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Highlights
• A stem diameter weighted linking algorithm for tree maps was introduced which improves 

linking accuracy.
• A new simultaneous location and mapping-based co-registration method for stem maps meas-

ured with moving sensors was introduced that operates with high linking accuracy.

Abstract
A new method for the co-registration of single tree data in forest stands and forest plots applicable 
to static as well as dynamic data capture is presented. This method consists of a stem diameter 
weighted linking algorithm that improves the linking accuracy when operating on diverse diam-
eter stands with stem position errors in the single tree detectors. A co-registration quality metric 
threshold, QT, is also introduced which makes it possible to discriminate between correct and 
incorrect stem map co-registrations with high probability (>99%). These two features are com-
bined to a simultaneous location and mapping-based co-registration method that operates with 
high linking accuracy and that can handle sensors with drifting errors and signal bias. A test with 
simulated data shows that the method has an 89.35% detection rate. The statistics of different set-
tings in a simulation study are presented, where the effect of stem density and position errors were 
investigated. A test case with real sensor data from a forest stand shows that the average nearest 
neighbor distances decreased from 1.90 m to 0.51 m, which indicates the feasibility of this method.
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1 Introduction

There has been rapid development of sensor technology recently, making it possible to collect 
high-resolution data (>10 returns m–2) for large areas, using airborne laser scanning (ALS) (Hol-
mgren et al. 2022). This is useful, as the point density of ALS data is a highly influential factor in 
the performance of detecting intermediate and suppressed trees (Wang et al. 2016b). Tree detec-
tion algorithms (Hyyppä et al. 2008; Wang et al. 2016b) can then be used to create individual tree 
maps for the support of forest management planning. In these methods, tree stem data from sample 
plots – which are expensive to collect with manual field methods – are needed as reference data 
for the prediction of tree attributes.

Recently, newly developed geospatial sensors (Hyyppä et al. 2020; Hyyppä et al. 2021) 
have been applied to the collection of ground reference data to make forest inventories more 
time efficient. These techniques can have different carriers, including backpack, handheld, UAV, 
and ground-based vehicles (Forsman et al. 2016b; Hyyppä et al. 2020) and they could also be 
stationary; for instance when using terrestrial laser scanners (Thies et al. 2004; Liang et al. 2016; 
Olofsson et al. 2016; Wang et al. 2016a; Liang et al. 2018). Photogrammetric cameras have also 
been employed in forest measurements and estimates, as investigated by Forsman et al. (2016a). 
These techniques have then been used in processing chains where ground reference data are used 
to automatically train airborne laser-scanning–based estimates at the single tree level (Lindberg et 
al. 2012), and in some cases laser-scanning–based inventories provide estimates of considerably 
higher accuracy than field inventories (Persson et al. 2022).

It has been shown that accuracies of timber volume estimates at the logging operation level 
are highly dependent on accurate positioning (Noordermeer et al. 2022), and therefore it is of 
importance to have a good co-registration between different sources; especially in cases where 
one sensor is moving, and the observed position has large random errors and systematic errors 
that change with time (drift rate). Such drift errors could, for instance, occur if the trajectory of the 
sensors is estimated using an inertial measurement unit (IMU) (Holmgren et al. 2017).

In robotics the use of simultaneous localization and mapping (SLAM) techniques is a way to 
make a mobile system create a local map of an unknown environment (Durrant-Whyte and Bailey 
2006), where natural terrain is one of the tested environments (Lalonde et al. 2006). Objects in 
these maps often have their positions registered in a local coordinate system where, for instance, 
the coordinates (0,0,0) could be at the position the sensor had marked when the measurements 
began. On the other hand, global maps covering a larger area could have the positions of the objects 
registered in a national or regional grid (coordinate system) captured by a high accuracy Global 
Navigation Satellite System (GNSS).

If the local maps and the global maps have different coordinate systems, a co-registration 
is necessary to be able to identify the same object in both datasets. For instance, a tree detected 
using a terrestrial laser scanner (TLS) (Olofsson and Holmgren 2016), could then be identified with 
the corresponding tree in a dataset captured using airborne laser scanning data (ALS) techniques 
(Lindberg et al. 2012). If a number of trees are identified and linked between the two datasets it 
is possible to automatically train ALS-based estimates of stem attributes at the single tree level 
(Lindberg et al. 2012; Persson et al. 2022).

There are some problems that arise when co-registering two different datasets. First: the dif-
ferent sensors might not detect all trees. A ground-based sensor could, for instance, detect a larger 
number of small trees compared to airborne sensors. On the other hand, trees might be shaded and 
therefore go undetected in ground-based scanning setups. Second: if moving sensors are employed, 
there may be drift due to accumulated position errors and sudden position changes might be caused 
by lost connections. This makes assumptions on rigid body rotations and translations non-valid. 
Co-registration needs to be different at different time steps.
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There are several studies that have solutions for co-registering forest datasets detected with 
different kinds of sensors. Korpela et al. (2007), for instance, used a semi-manual method where pho-
togrammetric observations of treetops were used with least squares adjustment to achieve decimeter-
level accuracy in aerial images. Olofsson et al. (2008) published a method which is independent 
of sensor type, and uses position images of single tree data to co-register aerial detected and field 
surveyed trees. In 2012 this method was further developed to include hidden sectors from shaded 
trees in terrestrial laser scanning (TLS) data (Lindberg et al. 2012). In 2014 Hauglin et al. (2014) 
published a similar algorithm for co-registering single trees detected in ALS and TLS data where 
a match score and relative sizes were used instead of normalized correlation of position images.

