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Highlights
•	 The number of treatment schedules available for each stand has an impact on the optimal 

configuration	of	opt-moves	(i.e.	number	stands	where	the	treatment	schedule	is	changed	in	
an iteration).

•	 Considering	a	large	number	of	treatment	schedules	per	stand,	the	one-opt	move	implementa-
tion	is	preferred,	yet	when	considering	a	low	number	of	decision	choices	the	two-opt	moves	
option performs better.

Abstract
Finding	an	optimal	solution	of	forest	management	scheduling	problems	with	even	flow	constraints	
while	 addressing	 spatial	 concerns	 is	 not	 an	 easy	 task.	 Solving	 these	 combinatorial	 problems	
exactly	with	mixed-integer	programming	(MIP)	methods	may	be	infeasible	or	else	involve	exces-
sive	computational	costs.	This	has	prompted	the	use	of	heuristics.	In	this	paper	we	analyze	the	
performance of different implementations of the Simulated Annealing (SA) heuristic algorithm 
for solving three typical harvest scheduling problems. Typically SA consists of searching a better 
solution	by	changing	one	decision	choice	in	each	iteration.	In	forest	planning	this	means	that	one	
treatment	schedule	in	a	single	stand	is	changed	in	each	iteration	(i.e.	one-opt	move).	We	present	
a	comparison	of	the	performance	of	the	typical	implementation	of	SA	with	the	implementation	
where	up	to	three	decision	choices	are	changed	simultaneously	in	each	iteration	(i.e.	treatment	
schedules	are	changed	in	more	than	one	stand).	This	may	allow	avoiding	local	optimal.	In	addi-
tion,	the	impact	of	SA	–	parameters	(i.e.	cooling	schedule	and	initial	temperature)	are	tested.	We	
compare	our	heuristic	results	with	a	MIP	formulation.	The	study	case	is	tested	in	a	real	forest	with	
1000	stands	and	a	total	of	213116	decision	choices.	The	study	shows	that	when	the	combinatorial	
problem is very large, changing simultaneously the treatment schedule in more than one stand does 
not	improve	the	performance	of	SA.	Contrarily,	if	we	reduce	the	size	of	the	problem	(i.e.	reduce	
considerably	the	number	of	alternatives	per	stand)	the	two-opt	moves	approach	performs	better.
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1 Introduction

In	many	cases	considering	harvest	 scheduling	problem	 in	 forestry	 implies	 taking	 into	account	
sustainability	constraints	together	with	the	need	to	preserve	wildlife	habitat	and	to	maintain	aes-
thetic	aspects.	In	addition,	addressing	sustainability	concerns	in	forest	planning	requires	to	take	
into account the spatial distribution of harvests to meet spatial objectives. For example, sometime 
it	will	be	needed	to	use	adjacency	constraints	(i.e.	 the	harvested	area	of	adjacent	management	
units	within	or	between	periods	is	limited	to	a	maximum	size)	to	limit	the	maximum	size	of	an	
open	(clear-cut)	area.	In	this	context	harvest	scheduling	problems	are	a	challenge	as	these	models	
represent complex combinatorial problems that may be hard and complex to solve.

The	main	approaches	to	represent	adjacency	constraints	in	forest	management	were	described	
by	Murray	(1999).	Two	fundamental	methodologies	have	been	introduced	in	order	to	incorporate	
those	constraints	into	a	forest	management	model.	The	first	approach,	the	Unit	Restriction	Model	
(URM),	does	not	allow	harvesting	two	adjacent	management	units	during	one	period	or	green-
up	period	(regardless	of	size),	thus	the	unit	restrictions	arrangement	are	represented	by	pairwise	
adjacency constraints. This formulation assumes that a simple management unit encompasses the 
area	close	to	the	maximum	opening	size.	The	second	approach	of	defining	adjacency	constraints	
is	the	Area	Restriction	Model	(ARM),	which	for	modeling	allows	scheduling	contiguous	manage-
ment	units	if	the	total	size	of	the	clear-cut	area	does	not	exceed	the	maximum	opening	size	that	
is	assumed.	However,	from	the	computation	point,	ARM	approach	is	difficult	to	formulate	and	
solve, due to the complexity of imposing the relationship of given management unit to the others 
units	as	well	as	their	contiguous	units.

