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Highlights
•	 The analysis of tree structure suggests that trees of different height growing in similar condi-

tions have similar branch size distributions.
•	 There is potential for using the tree height information in large-scale estimations of forest 

canopy structure.

Abstract
We apply quantitative structure modelling to produce detailed information on branch-level met-
rics in trees. Particularly we are interested in the branch size distribution, by which we mean the 
total volume of branch parts distributed over the diameter classes of the parts. We investigate 
the possibility of predicting tree branch size distributions for trees in similar growing conditions. 
The	quantitative	structure	model	enables	for	the	first	time	the	comparisons	of	structure	between	
a large number of trees. We found that the branch size distribution is similar for trees of different 
height in similar growing conditions. The results suggest that tree height could be used to estimate 
branch size distribution in areas with similar growing conditions and topography.
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1 Introduction

Monitoring the impact of climate change on the environment creates a constantly growing need for 
accurate 3D information of the biosphere (Dassot et al. 2012; Vonderach et al. 2012). 3D models of 
forests	are	used	in	climate	modelling,	forest	albedo	research,	forest	fire	risk	estimation,	and	forest	
damage mapping (Morsdorf et al. 2004; Sexton et al. 2009; Hyyppä et al. 2012). The branch size 
distribution of trees also plays an important role in, e.g., the study of forest carbon budget, tree 
growth, and littering. Assessing the carbon footprint of forests requires information of the size 
distribution of the above ground biomass, e.g., when logging waste is used as bioenergy (Liski et 
al. 2014). Accurate information for the use of the current forest and soil carbon models has thus 
far	been	limited,	because	no	efficient	measurement	methods	have	been	available	to	produce	data	
from trees without labour-intensive, destructive sampling.

Terrestrial and airborne laser scanning (TLS and ALS) are promising methods to produce 
dense 3D data from forests and single trees but automation of the data processing is a challenge (cf. 
Eysn et al. 2013). TLS has proved an effective means of producing highly detailed 3D tree informa-
tion (Aschoff et al. 2004; Vonderach et al. 2012; Eysn et al. 2013; Liang et al. 2014). Decreasing 
prices and improving performance have increased the use of TLS in forest applications (Dassot et 
al. 2011). Manual tree reconstruction from TLS data is time consuming and challenging, and the 
accuracy and completeness of the models depend on, e.g., the design of the models and choice of 
initial parameters. Automatic 3D tree models have been produced from laser scanner point clouds 
with	algorithms	based	on	reproducing	the	target	structure	with	voxels	or	fitting	3D	primitives	on	
the tree parts (Côté et al. 2009; Bucksch and Fleck 2011; Dassot et al. 2012; Eysn et al. 2013).

Tree height estimation accuracy has been previously investigated using both aerial (e.g., 
Wang and Glenn 2008; Vauhkonen 2010) and terrestrial (e.g., Hopkinson et al. 2004; Chasmer et 
al. 2006; Maas et al. 2008; Kankare et al. 2013; Liang and Hyyppä 2013; Liang et al. 2014) laser 
scanning data. In ALS based applications the laser pulse penetration into the canopy causes an 
underestimation of 0.5–2 m, depending on the tree species, canopy shape, and structure, while TLS 
based methods lead to an underestimation of 1–3 m caused by the measurement geometry, which 
causes occlusions in the highest parts of the canopy. One way to estimate tree parameters, such as 
biomass, is to use statistical models developed from manual measurements, especially tree height 
and	diameter	at	breast	height	(DBH).	The	simplified	statistical	models	are	limited	in	accuracy,	
and cannot give accurate quantitative and geometric information on a single tree, especially in the 
branch level (Schumacher and Hall 1933; Baskerville 1972; Zianis et al. 2005).

In this paper, a method based on TLS data and accurate quantitative structure models (QSM) 
(Raumonen et al. 2013) of tree branch structure is applied to produce detailed information on the 
branch-level metrics. From the QSM, tree characteristics such as branch size distribution or the 
above	ground	biomass	of	a	tree	can	be	calculated.	We	can	define	the	branch	size	distribution	from	
the QSM as follows: We classify all the cylinders according to their diameter and then sum the 
volumes	of	the	cylinder	in	each	class.	Many	of	these	characteristics	have	been	difficult	or	even	
impossible to measure operationally: the measurement requires cutting (which then limits the study 
to	a	single	measurement	instead	of	time	series	or	group	of	trees)	and	laborious	field	measurements,	
which	are	usually	hard	to	perform	efficiently	or	accurately.	Our	aim	is	to	investigate	whether	tree	
height and other ALS derivable tree metrics can be used in large-scale estimations of forest canopy 
structure and volume when growing conditions are similar.
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2 Methods