Some of the methods use the canopy height model (CHM) retrieved from ALS data. Dorigo 
et al. (2010), for instance, have an iterative method where the height difference between CHM data 
and forest inventory data is evaluated, similar to the method employed by Pascual et al. (2013), 
who matched the CHM and data from topographic surveying. Monnet and Mermin (2014) used 
normalized cross-correlation of the CHM and a tree map to achieve a co-registration of the field 
plot. In 2017, Paris et al. published a paper where the cross correlation was evaluated based on the 
CHMs from TLS and ALS datasets.

All these techniques depend on static ground reference data or mobile sensors of extremely 
high accuracy so more flexible algorithms are needed to make dynamic linking possible. In an 
attempt to solve this Hyyppä et al. (2021) published a robust method based on translation- and 
rotation-invariant local descriptors which can be applied to mobile sensors with drift errors (Hyyppä 
et al. 2020).

Taking these problems into account, this study introduces a new stem diameter weighted algo-
rithm for stem map linking and also a co-registration quality metric to obtain better linking quality 
between trees and to have a way to determine the quality of these links. These measures are com-
bined with a new SLAM-based co-registration method for stem maps measured with moving sen-
sors. The performance of the algorithms under different settings and position errors is demonstrated.

The aim of this study is to find robust methods and algorithms for stem map co-registration 
of data, measured with moving or static sensors, that operate with high linking accuracy, and that 
can handle sensors with drifting errors and signal bias. These methods should preferably have a 
way of discriminating between correct and incorrect stem map co-registrations. Models should 
also be developed to make it possible to estimate the number of errors co-registration of data from 
different sensor systems and forest types would likely offer in future setups.

The paper first describes how data were simulated, followed by a description of the co-
registration algorithm. After that, evaluation methods are explained both for simulated data and 
data from a real forest stand. Finally, the results of the study are followed by a discussion and 
conclusions.

2 Material and methods

This study presents a new method to co-register stem maps from different sensors. The method is 
independent of how tree position data was detected, but some use cases are more common than 
others. There could, for instance, be a global stem map that was detected by ALS which covers a 
large forest area, and some local stem maps detected in the same area by using TLS or a mobile 
laser scanning (MLS) device. These datasets need to be co-registered in order to use them, for 
instance, to automatically train ALS-based estimates at the single tree level (Lindberg et al. 2012).

The proposed algorithms were tested on simulated forests to evaluate their performance. 
These simulated forests represented the detected stem maps from sensors with different accuracies 
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and forest areas with different properties. The co-registration algorithms were then applied to the 
simulated stem map data. Since each tree in the stem maps was given a unique ID, it was possible 
to evaluate the accuracies of the algorithms. The proposed co-registration algorithm was also tested 
on data from a real forest stand to see if the methods work on a common use case.

2.1 Simulation of forest stem maps

The trees in the simulations were created using a random loop in the python scripting language. 
Every tree had an x, y coordinate in the plane and a stem diameter d. Coordinates were generated 
using uniform distributions U, with equal probability between a span of min and max values, 
Δs = xmin – xmax = ymin – ymax, filling a square (Eq. 1). Stem diameters were randomly generated, 
using a uniform distribution U, with equal probability between a span of min and max diameters, 
Δd = dmin – dmax (Eq. 1) The number of generated trees was calculated using the number of stems 
per hectare value and the selected area in the simulation, rounded to the nearest integer. A new 
position was randomly generated if there was a neighboring tree within a radius of 1 m, resulting 
in a minimum tree neighbor distance. The loop ended when the square was filled with the pre-set 
number of trees. A number of different stem densities were tested in the simulations for areas of 
a pre-chosen size.
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2.2 Simulation of local stem maps with position errors

When co-registering a local stem map with a global stem map there may be position differences 
between the two systems, leading to tree stem linking with errors. To simulate this, a global stem 
map was created using the method described above. Then a local stem map from the same forest 
area was generated by cutting a circular plot with a radius of 10 m from the global stem map. A 
position error (dx,dy) was added to the simulated coordinate for each tree in the local stem map, in 
order to simulate tree detection sensors with different accuracies. Position errors were modeled as 
radial displacements r, in random angular directions expressed in radians θ. The radial displace-
ments were modeled as absolute values from a Gaussian distribution with standard deviation σ, 
and the angular directions were modeled as values from a uniform distribution with the span 0 – 2π 
radians (Eq. 2). The trigonometric functions sin and cos were used to transform values from polar 
to Cartesian coordinates, (Eq. 2):

r N

U
dx r
dy r

~ ,

~ ,

cos

sin

( )

0

0 2
2

�

�
�
�

� �
� �

� � � �
� � � �

�



5

Silva Fennica vol. 56 no. 3 article id 10712 · Olofsson et al. · Co-registration of single tree maps and data …

A regular stem neighbor distance re was introduced to make it possible to compare simula-
tions with different stem density, ρ (stems m–2) (Eq. 3):

r
Pe � �

1 10000
3

�
. ( )

For convenience Eq. 3 is also expressed using the stand density Ρ (stems ha–1), for cases 
where areas are measured in hectares.