The	URM	has	been	solved	both	by	mathematical	programming	(e.g.	Snyder	and	Revelle	
1996), by heuristic approaches (e.g. Nelson and Brodie 1990) and by combinations of both (e.g. 
Borges	and	Hoganson	2000).	Research	has	been	conducted	to	increase	the	efficiency	of	the	solution	
of	the	more	general	case	of	ARM.	For	instance,	McDill	et	al.	(2002)	presented	the	Path	Algorithm,	
which	consists	of	clustering	contiguous	stands	that	if	cut	altogether	would	exceed	the	maximum	
opening	size,	and	then	adding	a	constraint	that	does	not	allow	to	harvest	at	those	clusters.	Another	
formulation	proposed	consists	in	defining	variables	for	all	possible	and	feasible	harvesting	clus-
ters	and	adding	constraints	that	prevent	harvesting	adjacent	pairs	of	clusters	(McDill	et	al.	2002;	
Goycoolea	et	al.	2005).	A	third	method	called	the	Bucket	formulation	consists	in	defining	buckets	
a	priori	and	then	assigning	stands	to	each	of	them	so	that	each	bucket	represents	a	harvested	clus-
ter	(Constantino	et	al.	2008).	For	a	deeper	discussion	of	these	formulations	we	refer	the	reader	to	
Goycoolea	et	al.	(2009).	Recent	work	of	Tóth	et	al.	(2013)	states	that	the	path	approach	can	be	
further	enhanced	by	using	lazy	constraints.	In	this	method	the	path	constraints	are	not	active,	this	
is	why	those	constraints	are	defined	as	lazy	constraint	pools,	which	leads	to	the	amelioration	of	
model in terms of solution time.

Mathematical	programming	approaches	to	solve	harvest	scheduling	problems	with	spatial	
restrictions	cost	computational	time	and	may	end	up	with	a	high	optimality	gap	or	without	find-
ing	a	feasible	solution	(Borges	et	al.	2002;	Zhu	et	al.	2007).	One	way	to	reduce	computation	time	
and	the	amount	of	memory	required	is	to	raise	the	optimality	gap.	However,	this	may	lead	to	poor	
solutions.	Another	way	would	be	to	improve	the	existing	traditional	methods,	what	has	been	shown	
above. Another approach is to use search process such as heuristics.

The heuristics most commonly used in forest planning problems include Simulated Anneal-
ing	(SA),	Tabu	Search,	and	genetic	algorithms	(Heinonen	and	Pukkala	2004).	SA	has	attracted	
significant	interest	since	the	publication	of	Kirkpatrick	et	al.	(1983),	which	presented	the	optimiza-
tion	heuristic	technique	consisting	of	the	idea	of	physical	phenomena	such	as	controlled	cooling	
of	a	material	that	was	heated	well	above	its	known	melting	point.	Simulated	Annealing	has	been	
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extensively used in forest management planning. For example, SA has been applied in harvest 
scheduling	problems	including	adjacency	constraints	(Lockwood	and	Moore	1993).	In	addition	
SA	has	been	included	in	decision	support	system	(DSS)	tools	(Falcão	and	Borges	2005).

Most	of	standard	heuristics	try	to	improve	the	solution	gradually	by	changing	it	 locally,	
and	usually	only	a	little	at	a	time.	A	new	solution	may	be	obtained	from	the	current	solution	with	
one	move.	When	referring	to	harvest	scheduling	problems	a	move	may	consist	of	changing	the	
treatment	schedule	in	just	one	management	unit	(i.e.	stand).	In	this	case	we	may	talk	about	one-
opt	move	solution	approach	(Reeves	1993;	Bettinger	et	al.	1999;	Bettinger	et	al.	2002).	However,	
a	new	solution	may	be	obtained	by	changing	the	schedule	in	more	than	one	management	unit.	
Then	we	may	talk	about	an	x	–	opt	moves	heuristic	with	x	as	a	number	of	moves	e.g.	change	in	the	
treatment	schedule	in	x	management	units	per	iteration.	In	this	context,	some	authors	(Bettinger	
et	al.	1999;	Bettinger	et	al.	2002;	Heinonen	and	Pukkala	2004)	have	analyzed	the	performance	of	
different	heuristic	methods	(e.g.	Random	Ascent,	Hero,	Tabu	Search)	when	implementing	different	
number	of	changes	(one	and	two)	per	iteration.