2.1 Test area

The test area is Located in Evo, southern Finland (61.19°N, 25.11°E). The mean altitude of the 
area is 135 m (ASL) and the elevation deviations inside the study area are less than 3 m. The area 
is part of the southern boreal forest zone and consists of broad mixture of varying forest stands, 
from natural to intensively managed. The test area represents a typical managed forest type in 
Southern Finland and belongs to Myrtillus type forests (medium-rich mineral soil forest). The study 
site is a forest stand of about 2 hectares with main tree species of Scots pine (Pinus sylvestris L.). 
It is a typical representative of a mature Finnish forest ready for harvesting, both in terms of tree 
age and metrics (DBH and height). The stem density for pines was about 600–800 stems/ha. The 
mean age and the mean height of the pine trees in the study area were approximately 75 years and 
24.8 m, respectively.

2.2  Data collection and processing

The TLS data used in this article was collected with a Leica HDS6100 terrestrial laser scanner (see 
Table	1	for	the	scanner	specifications).	The	HDS6100	is	a	continuous	wave	phase-based	TLS	and	
relies on frequency modulation in distance measurements.

200 trees representing the main tree species (scots pine) were selected from the test area, 
based on their location to minimize the number of TLS scans. The study area was covered with 
4 sub-scan networks with 5–15 scans in each network. 45 scans were made to cover the whole 
study area. As all selected trees were visible from multiple scan directions, each tree was covered 
by several scans. Georeferencing to the Finnish national grid (EUREF-FIN) and co-registration 
of the scans was performed using eight spherical targets, whose coordinates in the EUREF-FIN 
were measured using a Leica SR530 RTK GPS system with 2.3 km baseline. The estimated 3D 
uncertainty for the spheres was less than 20 cm, the greatest error source being the GPS error, 
which was estimated to be 10–30 cm (3D). The GPS measurement was not optimal as the dense 
forest blocked the satellites. The spherical targets where moved from back to forward when they 
were blocked from the scanner viewpoint. The GPS error did not affect the internal accuracy of 
the	registered	scans	as	the	whole	sub-scan	network	was	first	co-registered	and	after	that	the	whole	
network was transformed to the national coordinate system.

The registration and pre-processing of the TLS data were carried out with Z+F LaserCon-
trol 8.2 software (Zöller + Fröhlich GmbH). False data points were removed from the clouds with 

Table 1. Specifications	of	Leica	HDS6100	terrestrial	laser	scanner	(Leica	Geosystems	AG).

Wavelength 650–690 nm
Field-of-view 360° × 310°
Max. point spacing 1.6×1.6 mm at 10 m, 4.0×4.0 mm at 25 m
Point spacing in this experiment 6.3×6.3 mm at 10 m, 15.9×15.9 mm at 25 m
Max. acquisition rate 508 000 points / second
Laser beam diameter at exit 3 mm
Laser beam divergence 0.22 mrad
Laser spot size at 25 m 8 mm
Method of distance measurement Continuous wave, Frequency modulation
Precision of distance measurement 0–25 m: < 3mm, 25–50 m: <5 mm
Precision of angular measurement H: 7.9 mgon, V: 7.9 mgon
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standard	filtering	tools	offered	by	the	Z+F	program.	These	tools	include	intensity	based	(intensi-
ties < 0.6% and > 100%, corresponding to the noise in the sky and ambiguity noise points, were 
filtered	out)	and	mixed	pixel	filtering.	The	scans	with	the	greatest	wind	effects	(visible	as	blur	in	
the intensity images) were left out of this study. All in all, the data pre-processing steps were: 1. 
Scan	merging	&	georeferencing,	2.	Noise	filtering,	3.	Tree	isolation	(carried	out	manually).

2.3  Reference measurements

Field measurements of tree height and DBH were carried out for 200 randomly selected trees in the 
study area. The trees were marked and numbered for tree detection from TLS data. The tree heights 
were	measured	with	Haglöf	Vertex	laser	rangefinder	(Haglöf	Sweden	AB,	Långsele,	Sweden).	The	
Vertex uses ultrasound to measure distances. Tree heights were then calculated trigonometrically, 
using	variables	from	the	measurements	of	inclination	and	distance	(Haglöf	Sweden	AB,	Långsele,	
Sweden,	vertex	IV	information	leaflets).