High density stands have a small re, whereas low density stands have a large re. In dense 
stands there is a higher risk of linking trees incorrectly, and therefore a normalized radial displace-
ment standard deviation, σn, was introduced (Eq. 4) to make it possible to compare sensor errors 
results from stands with different stem densities:
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2.3 Simulation of stem data captured in the path of a moving sensor

A quadratic 100×100 m2 forest stand was generated representing a global stem map, using the 
method described above. The diameter at breast height span of the trees was set to 0.05–0.30 m 
and stand density was set to 600 stems ha–1. A moving virtual sensor that sampled trees within 
this forest stand was then simulated to represent a local stem map. A quadratic sensor path was 
chosen that started and ended at the same position (0,0), with a side length of 40 m and the speed 
of the moving sensor set to 1 m s–1. Each simulated detection of a tree was given a sample time 
along the sensor path for each time step. The sensor path was generated with a sampling interval 
of 0.1 seconds and the sensor depth of vision was set to 10 m. The sensor path and the depth of 
vision remained inside the simulated forest stand at all times. For every time step in the sampling 
interval all visible trees closer than the depth of vision to the sensor were considered ‘detected’ 
and were saved at that time step and labeled with the corresponding sample time. The trees further 
away from the sensor and the ones where the view was blocked by another tree in front of them 
were not included at this time step. It was possible for a tree to be visible in some time steps but 
shaded in others when the sensor had moved a few more meters.

Sensors producing local stem maps have measurement errors when sampling from forest 
stands. To simulate a sensor with errors, radial displacements of the simulated detected trees 
with a standard deviation of 0.25 m was added with the method described above. A drift of 
0.050 m s–1 in the x-direction and 0.025 m s–1 in the y-direction was also added to the trees in 
the path to simulate a sensor with a calibration that is drifting with time. A shift of 3 m in the 
y-direction was also added to the trees after 100 seconds to simulate a sudden bias of the signal. 
Two random error trees were added at every time step, and shaded trees were excluded from 
calculations to simulate omission and commission errors. A plot of this size and density with the 
chosen configuration would have about 19 trees at every time step, where two are shaded and 
not visible by the sensor.

In order to simulate an algorithm that samples from several time steps, the algorithm 
sampling interval was set to be larger than the sampling interval of the sensor path; 0.5 seconds 
with a 0.25-second duration, covering trees sampled from different times at slightly different 
positions.
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2.4 Stem map co-registration algorithm

The stem map co-registration method is based on the assumption that you have two datasets of 
single trees that are to be linked and transformed into either of the two coordinate systems. The 
assumption is that the first dataset is a large global stem map which could be a forest stand or a large 
field plot. The second dataset is assumed to be a local stem map; for instance, from data registered 
by a moving sensor. Both datasets should have 2D positions of x, y, for each tree and variables of 
comparable size; in this study the stem diameter at breast height, d. In the case of a moving sensor, 
there should also be a sampling time associated with the capture of each tree diameter. In some 
cases, a moving sensor can have several diameters captured at different height intervals at different 
times, which is allowed by the algorithm. The assumption is also that datasets have small errors in 
the z-direction, making it possible to work purely on the x, y coordinate plane. A heavily-inclined 
tree where the position is determined by the top of the tree rather than the root of the tree will have 
a position error added to the x, y coordinate of the root position.

2.4.1 Link quality metric by diameter weighted tree neighbor distance

Sometimes small trees are present in one of the datasets but not in the other, which can cause link-
ing errors in the co-registration process if a small tree is located close to a large neighboring tree 
in the corresponding data set. To avoid this, a diameter-weighted neighbor tree distance rw was 
introduced that weighs the Euclidean distance, in the 2D xy-plane (rn) by the ratio of the diameters 
of the neighboring trees; the larger diameter of the two stems, dmax, in the numerator and the smaller 
diameter of the two stems, dmin, in the denominator (Eq. 5). This gives the Euclidean neighbor 
distance if the diameters are equal but twice the Euclidean distance if one diameter is two times 
the size of the other diameter. This means that trees with large diameter differences have a lower 
probability of being linked, compared to trees where diameters are similar.

r r d
dw n= max

min

( )5

For every pair of linked neighbor trees, a quality weight, w, was introduced (Eq. 6). If the 
distance between the linked trees is zero, the weight (w) is one. If the distance between the trees 
is large, the weight (w) approaches zero.

w
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2.4.2 Co-registration quality metric and threshold

A co-registration quality metric Q was introduced as the sum of all pair link quality weights (Eq 7), 
normalized by the number of trees N in the field plot (or in the case of a moving sensor, the number 
of detected trees within a time period). If all trees are perfectly linked with zero distances the total 
quality of the co-registration will be one. If some trees have no links or if some trees have posi-
tion errors, the quality metric Q will be smaller than one and approaching zero for co-registrations 
that are likely incorrect. A minimum threshold value, QT, for when the quality value Q shows a 
co-registration that is likely correct needs to be found empirically.
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2.4.3 Stem linking algorithm

Before linking two field datasets, the datasets are saved in 10×10 cm quad trees in the x, y-plane 
for easy access using coordinates. In that way there is no need to search the whole list for every 
test. Quad trees are data structures that recursively subdivide regions into four at every resolution 
level, which makes it possible to quickly search and find objects within a selected region (Samet 
1984). The quad tree cell that surrounds the investigated coordinate x, y of interest will contain 
trees of interest or be empty.