In	forestry	problems,	the	performance	of	the	traditional	implementations	of	SA	(i.e.	one-opt	
move)	has	been	analyzed	and	compared	to	other	heuristic	methods	by	Pukkala	and	Kurttila	(2005).	
Recently	a	modification	of	SA	has	been	applied	by	Borges	et	al.	(2014a,	b)	where	one-opt	move	
implementation	was	used	and	different	methods	to	select	the	unit	where	the	management	schedule	
is	changed	were	evaluated.	In	addition,	Heinonen	and	Pukkala	(2004)	studied	the	efficiency	of	SA	
using	one	and	two	changes	per	iteration.	In	other	scientific	areas	(e.g.	vehicle	routing)	SA	has	been	
implementing	using	more	than	two	changes	per	iteration	(e.g.	Alfa	et	al.	1991;	Aarts	and	Lenstra	
2003;	Ghaffari-Nasab	and	Saboury	2013).	However,	to	our	best	knowledge,	the	only	study	in	for-
estry	problems	analyzing	the	use	of	more	than	two	changes	was	presented	by	Garcia-Gonzalo	et	
al.	(2012).	In	a	preliminary	study	they	compared	the	performance	of	SA	when	using	up	to	three-opt	
moves in a harvest scheduling planning problem. Although they used the same study area than in 
our article, they did not include adjacency constraints and used a limited number of management 
alternatives	per	unit	which	made	the	problem	much	simpler.

Our	study	presents	a	comparison	of	the	performance	of	a	heuristic	technique	(Simulated	
Annealing)	where	different	number	of	moves	(i.e.	one-opt	to	three-opt	moves)	are	performed	in	
each iteration to address a very large and complex planning problem including adjacency con-
straints.	Previous	works	applied	in	forest	planning	problems	using	a	small	number	of	decision	
choices	conclude	that	two-opt	move	are	more	effective	than	one-opt	moves	(Bettinger	et	al.	1999;	
Heinonen	and	Pukkala	2004).	In	this	study	we	test	if	in	very	large	problems	(e.g.	problems	involv-
ing	several	stands	with	a	large	number	of	decision	choices	per	stand)	increasing	the	number	of	
opt-moves	(up	to	three-opt	moves)	will	be	more	effective	than	the	typical	implementation	of	SA	
(i.e.	one-opt	move).	For	testing	purposes	these	different	implementations	are	applied	to	different	
instances	(i.e.	forest	of	different	sizes)	of	three	real	harvest	scheduling	problems	with	a	large	number	
of	available	treatment	schedules	of	a	Eucalypt	plantation.	In	order	to	see	if	results	are	sensitive	to	
the	number	of	treatment	schedules	available	for	each	stand,	we	also	solved	the	biggest	problem	
instance	using	adjacency	constraints	and	a	small	number	of	treatment	schedules	for	each	stand.	On	
the	other	hand	we	analyze	the	impact	of	different	SA	parameters	in	the	quality	of	the	solution.	In	
order	to	verify	the	quality	of	solution	provided	by	SA,	we	attempt	to	solve	the	problem	as	mixed	
integer	programming	(MIP)	by	implementing	the	commercial	solver	CPLEX.
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2 Material and methods

2.1 Problem formulation

The	forest	planning	problem	that	we	investigate	involved	the	maximization	of	the	net	present	value	
(NPV)	of	timber	harvested	of	a	forest	located	in	central	Portugal	(Fig.	1).	The	eucalypt	test	forest	
encompasses	1000	stands	and	extends	over	11873	ha.	In	this	planning	problem	the	manager	has	to	
decide	which	management	schedule	to	apply	in	each	of	the	stands	during	the	next	30	years.	In	each	
treatment schedule, it occurs at least one harvest event. The goal of this study is to harvest each 
management unit at least once, therefore one treatment schedule must be assigned to management 
unit.	For	testing	purposes	we	select	smaller	areas	within	the	test	forest	to	develop	smaller	problems.

