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Highlights
•	 Following current forest inventory practises, stem volume was predicted in low-productive 

drained peatlands (LPDPs) with a root mean square error (RMSE) of 13.7 m3 ha–1.
•	 When 30 reference plots measured from LPDPs were added to the prediction, RMSE was 

decreased to 10.0 m3 ha–1.
•	 Additional reference plots from LPDPs did not affect the forest inventory attribute predic-

tions in productive forests.

Abstract
Nearly 30% of Finland’s land area is covered by peatlands. In Northern parts of the country there is 
a	significant	amount	of	low-productive	drained	peatlands	(LPDPs)	where	the	average	annual	stem	
volume growth is less than 1 m3 ha–1. The re-use of LPDPs has been considered thoroughly since 
Finnish forest legislation was updated and the forest regeneration prerequisite was removed from 
LPDPs in January 2014. Currently, forestry is one of the re-use alternatives, thus detailed forest 
resource information is required for allocating activities. However, current forest inventory practices 
have not been evaluated for sparse growing stocks (e.g., LPDPs). The purpose of our study was to 
evaluate the suitability of airborne laser scanning (ALS) for mapping forest inventory attributes in 
LPDPs. We used ALS data with a density of 0.8 pulses per m2,	558	field-measured	reference	plots	
(500 from productive forests and 58 from LPDPs) and k nearest neighbour (k-NN) estimation. Our 
main aim was to study the sensitivity of predictions to the number of LPDP reference plots used 
in the k-NN estimation. When the reference data consisted of 500 plots from productive forest 
stands, the root mean square errors (RMSEs) for the prediction accuracy of Lorey’s height, basal 
area and stem volume were 1.4 m, 2.7 m2 ha–1 and 13.7 m3 ha–1 in LPDPs, respectively. When 30 
additional reference plots were allocated to LPDPs, the respective RMSEs were 1.1 m, 1.7 m2 ha–1 
and 10.0 m3 ha–1. Additional reference plot allocation did not affect the predictions in productive 
forest stands.
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1 Introduction

Airborne laser scanning (ALS) has been established as a main technique in detailed forest inventory 
attribute prediction during the last few years (Wulder et al. 2013; White et al. 2013). For example, 
the Finnish Forest Centre (FFC) aims to annually inventory 1.5 million hectares of private forests 
using low-pulse-density (<1 pulse per m2) ALS data. Forest inventory attributes are most often 
predicted using the so-called area-based approach (ABA, Næsset 2002), which is based on statis-
tical	dependence	between	field-measured	forest	inventory	attributes	and	metrics	extracted	from	
ALS data. FFC-conducted forest inventory campaigns usually cover 1000–2000 km2. The required 
reference	data	are	collected	from	500–550	field	plots	located	in	mature	forests	and	100–150	field	
plots	located	in	seedling	stands.	Although	the	number	of	field	plots	is	already	rather	high	compared	
to several other countries, e.g. Canada, it may be increased if the forests are exceptionally diverse. 
All	field	plots	in	the	current	forest	inventory	processes	of	the	FFC	are	located	on	productive	forest	
lands	having	the	strongest	economic	significance	for	forestry.	The	current	state	of	the	Finnish	forest	
inventory system used for forest management is presented in detail in Maltamo et al. (2011b), 
and the best practices for predicting forest inventory attributes using ALS are presented in detail 
in White et al. (2013). The Nordic experience of using ALS in boreal forest inventory has been 
reviewed by Næsset et al. (2004) and Hyyppä et al. (2008).

There had been no economic interests in harvesting the growing stocks of low-productive 
peatland forests until Finnish forest law was updated in January 2014. The updated legislation 
withdrew the forest regeneration mandate from low-productive drained peatlands (LPDPs). Low-
productive	forests	are	defined	as	having	an	average	annual	stem	volume	growth	remaining	below	
1 m3 ha–1 during the forest rotation period. Nearly 5 million hectares of peatlands were drained 
for forestry during the 1960s and 1970s with the aim of increasing wood production for the 
increasing demand of the Finnish forest industry (Paavilainen and Päivänen 1995). According to 
the Finnish Forest Research Institute (2014), 579 000 hectares of these forestry-drained peatlands 
are low-productive. The re-use of LPDPs has been a topical question in Finnish peatland forestry 
since the introduction of the new forest law. The suggested re-use options are 1) no operations, 
2) tree biomass harvesting for bioenergy and then abandonment from active forestry, 3) intensive 
forestry via ditch network maintenance and fertilization, 4) restoration to a functional peatland by 
tree removal and ditch blocking, 5) peat harvesting, 6) peat harvesting with reforestation and 7) 
peat harvesting with peatland rewetting (Natural Resources Institute Finland 2015).