If the tree lists (filled-in quad tree cells) already have coordinates that are close both in x, 
y positions and rotations there is no need to do a massive search of the Euclidean space. The only 
necessity is linking the separate trees in the datasets. This can, for instance, appear when a previ-
ous time step already has co-registered the stem coordinates to be close enough or when two data 
sources with accurate geographical measurements are used. The co-registration quality metric Q 
can be used to determine whether a pure linkage is sufficient.

The stem linking algorithm works as follows:
For every tree in the local stem map, find the closest trees within a given search radius R 

in the corresponding global stem map. Within this search space, find the matching trees with the 
smallest weighted neighbor distance rw, (Eq 5). Save the chosen tree pair in a dictionary for later 
access. There might be more than one tree that connects to a particular tree in the global stem map. 
When all trees are processed, search the found tree pairs for conflicts. If a tree from the global stem 
map has several trees from the local stem map linked to it, keep the pair with the highest linking 
quality weight w (Eq 6). In some cases, one wants to keep all field plot trees connected to a forest 
stand tree; for instance when a moving sensor has several detected diameters at different height 
levels and different times. In such cases leave all pairs in the list.

2.4.4 Stem map matching algorithm

When tree lists have different coordinate systems and different rotations, for instance at the start 
of the moving sensor path or after a time step with unsuccessful linking (Q < QT), there is a need 
to match and find the correct homogeneous transformation that transforms the local stem map 
coordinates (xl,yl), to global stem map coordinates (xg,yg), where θ is the rotation angle, and tx and 
ty are the translation.
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An appropriate search space in the forest stand is chosen where there is a high probability 
for the local stem map to be positioned correctly. If an approximate center coordinate is known, 
the search space can be smaller. Otherwise, the whole global stem map needs to be investigated. 
A small search resolution incremental distance of ds is chosen, equal in this study to 1 m. The ds 
value should be small enough to make linking correct trees possible. For dense stands this number 
must be small. For every x and y coordinate within the search space, the coordinates should be 
incremented by ds for every step. If the field plot is rotated, several rotations also need to be tested. 
In this case, the angular step should be small enough to give a maximum arc length of ds at the 
periphery of the local stem map.

For every coordinate and rotation in the search space, do a stem linkage as described above. 
Calculate the co-registration quality value Q. Keep the matched tree pair list that gives the highest 
quality Q. Use the final matched stem pair list to find the transformation parameters θ, tx and ty by 
minimizing the square of the residuals. Once the parameters are found, the whole dataset can be 
transformed to either of the two coordinate systems and thus be co-registered.
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2.4.5 Moving sensor co-registration algorithm

There needs to be a separate transformation for every time step if one of the datasets is captured 
by a moving sensor that does not have perfect geographical registration and that may have drift 
and sudden bias in the process. In this case, the algorithm works on subsets of the MLS data 
selected at short time spans. The time spans must be long enough to contain several trees in the 
local neighborhood, but short enough to make the trees appear to be almost standing still in the 
moving sensor setup. The speed of the moving sensor and the sampling interval of the sensor will 
offer appropriate values for these parameters.

The algorithm starts by filtering out the sensor-detected trees from the first time span and 
performs a stem linkage as described above. The linkage is assumed to be correct if the quality 
Q > QT. If the co-registration quality Q is lower than the threshold there will be a stem map match-
ing of the tree lists as described above. The time, the transformation matrix, and the quality weight 
Q will be saved in a list if the sampled trees at the time span have produced an acceptable quality 
Q either by direct linkage or by stem map matching. If not, the previous transformation matrix 
will be used. The algorithm then continues by filtering out the sensor-detected trees from the next 
time span and proceed with the iteration. The algorithm stops when there are no more time steps.

The list of homogeneous transformation matrices for each time step and each weight Q 
are then used to transform the different stems in the tree list for every tree and time step. If a tree 
has a time stamp that lies between the time stamps of two saved transformation matrices, a linear 
interpolation of the stem coordinates from the two transformations determines the final position.

2.5 Evaluation of the algorithms

2.5.1 Diameter weighted stem linking accuracy

A simulation with different settings of diameter intervals and stand densities was performed to evalu-
ate the accuracy of the diameter weighted linking algorithm. The chosen diameter intervals were 
(0.30–0.30 m), (0.15–0.30 m), (0.10–0.30 m), (0.10–0.40 m), (0.10–0.50 m) and (0.10–0.60 m), 
and the chosen stand densities were 500, 1000 and 1500 stems ha–1. For each setting, 5000 forest 
stands were simulated, each with a random normalized radial displacement standard deviation 
position error σn, in the interval 0–2 for the circular field plots. The ratio between the number of 
correctly linked trees and the total number of trees in each simulated plot was saved.