In	this	study,	a	typical	eucalyptus	rotation	may	include	up	to	2	or	3	coppice	cuts,	each	coppice	
cut	being	followed	by	a	stool	thinning	that	may	leave	on	average	1.5	shoots	per	stool.	Harvest	ages	
may	range	from	9	to	15.	Initial	density	after	a	plantation	may	be	1500	trees	per	ha.	Based	on	these	
silviculture	parameters	we	constructed	possible	treatment	schedules	for	each	stand	in	the	test	forest,	
over	a	planning	horizon	of	thirty	1-year	periods.	In	the	first	experiment	(experiment	I)	all	possible	
combinations	of	the	parameters	used	in	the	prescriptions	were	combined	to	develop	a	large	set	of	
treatment schedules (i.e. prescriptions). The number of stand treatment schedules ranged from 166 
to	278,	resulting	in	213116	decision	choices.	In	this	context,	the	size	of	the	solution	space	is	large	
and	the	problem	becomes	very	complex.	Experiment	I	is	at	the	core	of	our	analysis	as	we	want	to	
test	the	performance	of	SA	when	using	a	very	large	number	of	treatment	schedules	per	stand.	In	
order to test the sensitivity of the comparison of the number of changes per iteration to the number 
of	treatment	schedules	we	developed	a	smaller	planning	problem	(experiment	II).	In	this	case	we	
used	the	same	forest	instances	but	we	reduced	the	planning	horizon	to	15	years	and	we	selected	
a	fewer	number	of	treatment	schedules.	In	total	between	7	and	15	treatment	schedules	were	used	
for	each	stand	resulting	in	12573	decision	choices.

Fig. 1. The	map	of	Portugal	and	the	study	area.
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A	former	decision	support	 system	(DSS)	 (Borges	et	 al.	2002;	Falcão	and	Borges	2005)	
recently	updated	by	Garcia-Gonzalo	et	al.	(2014)	was	used	to	quantify	the	outcomes	associated	to	
all	treatment	schedules	(i.e.	prescriptions)	and	stands.	The	growth	estimated	by	the	DSS	provides	
the information needed to assess the impact of each treatment schedule on results and conditions 
of	interest	(e.g.	volume	harvested).	Both	economic	objective	(i.e.	net	present	value	(NPV)	using	
a	3	percent	discounting	rate)	and	timber	flows	were	considered.

Following	the	model	formulation	I	by	Johnson	and	Scheurmann	(1977),	the	forest	manage-
ment model can be described as:

where
I  =  the number of stands.
Ji  =  the number of treatment schedules for stand i.
T  =  the number of years for a given horizon time.
npvij		=	 	net	present	value	associated	with	treatment	schedule	j for a stand i.
xij		 =	 	binary	variable	which	=	1	if	treatment	schedule	j is assigned to the stand i	and	0	otherwise.
vijt  =  volume harvested in stand i in year t if treatment schedule j is selected.
Vt  =  total volume harvested in year t.
v̂ij   =  volume of the ending inventory in stand i if treatment schedule j is selected.
V̂   =  total volume of the ending inventory.
cijt  =	 	average	carbon	stock	in	stand	i in year t if treatment schedule j is selected.
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Ct		 =	 	total	carbon	stock	in	year	t.
α  =	 	deviation	allowed	from	target	level	for	volume	harvest.
β =	 deviation	allowed	from	target	level	for	carbon.
ϑ = ending inventory goal.
Â  = minimally infeasible cluster representing a contiguous set of stands generated by

  algorithm proposed by Goycoolea et al. (2009).
Λ+  = set of minimally infeasible clusters.