Detailed forest resource information is required for allocating forestry activities if LPDPs 
are used for forestry purposes. The accuracy of the current forest inventory method, ABA, has not 
been evaluated in these areas. ABA accuracy depends on the precision and the coverage of the 
reference data (Maltamo et al. 2011a; White et al. 2013), thus reference plots should be measured 
also from LPDPs, which is not the current practise. However, the reference plots measured from 
low-productive forests have been considered problematic for ABA because predictors extracted 
from	ALS	data	may	be	similar	to	significantly	younger	stands	on	productive	soils.	This	may	lead	
to confusion between LPDPs and younger productive forests in forest inventory attribute predic-
tion, causing inaccuracies to some estimates, especially age. It should therefore be guaranteed that 
the prediction accuracy of young productive forests is not decreased when reference plots from 
LPDPs are added to the inventory process.

ALS has been used to predict aboveground forest biomass (AGB) in other low-productive 
forest areas such as tundra ecotone. Nyström et al. (2012) predicted AGB of mountain birch (Betula 
pubescens ssp. czerepanovii) and reported 21.2% relative root mean square error (RMSE) for the 
estimation accuracy. We applied ABA forest inventory to LPDPs, where growing stocks are typi-
cally small, sparse and uneven in size. The overall aim of the study was to test the suitability of 
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low-pulse-density ALS data for mapping forest inventory attributes in LPDPs. The key questions 
investigated were: 1) how accurately can forest inventory attributes be predicted in LPDPs and 
2) how much can RMSEs be decreased by including plots measured from LPDPs to the refer-
ence data of k-NN estimation? Forest inventory data from LPDPs are mainly required for wood 
procurement cost accounting, thus the most important structural forest characteristics to predict 
are	total	and	species-specific	stem	volume,	stem	number	and	average	stem	volume.	It	was	also	
investigated how the reference plots from LPDPs affect the accuracy of forest inventory attribute 
prediction in productive forests.

2 Materials

2.1	 Study	area	and	field	data

Our study area was in Northern Ostrobothnia, located mainly in Haapajärvi municipality (63°45´N, 
25°19´E, Fig. 1). The area was located in the middle boreal vegetation zone, with a humid climate 
and peatland-dominated soils. Over 60% of the peatland forests in Northern Ostrobothnia are 
drained for forestry (Finnish Forest Research Institute 2014).

The	field	data	of	our	study	consisted	of	total	852	reference	plots.	The	data	of	799	plots	were	
measured by the FFC to be used as reference data for stand-level forest inventory carried out using 
ABA in summer 2012. These plots were mainly allocated to productive forests, thus there was 
a lack of reference plots from low-productive forests. Therefore, 53 plots were measured in the 
field	from	poorly-growing	forestry-drained	peatlands	in	autumn	2013	to	augment	the	field	data.

Both	the	field	sample	design	and	the	field	measurements	were	performed	according	to	the	
procedure	used	by	 the	FFC	(Heikkilä	et	al.	2011).	The	field	data	consisted	of	plots	 located	 in	
random clusters, where one cluster consisted of 6–9 circular sample plots with a radius of 9 m. 

Fig. 1. ALS data coverage and sample plot location.
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One	cluster	was	estimated	to	be	equivalent	to	one	day	of	field	work.	The	predefined	plot	locations	
were positioned by a hand-held GPS device, and the locations were post-processed using virtual 
reference station data. Tree species and diameter at breast height (DBH) were measured from every 
tree with a DBH of at least 5 cm. Tree height and age were measured from at most three sample 
trees per species per plot: the basal area mean tree, one larger tree and one smaller tree.

Forest	inventory	attributes	were	computed	for	799	plots	during	the	FFC	field	campaign	using	
tree height and stem volume models based on national forest inventory (NFI) data. Tree heights 
of the additional 53 plots were estimated according to height models of Veltheim (1987) and 
calibrated to the plot -level using sample tree data. Stem volumes were next estimated according 
to	the	species-specific	stem	volume	models	of	Laasasenaho	(1982).	In	summary,	we	had	highly	
equivalent	field	data	from	two	separate	field	campaigns.