Statistics describing the linkage accuracy ratios were assembled in bins with size 0.1; each 
for a specific position error (σn) interval. The average linking accuracy ratio, q, for the settings was 
modeled with two functions for each setting, where C1, C2, p1 and p2 are parameters and σn is the 
normalized radial displacement standard deviation.

q C n p n� � � �� �1 0 0 0 5 91 1� �, . . ( )

q C n p n� � �� �2 2 0 5 2 0 10� �, . . ( )

The inflection point between those two functions was set to a value of σn = 0.5 based on 
visual inspection of the data, Fig. 1. The value of q = qinf for the inflection point of every setting 
was linearly interpolated using all σn values between 0.3 and 0.7. Setting the inflection point values 
in the previous equations gives us:
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and
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and solve p2 using least squares regression. The parameter p1 is modeled as 2 and C1 and C2 can be 
extracted from the equations. The parameter settings and the root mean square error of the model 
fit are shown in the results chapter.

Fig. 1. The number of correctly linked trees in field plots as a function of the 
normalized radial displacement standard deviation for several different diam-
eter spans of simulated forests. The stand densities used are from an equal 
amount of 500, 1000, and 1500 stems ha–1.
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2.5.2 Setting the co-registration quality metric threshold

A quality threshold QT is needed to see whether a field plot co-registration is correct and not just 
randomly linked trees between similar forest areas. Therefore, a test was performed where 100 
pairs of forests stands were simulated for each stand density at 500, 1000, and 1500 stems ha–1. 
From one of the forest stands a field plot with radius of 10 m was cut out and then matched with 
the other forest stand. The co-registration quality metric Q was calculated for the matched pair 
and then saved. Since the pairs were randomly chosen, these quality values should be smaller than 
would be the case for a correct co-registration. The average and standard deviation of the Q values 
of the three stand densities were saved.

To obtain a comparison with plots that have correct co-registrations, 100 forest stands for 
each setting was simulated. The settings were: stand densities 500, 1000, and 1500 stems ha–1, 
diameter spans 0.3–0.3 m and 0.1–0.6 m and normalized radial displacement standard deviations, 
σn, of 0.1, 0.2, 0.3 and 0.4. For both simulations the linking tree search radius R was set to 3 m 
and the search space was set to +/–5 m in the x and y direction.

The co-registration quality threshold QT was manually set to 0.55 m–1 after the simulations 
of the random and the correct co-registrations were compared, since it resulted in good separation 
between the two cases. See the results and Fig. 2.

Fig. 2. The co-registration quality metric Q distributions for plots with random-
ly linked trees and plots with correctly linked trees for two different normalized 
radial displacement standard deviations. The number of stems ha–1 (sph) was 
set to 1000 and the diameter at breast height (dbh) was 0.3.
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2.5.3 Performance test of co-registration using a moving sensor

As an evaluation of single tree detection with a moving sensor with drift errors, the algorithm 
was tested on the data from the simulated sensor detection path described above. The number of 
correctly linked trees was recorded, as was the average link distance and standard deviations of 
the tree positions after the moving sensor was transformed to the global coordinate system of the 
forest stand. See the Results and Fig. 3.

2.5.4 Co-registration using real sensor data from a forest stand

The co-registration algorithm was tested with data from an MLS system consisting of a Velodyne 
VLP 16 laser scanner (Xsense MTi-G-710 inertial navigation system) and a Jetson AXG Xavier 
computer. An initial point cloud was first derived using LIO-SAM (Shan et al. 2022). The point 
cloud and sensor trajectory were further calibrated using forest-specific features, as described by 
Tulldahl et al. (2019), and tree stem positions and stem diameters were derived using the cor-
rected point cloud (Holmgren et al. 2019). A rigid body transformation between local and global 
coordinates was computed using pairs of coordinates from the calibrated sensor trajectory, where 
GNSS data were available. The rigid body transformation was then used to transform from local 
to global tree coordinates, resulting in an initial global tree map from MLS data (Fig. 4). The test 
site was scanned with the ALS system Leica TerrainMapper, and individual tree crowns were seg-
mented with a system that uses tree crown templates (Holmgren et al. 2022), to produce a global 

Fig. 3. A simulation of a moving sensor with drift errors co-registering a forest 
stand. The black circles are trees from the forest stand with diameters propor-
tional to the size of the trees. The black rectangle is the true sensor path, and the 
red track is the sensor path with errors. The small red dots are the tree positions 
with errors and the black x’s are the tree positions after co-registration.



12

Silva Fennica vol. 56 no. 3 article id 10712 · Olofsson et al. · Co-registration of single tree maps and data …

tree map from ALS data containing tree positions, tree heights, and estimated stem diameters. A 
digital surface model (Fig. 4) was also derived from ALS data for visualization. The algorithm 
was tested using the global tree maps from MLS and ALS data and used as input to derive a final 
global MLS tree map (Fig. 4).