2.4  Quantitative structure models

The QSM-reconstruction algorithm for retrieving the branch size distributions was developed by 
Raumonen et al. (2011, 2013). It is a computational method to produce automatically comprehen-
sive and quantitative models of trees from TLS derived point clouds. In the method the TLS point 
cloud is covered with small sets corresponding to connected surface patches in the tree surface. 
These sets are the smallest units or building bricks used to segment the point cloud into stem and 
individual branches. After the segmentation the stem and branches are modelled as collections of 
cylinders	that	are	fitted	into	the	measurements	in	the	least	squares	sense.	The	resulting	QSM	con-
tains the radii, lengths, orientations, and locations of the cylinders describing the local geometric 
details of the tree. Also the 3D topological branching structure is contained in the model. From 
the	model	we	can	calculate	e.g.	the	over-the-ground	volume,	branch	size	distribution,	profiles	of	
single branches and branching angles. The method has been validated against known volume and 
biomass references in Disney et al. (2012), Raumonen at al. (2013), Calders et al. (2013), and 
Burt et al. (2013) and the validation has shown that the total volume or biomass can be generally 
retrieved with errors less than 10%.

3 Results

3.1 Tree height estimation accuracy

Comparison between the reference measurements and the TLS estimated tree heights is presented 
in Fig. 1. The mean difference between the TLS estimation and the reference was –2.2 m with 
standard error of 0.25 m. The result was expected, as TLS has a tendency to underestimate the tree 
height (e.g. Kankare et al. 2013; Liang and Hyyppä 2013; Maas et al. 2008). Large deviations from 
the Vertex height estimate were observed for some trees (Fig. 1). They were caused by shadowing 
in the dense canopy, when the scanner was close to the tree.

3.2  Branch size distribution and tree height

To	investigate	the	connection	between	tree	height	(from	the	Vertex	rangefinder)	and	branch	size	
distribution	(from	TLS	and	QSM),	the	trees	were	classified	into	four	height	classes	according	to	
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their height: < 20 m, 20–22 m, 22–24 m, and > 24m. As an example of results within a height class, 
the size distributions of cylinder sections for all trees of 22–24 m height are presented in Fig. 2.

Fig. 3 presents the average tree height distributions for each class. More details are presented 
in Table 2. For all tree height classes, branch sections of approximately 3 cm diameter represent the 
largest volume in the tree canopies. This is in line with previous studies of canopy size distributions 
(Groot and Schneider 2011). When the volume distributions are normalized with that of the 3 cm 
diameter cylinder sections (Fig. 3.), we can see that the shape of the distributions is similar, even 
though there were slight variation between trees in the same class (cf. Fig. 2).

Fig. 1. Tree	height	estimation	with	field	measurements	(VertexH)	and	TLS	derived	data	(CylH).

Fig. 2. Cylinder volume distributions (describing the branch volume) for all trees in the tree height class 
of 22–24 m. The total volume in y-axis refers to the sum volume of all cylinders of the diameter shown in 
the X-axis.
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Table 2. Detailed statistics of all 4 tree height classes.

Tree height (VertexH) < 20 m 20–22 m 22–24 m > 24 m
Number of trees 5 12 14 10
Mean total branch volume 0.31 m3 0.561 m3 0.591 m3 0.514 m3

Standard deviation 0.070 m3 0.104 m3 0.046 m3 0.044 m3

Skew 1.661 1.931 2.39 1.88
Tree height (TLS) 16.1–18.9 m 20.3–21.8 m 22.1–23.3 m –25.1 m

Fig. 3. Top: average cylinder volume distribution functions for all tree height classes. Lower: the 
cylinder volume distributions for all tree height classes, normalized to 1 at the largest cylinder 
diameter (3 cm). The normalization enabled us to compare the shapes of the volume distributions.
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3.3  Accuracy estimation

The	accuracy	estimation	of	the	method	is	difficult	with	full-grown	trees,	because	getting	accurate	
reference data would require destructive sampling (Velázquez-Martí et al. 2012). The largest error 
sources are:

