The precision of the classification was 77% using mean distance with spline and krig-
ing interpolation of the reference DEMs. The results had the χ2 = 3 and p = 0.026 in McNemar’s 
test, and Cohen’s kappa values were close but less than 0.4, indicating only fair agreement. The 
use of a reference DEM increased the precision of the classification of the road sections only in a 
few cases in which high pulse density ALS data were used. We did not find correlation between 
intensity values and road quality.

3.2 Low pulse density dataset

In order to analyse the low pulse density dataset, the road segments were classified in either one 
or two steps. In the one-step classification, all three quality classes (poor, satisfactory and good) 
were categorized at once, while the two-step classification was introduced to improve the accuracy 
of determining poor and good quality road sections, so that only the good quality classes were 
identified at first, and then the others.

A comparison of TPI indices between a good and a bad quality road with different inter-
polation techniques using a reference DEM with the low pulse density dataset is shown in Fig. 3. 
These cross sections are the same road profiles as in Fig. 4. The good quality road has close to zero 
TPI values after applying the reference DEM. The IDW interpolation has wider range of values 
along the cross-section, while the kriging interpolation smoothed the surface more, resulting in a 
smaller range of TPI values. In the case of a good quality road, the interpolation techniques gave 
similar results.

Fig. 3. The interpolation techniques at a resolution of 0.5 metre. In the fig-
ure, SP: spline interpolation; KR: kriging interpolation; IDW: inverse distance 
weighted interpolation; NN: natural neighbour interpolation.
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Fig. 4. TPI values for the cross-sections of a bad quality road (up) and good 
quality road (down). Different interpolations were used at a resolution of 
0.25 m. Low pulse density dataset, Tuusniemi. In the figure TPI: Topographic 
Position Index.

The classification using the low-pulse density data with three quality classes performed worst 
in case of the separation of the satisfactory road category from the good and poor categories. On 
roads with smaller holes, surface inequalities cannot be distinguished and categorized well by low 
pulse density dataset. The classification results using only the surface quality indices showed low 
accuracy (Table 5). The best performance was obtained when spline interpolation was used for 
the reference DEM, as this classified the road quality correctly in 70–80% of cases. In the second 
step the satisfactory and good quality classes were merged and the poor quality class was treated 
separately. The classification accuracy increased when using only two quality classes (Table 5) 
as compared with the detection of three quality classes, because confusion of the satisfactory and 
good classes was avoided. The Kappa statistic was used to measure the accuracy with which the 
predicted classification agreed with the real situation and p-values were calculated to assess statisti-
cal significances of the differences between the categories. The classification of the surface wear 
quality data had kappa values between 0.2 and 0.4 in most cases, which means slight agreement 
with the assumption.

In order to improve performance, the classification was carried out using two-step classifica-
tion. After the good quality roads were identified and separated from satisfactory and poor road, 
the 40 points belonging to satisfactory and poor roads were further analysed. The 40 observation 
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points which were assessed are shown in Tables 5 and 6. The variables that performed best are 
shown with their class means and standard deviation. 78% of the good quality roads were identified 
correctly, and 75% of the roads classified as good were of good quality in the field observations.

The other variant of two step classification was to first identify poor quality classes, and 
then do the classification to satisfactory and good classes. This gave a higher precision of finding 
only the poor quality classes than could be obtained with the whole dataset. In order to detect 

Table 5. Classification accuracy (%) of TPI index values for structural condition assessments with the 
reference DEM interpolated with the indicated methods. Tuusniemi, high pulse density laser scanning data 
at a resolution of 0.5 m, verified against the field data. In the table, SP: spline interpolation; KR: kriging 
interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour interpolation; TPI: 
Topographic Position Index.

Interpolation technique
for reference DEM
for TPI index

3 quality classes 2 quality classes
(poor vs. non-poor)

p-value

Correctly  
classified roads

McNemar test 
(χ2)

Correctly  
classified roads

McNemar test 
(χ2)