2.2 ALS data

ALS data covering our study area were acquired by the National Land Survey of Finland (NLS). 
The data were collected during leaf-off canopy conditions on May 19–21, 2012, using a Leica 
ALS50 SN069 laser scanner. Flying altitude was 2200 m above ground level, with a pulse density 
of 0.8 pulses per m2,	and	the	data	included	information	from	the	first	and	the	last	echoes.	The	pre-
processed data are freely available from the NLS (2015).

The digital terrain model (DTM) was produced from the last pulse data with TerraScan 
software (see www.terrasolid.fi) using the triangulation method explained in Axelsson (2000). 
Ground height was then subtracted from the laser pulse heights to produce a point cloud with XY 
-coordinates and the height above ground. Finally, 38 predictor variables (Table 1) were extracted 
to the reference plots from the height distribution of ALS points.

Table 1. Predictor candidates (n = 38) derived from ALS data.

Variable name Variable description

h10f – h100f Point height at the r percentile	of	the	first-echo	points’	height	distribution	(r = 10, 20... 100); ground 
points, i.e. points below the ground threshold (= 2 m), are excluded.

h10l – h100l Point height at the r percentile of the last-echo points’ height distribution (r = 10, 20... 100); ground 
points are excluded.

penef Penetration	of	first-echo	points;	calculated	as	the	ratio	of	the	number	of	ground	points	to	the	
number of all points

penel Penetration of last-echo points
HVmean The	mean	of	the	first-echo	high-vegetation	points,	i.e.	points	above	the	high	vegetation	threshold	(=	

5 m)
HVsd Standard	deviation	of	the	Z	coordinates	for	the	high	vegetation	first-echo	points
pc1l – pc8l Ratio of the number of last-echo points with heights smaller or equal to hmax to the number of all 

last-echo points, where hmax = hclassstart + i * hclasssize (i = 1, 2… 8; hclassstart = 1.5 m; hclass-
size = 2.0 m)

p8530f Proportional	canopy	density	at	a	height	equalling	30%	of	the	85th	percentile	of	first-echo	points’	
height	distribution;	calculated	as	the	ratio	of	the	number	of	first-echo	points	below	that	height	to	the	
number	of	all	first-echo	points

p8580f Proportional	canopy	density	at	a	height	equalling	80%	of	the	85th	percentile	of	first-echo	points’	
height distribution

p9030f Proportional	canopy	density	at	a	height	equalling	30%	of	the	90th	percentile	of	first-echo	points’	
height distribution

p9080f Proportional	canopy	density	at	a	height	equalling	80%	of	the	90th	percentile	of	first-echo	points’	
height distribution

p9530f Proportional	canopy	density	at	a	height	equalling	30%	of	the	95th	percentile	of	first-echo	points’	
height distribution

p9580f Proportional	canopy	density	at	a	height	equalling	80%	of	the	95th	percentile	of	first-echo	points’	
height distribution

http://www.terrasolid.fi
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3 Methods

3.1	General	workflow	of	the	study

The aim of the analysis was to study 1) the accuracy of ABA in predicting forest inventory attributes 
for forests growing on LPDPs and 2) how the number of reference plots measured from LPDPs 
in addition to 500 plots measured from productive forests effects the k-NN prediction accuracy. 
We also investigated how reference plots allocated to LPDPs affected the prediction accuracy of 
forest	inventory	attributes	in	productive	forests.	We	used	the	following	workflow	in	our	analysis	
(illustrated in Fig. 2):

1. All	the	reference	plots	from	forestry-drained	peatlands	were	classified	as	either	produc-
tive or low-productive forests (see section 3.2).

2. The subset of 500 plots from productive forests and the subsets of 0, 5, 10, …, 50 and 
58 LPDP plots were generated using two ALS-derived metrics that correlated well with 
Lorey’s height (h80f) and basal area (penef).	Thus,	it	was	ensured	that	field	data	variation	
was maintained in the subsets as well as possible.

Fig. 2. General	workflow	of	the	analysis.
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3. The strongest predictor variables for stem volume (V), stem number (N), mean diam-
eter (dg) and proportion of deciduous trees (deciduous%) were searched separately and 
selected for further analyses. Then, the strongest predictors of V, N, dg and deciduous% 
were searched simultaneously and selected for forest inventory attribute prediction. 
The variable selection was carried out using reference data consisting of 500 plots from 
productive forests and 58 plots from LPDPs (see section 3.3.1).

4. Forest inventory attributes were predicted using the reference data and the random forests 
(RF) technique in k nearest neighbour (k-NN) mode (see section 3.3.2).