To evaluate the global MLS tree maps before and after co-registration, the shortest horizon-
tal distance λ from each MLS tree position to the nearest ALS tree position was derived for both 
tree maps. Descriptive statistics of nearest neighbor distances were derived to see how well the 
stems aligned in the MLS and ALS data. In addition, a visual inspection of the co-registered stem 
positions and the digital surface model was performed to see how well the stems aligned with the 
canopy treetops (Fig. 4). The root mean square difference M was introduced as a measure of the 
dispersion between the two datasets (Eq. 16), where T is the number of observations:

M
T ii

T� ��
1

162
1� . ( )

Fig. 4. Co-registration of aerially detected stem positions and ground reference stem positions 
of a forest stand using the algorithm described in the paper. Blue circles are stem positions 
before co-registration and yellow x’s are stem positions after co-registration. The red curvy 
line is the sensor path. The gray background is the canopy height model derived from airborne 
laser scanner data.
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3 Results

3.1 Diameter weighted linking accuracy

The diameter weighted tree stem position linking algorithm works well, as can be seen in Fig. 1 and 
Table 1 – as long as the detector’s position errors are small. If the normalized radial displacement 
standard deviation, σn, is smaller than 0.25, the number of correctly linked trees will be higher 
than 90% for most settings (Table 1). This would mean a radial displacement standard deviation, 
σ, of 1.12 m for a 500-stem ha–1 stand, 0.79 m for a 1000-stem ha–1 stand, and 0.64 m for a 1500-
stem ha–1 stand. In Fig. 1 it can also be seen that the weighted algorithm works better the more 
diverse tree stem diameters happen to be in a stand. It can also be seen that for homogeneous stands 
with equal stem diameters, the linking algorithm is equal to a pure Euclidean linking algorithm 
where the distance to the neighbor tree is the only aspect used.

The parameters of (Eqs. 9 and 10) were curve fitted and saved in Table 2 together with the 
root mean square error of the model fit, as an overview of how the average linking accuracy ratio, q, 

Table 1. Number of detected trees [%] at different settings of the span of diameter at breast height and normalized 
standard deviation of the position error σ√ρ. The average of simulated plots 500, 1000, and 1500 stems per hectare 
were used.

σ√ρ Dbh 30 cm Dbh 15–30 cm Dbh 10–30 cm Dbh 10–40 cm Dbh 10–50 cm Dbh 10–60 cm

0.05 99.9 99.9 100.0 100.0 99.9 100.0
0.15 96.8 98.0 98.4 98.5 98.4 98.6
0.25 87.6 91.5 92.3 92.6 93.6 94.1
0.35 76.6 82.6 83.9 85.5 86.0 86.7
0.45 66.2 72.3 75.7 76.9 77.7 79.4
0.55 57.1 64.7 67.2 69.4 70.4 72.2
0.65 49.6 56.2 60.4 63.4 64.5 65.5
0.75 44.6 51.1 53.7 56.3 58.0 59.6
0.85 38.7 46.7 49.7 50.7 53.3 53.9
0.95 35.9 41.4 45.4 47.4 48.6 49.6
1.05 33.1 38.5 41.8 43.6 45.3 46.2

σ = stem position radial displacement standard deviation. ρ = the number of stems m–2. Dbh = diameter at breast height.

Table 2. Curve fitted function parameters for detection rates in the simulations with different diameter settings at breast 
height ratio and different numbers of stems per hectare. 

Dbh [m] Dbh ratio Sph [ha–1] C1 p1 C2 p2 Rmse

0.30–0.30 1.0 all 1.5 2.0 0.34 –0.89 0.101
0.30–0.30 1.0 500 1.55 2.0 0.34 –0.86 0.127
0.30–0.30 1.0 1000 1.49 2.0 0.33 –0.91 0.086
0.30–0.30 1.0 1500 1.47 2.0 0.34 –0.9 0.081
0.15–0.30 2.0 all 1.24 2.0 0.39 –0.83 0.102
0.15–0.30 2.0 500 1.29 2.0 0.39 –0.8 0.132
0.15–0.30 2.0 1000 1.23 2.0 0.39 –0.84 0.088
0.15–0.30 2.0 1500 1.2 2.0 0.39 –0.85 0.075
0.10–0.40 4.0 all 1.05 2.0 0.44 –0.76 0.099
0.10–0.40 4.0 500 1.07 2.0 0.44 –0.74 0.127
0.10–0.40 4.0 1000 1.05 2.0 0.43 –0.76 0.089
0.10–0.40 4.0 1500 1.02 2.0 0.43 –0.78 0.073

Dbh = diameter at breast height. Sph = stems per hectare. all = an equal amount of 500, 1000 and 1500 Sph. Dbh ratio = the maximum 
possible Dbh in the span divided by the minimum possible Dbh in the span. Rmse = root mean square error of model fit residuals.
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depends on the normalized radial displacement standard deviation for different settings of diameter 
spans and stand densities. A few of those curves are plotted in (Fig. 1). The stand densities used 
were 500-, 1000-, and 1500-stem ha–1, and the combined results of all three (to be used if the stem 
density in the stand is non-homogeneous).

For details see Supplementary file S3, available at https://doi.org/10.14214/sf.10712.