IDW IDW 11% 35.315 24% 35.000 <0.0001
IDW KR 13% 35.268 26% 34.000 <0.0001
IDW NN 24% 26.894 37% 21.552 <0.0001
IDW SP 22% 31.091 33% 31.000 <0.0001
KR IDW 17% 33.084 28% 33.000 <0.0001
KR KR 20% 32.084 30% 32.000 <0.0001
KR NN 24% 29.571 35% 26.133 <0.0001
KR SP 7% 35.121 28% 33.000 <0.0001
NN IDW 17% 33.084 28% 33.000 <0.0001
NN KR 9% 34.274 26% 34.000 <0.0001
NN NN 26% 25.256 57% 16.200 <0.0001
NN SP 15% 32.077 30% 32.000 <0.0001
SP IDW 57% 3.806 85% 3.571 0.125
SP KR 57% 3.806 85% 3.571 0.125
SP NN 39% 26.000 70% 10.286 0.002
SP SP 57% 3.806 85% 3.571 0.125

Table 6. Class means and standard deviations (SD) of the observations in each quality class for the variables which 
define good quality classes. In the table, dz: distance of height values from reference DEM; SP: spline interpolation; 
KR: kriging interpolation; IDW: inverse distance-weighted interpolation; NN: natural neighbour interpolation; TPI: 
Topographic Position Index.

Variables Interpolation 
technique

Poor class Satisfactory class Good class p-value McNemar  
test (χ2)mean SD mean SD mean SD

(sum dz)^2 SP 149857.2 259466.2 49651.9 107136.8 49262.7 128945.5 0.887 6.444
dz^2 SP 24978.0 43243.0 8786.3 18431.0 8044.1 19625.9 0.887 6.444
dz SP 227.0 384.1 99.3 199.5 80.7 206.8 0.887 6.444
mean (dz) SP 37.9 63.9 19.4 37.0 14.1 33.5 0.887 6.444
mean (dz^2) SP 4163.3 7206.9 1749.2 3485.7 1332.2 3146.9 0.887 6.444
(sum dz)^2 NN 0.1 0.2 17.6 42.1 47.2 229.0 0.887 6.444
mean (dz) NN 0.0 0.1 0.0 0.1 –0.1 0.3 0.669 1.145
sum(dz)^2 IDW 0.0 0.0 0.2 0.4 85.9 471.2 0.669 1.145
TPI using IDW SP 0.3 1.0 0.0 1.1 –0.3 0.8 0.073 1.857
TPI using KR SP 0.3 1.5 –0.4 1.3 –0.1 0.6 0.073 1.857
TPI using SP SP 0.3 1.4 –0.5 1.4 –0.1 0.6 0.235 2.066
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the road sections with the greatest height differences, the 20 cm threshold was used as described 
above. This successfully identified the two or three poor quality road sections using the 3 m and 
20 m threshold for height differences. Spline interpolation was used for the reference DEM, and 
the TPI index at a resolution of 0.5 m with either the inverse distance-weighted, spline or kriging 
interpolation. The p-value of the McNemar index was between p = 0.0003 and p = 0.0005 in all 3 
cases. The overall classification results (Table 7) show that the majority of the sites in the poor and 
good classes can be identified from the low pulse density laser datasets.

The classification using the low pulse density dataset (Table 8) identified 21 out of the 28 
good quality road sections, i.e. those not requiring any further action, and also 2 out of the 3 poor 
road sections which needed urgent maintenance. The remaining ones were considered uncertain 
and would require a field inventory to determine their exact condition. On the other hand, one of 
the three poor sections was identified as not requiring any action, even though maintenance was 
needed. The results show that ALS data can reduce the amount of fieldwork significantly.

Table 7. Forest road quality classification results of the analysed road sections using weighted 
distance from the Spline reference DEM with a 3 cm threshold and verified against field observa-
tions of structural condition. Overall accuracy: 62.5% Kappa = 0.214.

 Classified as... Classification  
overall

Producer accuracy 
(Precision)Field measured classes Poor Satisfactory Good

Poor 2 0 1 3 66.66%
Satisfactory 2 2 5 9 22.22%
Good 2 5 21 28 75.00%
Truth Overall 6 7 27 40
User Accuracy 33.33% 28.57% 77.77%   

Table 8. Overall classification results for low resolution ALS area after the two-step identi-
fication of good and poor classes in terms of structural condition. Overall accuracy: 67.5% 
Kappa = 0.296

 Classified as... Classification  
overall

Producer accuracy 
(Precision)Field measured classes Poor Satisfactory Good

Poor 2 0 1 3 66.66%
Satisfactory 0 4 5 9 44.44%
Good 0 7 21 28 75.00%
Truth Overall 2 11 27 40
User Accuracy 100.00% 36.36% 77.77%   
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4 Discussion

A low (1.1 pulse m–2) and high pulse (12 pulses m–2) density laser scanning datasets were used to 
compare ALS derived features and their connection to three different road quality variables with 
and without the use of reference surfaces for road quality classification purposes. The introduc-
tion of references DEMs guaranteed a locally invariant analysis of road quality. The experimental 
areas were situated in Tuusniemi (low pulse density) and Kiihtelysvaara (high pulse density data), 
Finland. Two special indices at different resolutions and with different weighted variables, using 
four techniques for interpolating the reference DEM, were compared.