5. Prediction accuracy was validated separately for LPDPs, young productive stands and 
mature stands using leave-one-out cross validation. The sensitivity of predictions to the 
number of additional LPDP reference plots was evaluated by iteratively adding more 
LPDP plots to the reference data and repeating step 4 until all LPDP plots were used in 
the estimation (see section 3.4).

3.2	Classification	of	productive	and	low-productive	forestry-drained	peatlands

In	Finland,	forest	productivity	is	defined	according	to	the	average	annual	stem	volume	growth	
during the forest rotation period. The volume growth of productive forests is at least 1 m3 ha–1 per 
year, while the growth of poorly productive forests is 0.1–1 m3 ha–1 per year and less than that on 
unproductive forests. In our study, all the forests growing less than 1 m3 ha–1 per year were clas-
sified	as	low-productive	forests.

The	productive	and	low-productive	forestry-drained	peatlands	were	classified	based	on	total	
stem volume, stem number and basal area (G). Forest management experts at Metsähallitus (the 
Finnish	state-owned	forest	enterprise)	have	defined	the	minimum	basal	area	as	6	m2 ha–1 and the 
minimum stem number as 650 stems per hectare for productive peatlands drained 30–50 years ago. 
We also set the maximum level for stem volume in LPDPs to 60 m3 ha–1 because otherwise some 
productive	stands	would	have	been	misclassified	due	to	low	stem	number.	In	summary,	drained	
peatlands	were	classified	as	productive	if	G	≥	6	m2 ha–1 and N	≥	650	ha–1 or V	≥	60	m3 ha–1.

3.3 k-NN prediction of forest inventory attributes using random forests

The k-NN	estimation	technique	is	a	common	approach	for	predicting	multiple	species-specific	
forest inventory attributes from remote sensing data (e.g. Poso 1972; Tomppo 1990). Here, the 
objective was to predict forest inventory data (response variables) using remotely-sensed auxiliary 
data (predictor variables). The predictions were based on reference data where both the response 
and predictor variables were available. In ABA, forest inventory data are predicted for grid cells 
(usually 16 m x 16 m in Finnish forest inventory) by searching the k nearest reference plots for 
every grid cell across the entire inventory area and calculating the response variables as a weighted 
mean over those neighbours.

Several methods are available for selecting “nearest neighbours” from the reference data. 
In our study, the neighbours were selected using the RF technique developed by Breiman (2001) 
because	it	has	been	reported	as	a	robust	and	flexible	method	compared	to	many	other	k-NN meth-
ods	(Hudak	et	al.	2008;	Latifi	and	Koch	2012).	The	RF	technique	is	based	on	several	classification	
trees generated from random subsets of predictor variables. The similarity of target and reference 
observations	is	defined	according	to	their	probability	of	ending	up	in	the	same	terminal	node	after	
RF	classification;	high	proximity	means	small	statistical	distance	and	vice	versa.	The	k-NN predic-
tion of forest inventory attributes using RF is explained in detail in Crookston and Finley (2008), 
Hudak et al. (2008), Falkowski et al. (2010) and Yu et al. (2011).
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3.3.1 Predictor variable reduction

Prior to k-NN predictions, the number of predictor variables must be reduced to obtain a parsimo-
nious subset of predictors (Hudak et al. 2008). We used RF iterations in the sequential backward 
feature	selection	method	for	reducing	the	number	of	predictors.	At	first,	we	searched	the	most	
important predictors separately for four response variables (V, N, dg and deciduous%). The procedure 
began with 38 preliminary predictor variables; in each iteration round the least important predictor 
was	discarded	based	on	variable	importance	until	the	five	most	important	predictors	remained.	To	
do this, we used the yaiVarImp function of the yaImpute package in statistical software (see www.r-
project.org) developed by Crookston and Finley (2008). Due to randomness of the RF technique, 
the procedure was repeated 200 times for each response variable, and the predictors matching the 
five	best	predictors	at	least	100	times	were	saved	for	further	testing.	The	best	predictors	of	stem	
volume (penef, h50f, pc5l, h70f, p9530f), stem number (HVsd, penef, h20l, p9030f), mean diameter 
(h100f, h80l, h90l, h90f) and proportion of deciduous trees (HVsd, pc4l, h30l, pc2l) were combined 
to one variable set and, after removing the duplicates, we ended up with a subset of 15 candidate 
predictors (see Fig. 3).