3.2 Setting the co-registration quality metric threshold

Fig. 2 shows the histograms of the co-registration quality metric Q for three different settings. 
There it can be seen that the co-registration of a stand with small detector position errors is easy to 
discriminate from a random linkage of two separate stands, whereas if the stand has large detector 
position errors the distribution is more similar to the random linking distribution. Table 3 shows 
the average and standard deviation of the co-registration quality metric Q for three different stand 
densities: 500-, 1000-, and 1500-stem ha–1 for random linking of stands. It is also shown that there 
is more than a 99% probability that the Q value is smaller than 0.55 for all three stand densities 
(if the histograms are assumed to be Gaussian), making QT a suitable threshold value. All values 
smaller than this are probably incorrect stem map matching.

Table 3. Statistics of the co-registration quality metric Q for different number of stems ha–1 for randomly 
combined plots. These values are used to set a minimum Q threshold for the level of possible correctly-
linked field plots. Values lower than this are probably caused by incorrect co-registrations. 

Stems ha–1 avg Q StdDev Q Avg + 3 stdDev Probability Q < 0.55 [%]

500 0.416 0.0520 0.572 99.51
1000 0.442 0.0372 0.553 99.82
1500 0.459 0.0288 0.545 99.92

avg = average. StdDev = population standard deviation.

Table 4. Statistics for the co-registration quality metric Q for different number of 
stems ha–1, and normalized position error standard deviation σ√ρ, for correctly 
co-registered plots. Small stem position errors make it easier to separate a correct 
co-registration from an incorrect one. 

Stems ha–1 σ√ρ Dbh [m] Probability (Q > 0.55) [%]

500 0.1 0.3–0.3 100.0
500 0.1 0.1–0.6 100.0
1000 0.1 0.3–0.3 100.0
1000 0.1 0.1–0.6 100.0
500 0.2 0.3–0.3 83.53
500 0.2 0.1–0.6 91.4
1000 0.2 0.3–0.3 99.06
1000 0.2 0.1–0.6 99.96
500 0.3 0.3–0.3 31.36
500 0.3 0.1–0.6 31.72
1000 0.3 0.3–0.3 66.78
1000 0.3 0.1–0.6 79.04
500 0.4 0.3–0.3 3.93
500 0.4 0.1–0.6 10.93
1000 0.4 0.3–0.3 16.82
1000 0.4 0.1–0.6 27.25

Dbh = the diameter at breast height. σ = stem position radial displacement standard deviation. 
ρ = the number of stems m–2.

https://doi.org/10.14214/sf.10712
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In Table 4 the results from correctly-linked stands with a different number of settings are 
shown, and it can be seen that as long as the normalized radial displacement standard deviation 
of the stem position error is smaller than 0.3, there is a high probability that the co-registration 
quality metric Q is higher than 0.55, making this a suitable threshold value.

For more details see Suppl. file S3.

3.3 Performance test of co-registration using a moving sensor

When evaluating the performance of the algorithm on the simulated moving sensor in a forest 
stand, most of the trees where correctly linked at 89.35%, even though the sensor had a drift with 
time and had different types of positioning errors and omission and commission errors Fig. 3. The 
average tree link distance was 0.314 m, which was close to the modeled random position error. The 
standard deviation of the tree link distance was 0.301 m. The co-registration and linking process 
was completed within 2.65 hours on an Intel®, CoreTM i7CPU 2.30 GHz * 8 with a global stem 
map of 600 trees and a local stem map sampling of 30 000 tree positions. Note that each stem is 
scanned from different directions at different times, as the simulated sensor moves along the path 
resulting in more stem positions in the local stem map than in the global stem map. In Fig. 3 some 
trees can be seen that do not link to the global stem map. Those trees are either the result of com-
mission errors from the simulated detector or result from errors in co-registration during some of 
the scan time samplings steps.

3.4 Co-registration using real sensor data from a forest stand

A visual inspection of the stem positions after co-registration show that they align with the canopy 
height model (Fig. 4) which indicates that the algorithm is functioning as expected. Since the trees 
were not labeled, it was not possible to evaluate the linkage rate at the single tree level but the 
MLS-tree to nearest ALS-tree distance decreased after the datasets were co-registered. The average 
distance decreased from 1.90 to 0.51 m, the standard deviation of the nearest distances decreased 
from 1.00 to 0.38 m, and the root mean square difference (Eq. 16) of the distances decreased from 
2.15 to 0.64 m, which indicates that the datasets are better aligned after co-registration.