•	 Occlusions in the data caused by shadowing (Fig. 4)
•	 Movement of the trees during the scanning
•	 Measurement noise and error (cf. Fig. 4)
•	 Regions with too low point density
•	 Non-circular branches and stems
•	 Non-wooden	material	(i.e.	needles,	leaves,	flowers)	causing	inaccuracy	in	the	branch	

size measurement (usually making the cylinders too large)
•	 Registration errors (i.e., the error in locating the centre points of the spherical reference 

targets, which was about 1 cm in this study)
•	 Errors in the modelling process

The modelling error of the QSM method has been investigated by Disney et al. (2012) with simu-
lated point clouds. The results point out that volume estimation of the method has a minimum 
error of 2% all else being equal and that the error depends on the selected cover set size – the 
smaller	cover	sets	maintain	fine	details	but	are	also	more	vulnerable	to	errors	due	noise	data	points.	
Adding the needles increased the volumes and errors. The combined TLS and QSM method was 
validated in our previous study with laboratory reference measurements of branch volume and 
length (Kaasalainen et al. 2014). Overall, we found the method capable of reproducing the results 
obtained from laboratory reference measurements with about 10% accuracy.

Errors	in	field	measurements	contain	effects	of	the	instrument	and	measurement	geometry.	
The phase-based distance measurement causes so-called mixed pixel noise when the laser beam 
hits multiple targets simultaneously. This is likely in dense tree canopy. Needles in coniferous trees 
can	influence	the	estimated	cylinder	diameter.	Measurements	done	in	field	conditions	often	suffer	
from target movement (Fig. 4) during and between the scans. Scanning a single tree from three 
separate scanning directions (as in this study) can lead to modelling the same branch section up to 
three times if the canopy has moved even a few cm between the scans.

Some worst-case effects of the different error sources are visible in Fig. 4, where gaps, false 
cylinders	and	overestimation	of	cylinder	diameter	for	the	tips	of	the	branches	in	the	final	structure	

Fig. 4. Left: intensity image shows moving branches during the scan. Right: close-up of a worst-case QSM model 
reveals gaps and false cylinders in the canopy.
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model are visible. Minimizing the errors requires careful planning of the measurement geometry 
(i.e., the scanner position) and an even distribution of target spheres in the study area. Data with 
clear movement of the tree and branches should be excluded (so the effect of wind is essential). 
The	use	of	a	time-of-flight	scanner	would	mitigate	the	mixed	pixel	noise	in	the	canopy	and	would	
make the results less dependent on the noise reduction in the pre-processing step.

4 Discussion

The main result of our study is that trees growing in similar conditions (a forest stand in medium-
rich mineral soil forest) have similar branch size distributions. This agrees with the assumption 
common in vegetation models, and the QSM model has enabled it to be tested to a large number 
of trees. In most pines in our sample plot, the branch diameters have been distributed similarly. 
The result could be expected, since the growing conditions are known to affect the branching. The 
results also suggest that the volume and distribution of branch sizes can be predicted for trees of 
different height in similar growing conditions and used in tree growth models (e.g., Sievänen et al. 
2000), but this must be further studied with extensive measurement from different sample plots. To 
include taller trees (> 30 m) in the further study, a crane or unoccupied aerial vehicle (UAV) -based 
laser scanning approach would be crucial for successful modelling. The TLS-QSM approach has 
been validated in other test sites and found to be able to reproduce accurately the total volume and 
biomass (Burt et al. 2013; Calders et al. 2013).

The test area represents a typical managed forest type in Southern Finland (Finnish Forest 
Research Institute 2010, p. 73): the sample stand is a typical representative of a mature Finnish 
forest ready for harvesting. As managed forests are a considerable source of harvest residue used in 
bioenergy production, it is important to be able to estimate the carbon dioxide (CO2) output from 
using the residue as biofuel to that produced in the decaying process. This requires an accurate 
estimation branch (or root) size distribution (Liski et al. 2014).

The	data	collection	methods	can	be	further	improved.	Needles	can	be	detected	and	classified	
using laser scanner intensity or spectral information from active hyperspectral lidar, to separate 
branches and needles by their spectral indices (cf. Hakala et al. 2012; Vauhkonen et al. 2013). Data 
acquisition could be sped up by use of mobile laser scanning or an UAV based approach.

Our	 results	 are	 the	 first	 ones	 to	 study	 the	 extension	 of	 an	 accurate	 tree	model	 to	 plot	
level based on the measurements entirely, since thus far the modeling has mostly been based on 
extrapolating the smallest branches from larger ones (see, e.g., Côté et al. 2012). The results also 
suggest that tree height could be used to estimate the branch size distribution in larger areas with 
similar	growing	conditions	and	topography.	This	would	enable	more	efficient	remote	detection	
of tree structure in large areas, which would then improve the study of the forest ecosystem and 
functions and the estimations the carbon content. More measurements and modelling are needed 
to improve the statistics and extend the results into larger areas, different tree types, growth con-
ditions, etc.
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