The	final	predictor	variable	selection	was	performed	using	the	varSelection function of the 
yaImpute package in R software. The backward feature selection algorithm began with all candidate 
predictors and deleted them one at a time by computing the mean Mahalanobis distance between 
the observed and estimated values of V, N, dg and deciduous%. So, the function calculated which 
predictor could be removed from the predictor set by weakening the prediction accuracy the least, 
thus the predictor related to the largest Mahalanobis distance was discarded in every iteration 
round. The entire variable selection procedure was repeated 100 times, and variables that were 
selected by the function at least every third time and that had less than 0.9 correlation with all the 
other selected variables were used to predict forest inventory attributes. The maximum correlation 
between two predictors was limited to 0.9 similarly as in Hudak et al. (2008) aiming to restrict 
undue redundancy.

3.3.2 Forest inventory attribute prediction

Total stem volume, stem number, mean diameter and proportion of deciduous trees were selected 
as dependent response variables for the prediction because V, N and dg are important harvesting 
cost indicators (Laitila 2008) and deciduous% explains tree species composition. Basal area and 
Lorey’s height (hg) were also predicted, but they were not used as dependent variables due to their 
strong correlations with V and dg,	respectively.	In	our	study,	250	classification	trees	were	gener-
ated	for	every	dependent	response	variable,	thus	we	had	a	total	of	1000	classification	trees,	where	
all four dependent response variables had an equal importance. The square root of the number of 
predictors	was	randomly	picked	for	the	nodes	of	each	classification	tree.

Parameter k	was	varied	from	1	to	10	and	finally	set	at	3	because	this	resulted	in	the	lowest	
RMSE of stem volume estimates in LPDPs while only a small number of LPDP reference plots 
were used in the prediction. Tuominen et al. (2003) tested k values from 3 to 5 and concluded that 
within this range a k value increase would improve estimation accuracy but concurrently diminish 
the variation retained in the estimates.

3.4 Accuracy evaluations

Forest inventory attribute estimates were validated using leave-one-out cross validation at 254 m2 
resolution.	The	prediction	was	repeated	25	times,	and	the	final	results	were	computed	as	the	mean	

http://www.r-project.org
http://www.r-project.org
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values of the iterations. Estimation accuracy was evaluated by calculating bias and RMSE (Eq. 1 
and Eq. 2, respectively).

y y

n
bias

ˆ
(1)

i ii
n
1∑ ( )

=
−=

y y

n
RMSE

ˆ
(2)

i ii
n
1

2
∑ ( )

=
−=

where n was the number of plots, yi was the observed value for plot i and ŷi was the predicted 
value for plot i. The relative bias and RMSE were calculated in relation to the observed mean of 
the variable in question.

Extrapolating	forest	inventory	attributes	outside	the	field	data	range	is	impossible	when	the	
k-NN estimation method is used, thus reference data are always required from each stand type for 
which	forest	inventory	is	being	applied.	The	requirement	of	the	field-measured	LPDP	reference	
plots and their effect on prediction accuracy were evaluated by iteratively adding LPDP plots to 
the reference data. Initially, the reference data consisted of 500 plots from productive forests only, 
imitating	the	typical	reference	data	used	in	ABA	forest	inventory	by	the	FFC.	Next,	five	LPDP	
plots at a time were added to the reference data, and the procedure was repeated until all LPDP 
plots were used in the prediction.

Prediction accuracy was validated after each iteration round 1) for all the plots, 2) for LPDPs, 
3) for productive young thinning stands and 4) for productive advanced-thinning and mature stands 
(see the descriptions of stand development classes in Table 2). The stand development classes were 
defined	by	FFC	forest	professionals	during	the	field	measurements.	Productive	forests	were	divided	
into these two evaluation classes because the extra LPDP reference plots might presumably have 
an effect on forest attribute estimates especially in young, thinning stands. The statistics about the 
classes used in the evaluation are presented in Table 3.

Table 2. Stand	development	classes	on	productive	forest	land.	The	classification	system	and	the	terminology	follow	the	
Finnish Forest Research Institute (2014).

Development class Definition

Young thinning stand The stands are at a developmental stage where harvesting mostly produces pulp-
wood. Mean stem DBH is 8–16 cm.

Advanced thinning stand The stands are at a developmental stage and the next forest operation is thinning. 
Most stems are of saw-timber size, as mean stem DBH is more than 16 cm.

Mature stand The	stands	are	mature	and	the	most	profitable	forest	operation	is	regeneration	
cutting. The lower limit for mean stem DBH varies from 23 cm to 29 cm accord-
ing to location, soil quality and tree species.
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Table 3. Summary of the reference plot data.