4 Discussion

The presented algorithm works when using simulated data from a moving sensor with drift 
errors, and the accuracy of the method increases in the case of datasets with heterogeneous diam-
eter distributions. In comparison to the study by Hyyppä et al. (2021), which also used simulated 
data together with three boreal test sites, one can see that the behavior is similar. Their definition 
of success rate is slightly different than the measurement of correctly linked trees in this paper, 
but one can see in, for instance, Fig. 6d of their paper that the success rate starts to decline at 
a standard deviation of 0.5 m. This is also seen in our study. The selected stand density of 750 
stems ha–1, in their paper, would give a normalized radial displacement standard deviation of 
0.14 (Eq. 4), which indicates the same behavior (Fig. 1 in our paper). Fortunately, many modern 
single tree detectors have much smaller deviations than 0.5 m. For example, a stem location root 
mean square error of less than 10 cm in the study by Liang et al. (2018). Fig. 6d in the paper 
by Hyyppä et al. (2021) also show that the success rate increases when using size descriptors, 
which is also the case in our study when using the diameter weighted tree neighbor distance 
(Eq. 5; Fig. 1).
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Earlier studies that co-register ALS data with TLS data or manual field-sampled data usu-
ally have high success rates. Korpela et al. (2007), for instance, had an observation imprecision of 
points of about 0.2 m in the X and Y directions, in their semi-manual photogrammetric method, in a 
50-year-old pine–spruce–birch test site in Finland. Olofsson et al. (2008) had a of 92.9% proportion 
of connected trees after co-registering ALS data (10 points m–2) to 155 manually inventoried field 
plots at a Swedish conifer site, and Hauglin et al. (2014) co-registered ALS data (7.5 points m–2), 
and TLS plots at the 87% accuracy level for positional errors <1 m. For the CHM-based approaches, 
Dorigo et al. (2010) had a 68% success rate in automatically co-registering 98 NFI-sample plots 
in Austria. Pascual et al. (2013) had a RMSE of 0.86 for coordinate differences when comparing 
their method with an electronic theodolite and Monnet and Mermin (2014) co-registered 91% 
of the plots within two meters in an uneven-aged coniferous forest using high density ALS data, 
when at least five of the largest trees were included. Paris et al. (2017) improved the normalized 
cross correlation similarity measure from 0.65 to 0.73 when comparing scans before and after co-
registration of ALS and TLS data, in an oak savanna woodland.

The test case with real sensor data from a forest stand indicates that the algorithm works 
on an actual forestry application and that it could be a tool when working with multiple remote-
sensing datasets in forest environments. However, there are issues that need to be solved before 
it can be used as a universal tool. The underlying assumption in the co-registration algorithm 
is that the position of the roots of the trees in the x, y plane is detected with an accuracy good 
enough to make alignment possible. There are cases where this is difficult. For instance, if one 
of the remote sensing methods detects the tree top positions rather than the root positions, there 
will be difficulties if the trees are inclined, giving a position difference of 2–3 m. If all trees are 
of equal height and are inclined in the same direction, this will cancel out by the co-registration 
algorithm, but this cannot be assumed in every case: heterogeneously inclined forests will not 
work. One solution could be to use high density remote sensing data that can detect data at the 
ground level and thereby detect the position of tree roots, rather than the position of the top of 
the trees, or maybe detect the direction of a stem and by extrapolation obtain an estimate of the 
root position.

For the algorithm to work well, the number of omission and commission errors need to be 
small compared to the number of correctly-detected trees. If there are too many commission errors 
the plot would look too much like a random plot to offer any useful results. However, with the 
methods tested by Liang et al. (2018) the mean accuracy was approximately 75% in a single scan 
setup in a plot of size 32×32 m2. In a smaller plot the numbers would be even better, for instance 
in Olofsson and Holmgren’s (2016) study, where the overall detection accuracy of a 10 m radius 
circular plot was 0.9. A careful choice of remote sensing method and plot size would likely solve 
this issue.

The algorithm was implemented using a scripting language which does not offer short 
computation times. In an industrial application, this method would probably be implemented 
using a compiled language and parallel processing. Therefore, the algorithm processing speed 
could probably be increased substantially when using new hardware and optimized implementa-
tions.

The evaluation of the presented co-registration methods on both simulated data and on real 
sensor data indicates that the algorithms works, and that it could be a valuable tool in forestry. 
One use case could, for instance, be to use the methods when co-registering harvester data with 
other remote sensing data.
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5 Conclusions

A stem diameter weighted linking algorithm was introduced that improves accuracy when operat-
ing on diverse diameter stands when using single tree detectors with stem positioning errors. The 
amount of correctly linked trees improves from 87.6% to 94.1% when the diameter span of the 
stand is from 10–60 cm, compared to a stand with uniform stem diameters of 30 cm at the normal-
ized radial displacement standard deviation level 0.25 (Table 1).

A co-registration quality metric was introduced that makes it possible to discriminate with 
high probability between correct and incorrect stem map co-registrations. A threshold value of 
QT = 0.55 gives a more than 99% probability of finding incorrect co-registrations. Values lower than 
the threshold should be discarded. There is a high probability of finding a correct co-registration, as 
long as the normalized radial displacement standard deviation, σn, of the sensor is lower than 0.3.

A new SLAM based co-registration method for stem maps measured with moving sensors 
was introduced that operates with a high linking accuracy, which can handle sensors with drift-
ing errors and signal bias. A test with simulated data show that the method resulted in an 89.35% 
detection rate with a synthetic sensor that had position errors, omission and commission errors, 
and drift. It was also shown that the mean of the nearest neighbor distances decreased from 1.90 
to 0.51 m when testing the method on real sensor data, indicating that datasets are better aligned 
after co-registration.

Models were curve fitted to the average linking accuracy ratio on the normalized radial dis-
placement standard deviation for different settings of diameter spans and stand densities (Fig. 1; 
Table 2).

The evaluation of the co-registration methods on both simulated data and on real sensor 
data indicates that the algorithm works and that it could prove valuable to forestry application.
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