We note that the high pulse density airborne scanning data did not have any poor quality 
roads, only good and satisfactory ones, so that the two cannot be directly compared. The high pulse 
ALS data were obtained four years after the field data (13 plots), although both were recorded 
during a dry summer. The low pulse data was recorded in the same year and month as the field 
data (49 points) were collected. There were no signs of recent road maintenance, but the roads 
could have deteriorated during that interval, thus affecting the results of the classification. The 
low proportion of poor quality roads well represent the Finnish forest roads regarding quality. 
Determining satisfactory quality also leaves space for subjective judgement, as the guidelines for 
field inventories do not lay down exact figures for the allowable variation. Furthermore, the low 
pulse density dataset miss out information on holes or rocks in the roads.

Although the basic geometry of the road can be extracted from low pulse-density data as 
well (Craven and Wing 2014), the resolution achieved by ALS data is essential for any further 
analyses (White et al. 2010; Azizi et al. 2014). James et al. (2007) concluded that a density of 12 
pulses m–2 was required to determine the depth of gullies, and our research supports this that high 
pulse dataset was required to distinguish more detailed road features, including ditches.

All the interpolation techniques performed well in creating a smooth surface for the refer-
ence DEM, but the choice of technique has to be made according to which achieves the best clas-
sification into satisfactory and bad quality roads. Road quality can be assessed through parameters 
such as weighted distances between height values and the reference DEMs and by using the TPI 
surface quality index with a spline interpolated reference DEM. The three categories chosen for 
evaluation, surface wear, flatness and structural condition, are closely related from the ALS point 
of view as well, as an inadequate surface wear layer and poor structural condition can detract 
from road flatness. As in the previous smaller dataset (Kiss et al. 2015), surface wear quality was 
derived with high precision, on the other hand the low pulse density dataset gave better results for 
structural condition using a reference DEM.

The best performance was obtained with the model that used the Topographic Position Index 
(TPI) with a reference DEM and a high pulse density dataset. The approach demonstrated here con-
firms that in the case of a low pulse density dataset the reference DEM improved the classification 
of the weighted variables (e.g. mean or average distances from the reference DEMs with suitable 
thresholds) when using a reference DEM. By contrast, the use of this approach with the TPI index 
did not give any significantly better classification results. The two-step classification provided the 
highest accuracy, with between 40% to 60% of the road sections classified with high precision as 
being of either good or poor quality, which after further improvements can reduce the amount of 
fieldwork required to assess the road quality on site. Low pulse density data can be used to derive 
the main road characteristics, but it is not sufficient to distinguish good roads from satisfactory ones.

The introduction of a reference DEM not only created a locally invariant analysis of road 
features but enabled the low pulse density dataset to identify the majority of poor and good qual-
ity roads with better success as well. Spline interpolation produced the best reference DEMs and 
lead to an up to 85% correct classification with the use of Topographic Position Index. The other 
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variables were lower in accuracy. It is more important to have a denser point cloud or apply a 
reference DEM than to select an interpolation technique that yields high classification accuracy.

Identification of the worst and best quality roads can help in road maintenance to reduce the 
number of road sections which need to be checked in the field. The research tested how interpola-
tion methods affect road quality indices and which performs best regarding TPI. The study can 
further be expanded by using car mounted LiDAR devices (Mobile Mapping 2020) to collect data 
alongside with the manual road check-ups.

5 Conclusions

In the case of the high pulse density dataset the introduction of a reference DEM did not signifi-
cantly increase the performance of the interpolation methods. The TPI and SE indices calculated 
for higher resolution DEMs provided adequate information for classification purposes. The low 
pulse dataset performed better using the reference DEMs than without them. The use of the refer-
ence DEMs resulted in 75% of the good quality roads and 66% of the poor quality roads being 
correctly classified. The use of TPI index had an accuracy of 85%.
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