Forest inventory attribute Range Mean SD

Low-productive drained peatlands (n = 58)
hg, m 3.8–19.0 8.6 3.2
dg, cm 5.5–19.9 10.9 3.5
N, ha–1 79–1690 547 332
G, m2 ha–1 0.2–8.3 3.7 2.1
V, m3 ha–1 0.5–58.7 18.7 14.2
T, years 25–122 50 16
Tree species proportion of total basal area
Pine (%) 0–100 64 44
Spruce (%) 0–100 5 19
Deciduous (%) 0–100 31 41

Young thinning stands (n = 271)
hg, m 6.0–17.7 10.6 2.1
dg, cm 7.3–22.8 12.3 2.5
N, ha–1 275–7270 1996 1071
G, m2 ha–1 2.1–29.2 14.0 5.4
V, m3 ha–1 10.6–212.8 77.8 37.6
T, years 15–114 42 18
Tree species proportion of total basal area
Pine (%) 0–100 57 40
Spruce (%) 0–100 17 27
Deciduous (%) 0–100 26 30

Advanced thinning and mature stands (n = 523)
hg, m 10.0–27.8 16.9 3.0
dg, cm 11.8–45.0 20.5 4.6
N, ha–1 196–3615 1099 569
G, m2 ha–1 4.6–50.9 21.9 8.0
V, m3 ha–1 32.7–499.2 181.9 85.7
T, years 26–153 74 21
Tree species proportion of total basal area
Pine (%) 0–100 52 38
Spruce (%) 0–100 29 34
Deciduous (%) 0–100 19 24

4 Results

4.1 Selected predictor variables

The importance of 15 candidate predictors in the k-NN forest inventory attribute prediction is illus-
trated in Fig. 3. Variables h70f, h30l, h80l and p9530f were chosen for the prediction according to the 
criteria	defined	in	section	3.3.1.	Variable	h70f correlated highly with Lorey’s height (0.98 correla-
tion	in	all	field	plots	and	0.96	in	LPDPs),	and	it	was	the	most	important	predictor	for	forest	canopy	
height. Variable p9530f was sensitive to the variation in vegetation density as the variable correlates 
well	with	basal	area	(correlations	of	0.79	and	0.61	in	all	field	plots	and	in	LPDPs,	respectively.	The	
predictors related to proportional canopy density discriminated low-productive and productive forests 
rather well, as average p9530f value was clearly lower in LPDPs (0.21) than in thinning and mature 
forests (0.56 and 0.61, respectively). Variable h30l was an important predictor due to its sensitivity 
to deciduous% (–0.43 correlation) and its low correlations with other selected predictors.
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4.2 Accuracy of forest inventory attribute prediction

The prediction accuracy of Lorey’s height, mean diameter, stem number, basal area and stem 
volume was analysed with varying number of LPDP plots in the reference data (Fig. 4). Follow-
ing current forest inventory practises and having only 500 plots measured from productive forest 
stands in the reference data, the RMSEs (and relative RMSEs) for the prediction accuracies were 
1.4 m (16%), 2.1 cm (19%), 700 ha–1 (128%), 2.7 m2 ha–1 (72%) and 13.7 m3 ha–1 (73%) in LPDPs, 
respectively. When 30 reference plots from LPDPs were added to the k-NN estimation (allocation 
is presented in Fig. 5), the respective accuracies were improved to 1.1 m (13%), 2.1 cm (20%), 360 
ha–1 (65%), 1.7 m2 ha–1 (46%) and 10.0 m3 ha–1 (53%). Only minor improvement was observed 
in the predictions when more than 30 LPDP plots were added to the reference data (see Fig. 4).

LPDPs are mainly dominated by either pine (Pinus sylvestris) or downy birch (Betula 
pubescens ssp. pubescens). Having 30 LPDP plots in the reference data, plot-level stem volume 
was predicted with RMSEs of 8.9 m3 ha–1 and 12.4 m3 ha–1 in pine- (n = 37) and birch-dominated 
(n = 18) LPDPs, respectively (Table 4). Overall, the proportion of deciduous trees was predicted 
with 26%-units of RMSE. However, the main tree species was predicted with 87% accuracy in 
LPDP reference plots, which means that pine- and birch-dominated stands can be discriminated 
reasonably well by ABA.

Additional reference data allocation did not affect the forest inventory attribute predictions 
in productive forest stands. Regardless of the number of LPDP plots in the k-NN estimation, hg, 
dg, N, G and V were predicted for young productive stands in the developmental stage with the 
following relative RMSEs: 7%, 13%, 46%, 22% and 22%.

Fig. 3. The importance of 15 candidate predictors (the selected predictors are grey -coloured) and the variation of three 
selected predictors in LPDPs, thinning and mature forests.
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Fig. 4. Estimation accuracy of forest inventory attributes with a varying number of reference plots from LPDPs used 
in the prediction.
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Table 4. Estimation accuracy of pine- and birch-dominated LPDPs 
when 30 reference plots from LPDPs were added to the reference 
data

RMSE RMSE % Bias Bias %

Pine-dominated LPDPs (n = 37)
hg, m 1.0 13 0.2 2.1
dg, cm 2.1 21 0.4 4.4
N, ha–1 298 60 –116 –23
G, m2 ha–1 1.5 46 –0.4 –12
V, m3 ha–1 8.9 59 –2.3 –15

Birch-dominated LPDPs (n = 18)
hg, m 1.4 13 0.4 4.1
dg, cm 1.9 16 0.5 4.4
N, ha–1 377 63 –133 –22
G, m2 ha–1 2.1 46 –0.7 –15
V, m3 ha–1 12.4 49 –5.2 –21

Fig. 5. Allocation of 500 reference plots on productive forest stands and 30 reference plots on LPDPs accord-
ing to two features extracted from ALS data.
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Fig. 6. An aerial photograph (© NLS 2014) and mapped stem volume (m3 ha–1) of the study area.

5 Discussion

The aim of the study was to evaluate the suitability of ABA for mapping the forest inventory 
attributes in forests growing on LPDPs. Due to the updated forest legislation this is a current 
topic in several Finnish forest companies (e.g. Metsähallitus). Metsähallitus manages 35% of the 
forestry land in Finland, and the majority of its forest holdings are located in Northern Finland. 
It administers a total 272 000 hectares of LPDPs, according to its forest management geographic 
information system. The forest managers of Metsähallitus are updating their forest inventory 
data and planning the management of their LPDPs. Practically no cuttings have been performed 
in LPDPs due to the old forest legislation because harvesting low timber volumes, maintaining 
ditch	networks	and	cultivating	new	forest	generations	would	have	been	unprofitable.	Therefore,	
the renewed legislation released more exploitable wood biomass resources, especially in Northern 
Finland, and Metsähallitus would like to test the suitability of ALS to map potential LPDPs for 
bioenergy harvesting and to update forest inventory data for the cost accounting of wood procure-
ment. An aerial photograph and mapped stem volume of the study area are presented in Fig. 6. A 
potential area for biomass harvesting without the forest regeneration prerequisite is located in the 
southwest corner of the map.

The restoration of ecosystems is an important tool for maintaining ecosystem services and 
restraining biodiversity loss, thus Metsähallitus attempts to restore some peatland ecosystems 
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that have been degraded by drainage campaigns. LPDPs are good targets for restoration because 
they	have	a	low	significance	for	forestry	and,	in	natural	conditions,	offer	important	habitats	for	
grouses. The main ecological objectives of peatland restoration are to re-establish peatlands’ 
hydrological features close to natural conditions and to trigger ecological succession that will lead 
to the near-natural functioning of peatland ecosystems (Similä et. al. 2014). In their current state, 
nutrient-poor, forestry-drained peatlands are CO2 sinks that have a cooling impact on the climate 
(Ojanen et al. 2012). Restoration of forestry-drained peatlands involves raising water tables, which 
increases these CO2 sinks (Soini et al. 2010), but otherwise restoration also has a warming impact 
on the climate as CH4 emissions increase (Juottonen et al. 2012). The long-term climate impacts 
of restoring forestry-drained peatlands are being monitored, and more data are needed before we 
can make any further conclusions.

We used ALS data collected by the NLS, which produces a national digital terrain model 
(DTM) using low-pulse-density ALS data acquired during leaf-off canopy conditions. Leaf-off 
ALS data are favoured in DTM modelling because understory vegetation causes serious bias in 
the DTMs produced from ALS data acquired in leaf-on conditions (Sirkiä and Laaksonen 2009). 
Forest inventory and mapping applications have been studied mainly using leaf-on ALS data, but 
we used the same leaf-off ALS data as the NLS used for the DTM modelling because the multiple 
uses	of	data	would	mean	significant	cost	savings	for	both	DTM	production	and	forestry	applications.	
Næsset	(2005)	suggested	that	canopy	conditions	affect	the	last	echoes	more	than	the	first	echoes	of	
laser pulses, and the height distribution of the returns is more diverse during leaf-off than leaf-on 
conditions.	In	previous	studies,	ABA	prediction	accuracy	for	both	total	and	species-specific	stem	
volumes has been approximately equal using either leaf-off or leaf-on ALS data (Næsset 2005; 
Villikka et al. 2012). Villikka et al. (2012) concluded that leaf-off ALS data are suitable for forest 
inventory, but data collection is restricted because the leaf-off season without snow is short in the 
Nordic climate. It should be noted that the use of leaf-off data has not been a common practice in 
forest inventory (White et al. 2013), though currently leaf-off data is often used because ALS-based 
DTM modelling is underway in Finland and in many other countries.

The accuracy of predictions obtained by ABA was in line with previous studies when com-
paring prediction accuracies in thinning and mature stands. Reference plots from LPDPs did not 
affect the accuracy of forest inventory attribute prediction in productive forest stands. For Lorey’s 
height, mean diameter, stem number, basal area and stem volume we obtained the respective relative 
RMSEs of 7%, 13%, 46%, 22% and 22% in young thinning stands, and 6%, 13%, 42%, 21% and 
22% in mature plots. Previously the accuracies have varied, respectively, between 6–10%, 13–20%, 
25–50%, 14–23% and 17–23% (e.g. Næsset et al. 2004; Maltamo et al. 2006; Vastaranta et al. 2013).

Forest inventory attributes of LPDPs were successfully predicted using low-pulse-density 
ALS data. To our knowledge, the most similar study to ours was presented by Nyström et al. 
(2012). Using corresponding ALS data to map mountain birch biomass in the forest-tundra ecotone, 
they reported 9.5%, 21.2% and 18.7% relative RMSEs for the plot-level estimation accuracies of 
maximum tree height, AGB and vertical canopy cover, respectively. The relative errors of biomass 
or stem volume estimates were larger in our study, but in our study area the growing stocks were 
smaller and more heterogeneous, including more diverse habitats and a few different tree species.

Without any LPDP plots in the reference data, the k-NN method gives inaccurate and biased 
estimates for LPDPs. In our study area the prediction accuracy improved quickly when some LPDP 
plots were added to the prediction, but only minor improvement was observed after having approxi-
mately 30 LPDP reference plots in addition to the 500 plots measured from productive forests in 
the reference data (Fig. 4). The RMSE of total stem volume estimates was improved 27% when 
the number of LPDP reference plots was increased from 0 to 30, but the respective improvement 
was only 9% when the number was increased from 30 to 58.
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Sampling of the LPDP reference plots could be performed using two ALS-derived metrics 
i.e., one feature correlating with mean tree height and another correlating with basal area (h80f and 
penef were used in our study). The expansion of the reference data in relation to these two vari-
ables is presented in Fig. 5. Often, the scale of forest inventory attributes is close to one another 
in	LPDPs	and	young	productive	forests,	but	the	figure	illustrates	that	these	forest	types	could	be	
discriminated well by ALS.

If ABA is applied out of the typical range of forest conditions, it should be taken into account. 
There are many areas around the world similar to boreal LPDPs where ALS forest inventory 
could be applied (e.g. coastal or mountainous forests). The prediction accuracy and the required 
reference	data	are	always	case	-specific,	but	our	study	showed	that	the	results	can	be	improved	by	
measuring a few plots from the new strata. Our methodology can be applied for optimising the 
campaign-specific	requirement	of	reference	data	from	different	stratums	in	relation	to	inventory	
costs	and	benefits.

6 Conclusions

We applied ALS-based ABA forest inventory for naturally sparse growing stocks that have not been 
generally inventoried. The reference plot data were acquired from Haapajärvi, which imitated well 
the	typical	field	data	sample	collected	for	ABA	in	Finland.	There	were	no	plots	measured	from	
LPDPs, thus we measured additional reference plots from this stratum to apply ABA to those areas.

The overall conclusion is that ABA is a suitable method for predicting forest inventory 
attributes in poorly productive boreal forests if reference plots are allocated to this stratum. When 
reference plots are allocated only for productive forests, predictions in forests growing on LPDPs 
are biased. If reference plots are measured from LPDPs, ABA can be used for biomass mapping 
and for forest management planning (e.g. harvesting cost assessment) in those areas.
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