Eq.	1	defines	the	objective	of	maximizing	net	present	value	(NPV	includes	the	value	of	the	ending	
inventory).	Eq.	2	states	that	one	and	only	one	treatment	schedule	is	assigned	to	each	stand.	Eq.	3	
is used to count the volume harvested in each year t	(accounting	row).	Eq.	4	calculates	the	volume	
of	ending	inventory	(accounting	row).	Eq.	5	represents	the	carbon	level	in	each	year	t (accounting 
row).	Inequalities	6	and	7	define	the	even	flow	(maximum	of	10%	variation	among	periods)	of	
harvests	over	the	planning	horizon	that	may	ensure	the	sustainability	of	the	forest.	Inequality	8	
ensures	that	the	ending	inventory	target	is	met.	Inequalities	9	and	10	express	carbon	stock	level	
flow	over	 the	planning	horizon	 (maximum	of	10%	variation	among	periods).	 Inequality	11	 is	
the	Path	Inequality	(Goycoolea	et	al.	2009)	and	ensures	that	in	each	period	the	size	of	harvested	
contiguous	stands	does	not	exceed	the	maximum	clear-cut	opening	size.	Constraint	12	states	the	
binary	requirements	on	decision	choice.

For	testing	purposes,	3	different	problem	formulations	were	tested,	where	each	of	the	prob-
lems	was	built	from	the	previous	formulation	adding	more	constraints.	The	equations	for	each	
problems	are	given	below:

Problem	I		 =		Eq.	1–3,	6–7,	12.
Problem	II		 =		Eq.	1–10,	12.
Problem	III		=		Eq.	1–12.

Problem	I	encompassed	the	use	of	even-flow	of	harvest	constraints	(no	ending	inventory	and	carbon	
stock	constraints	nor	adjacency	constraints),	Problem	II	further	included	the	use	of	ending	volume	
inventory	and	carbon	stock	level	constraints	(no	adjacency	constraints).	Problem	III	was	an	exten-
sion	of	previous	models	and	further	included	adjacency	constraints,	what	make	this	problem	more	
complex	compared	to	foregoing	problems	formulations.	In	experiment	I	we	solved	problems	I,	II	
and	III.	Because	the	number	of	decision	choices	in	experiment	II	is	small	we	focused	our	analysis	
in	problem	III,	which	is	more	difficult	to	solve.

2.2 Methods

Linear	and	mixed	integer	programming	have	been	widely	used	to	obtain	a	global	optimal	solution.	
The	main	advantage	of	using	them	is	that	when	a	solution	is	found	one	is	confident	that	this	is	the	
optimal	solution	(or	optimal	with	a	minor	tolerance).	However,	as	explained	by	Bettinger	et	al.	
(2009), their main limitations are (1) the inability to solve some problems in a reasonable amount 
of	time,	and	(2)	a	limit	on	the	number	of	rows	(constraints)	or	variables	that	can	be	included	in	a	
problem.	Of	course	these	limitations	are	becoming	less	problematic	as	model	building	and	computer	
technology	evolves.	However,	they	remain	as	an	important	problem.

For	example,	Murray	and	Weintraub	(2002)	illustrated	a	case	where	a	significant	amount	
of	time	was	required	to	generate	the	constraints	for	a	relatively	small	spatially-constrained	prob-
lem.	Even	if	McDill	and	Braze	(2001)	presented	a	number	of	cases,	where	exact	integer	solutions	
(with	small	tolerance	gaps)	were	obtained	in	a	reasonable	amount	of	time	and	yet	they	suggested	
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that	alternatives	to	exact	approaches	may	still	be	needed.	In	fact,	Bertomeu	and	Romero	(2001)	
and	Murray	and	Weintraub	(2002)	suggested	that	it	may	be	unrealistic	to	solve	large	or	difficult	
problems	with	 exact	 approaches.	Thus,	 for	 solving	 large	problems	or	 very	 complex	problems	
when	mathematical	programming	methods	become	impractical,	researchers	have	been	exploring	
alternatives	to	search	processes,	(.e.g.	when	addressing	spatial	harvest	scheduling	forest	planning	
problems).	One	alternative	may	be	the	use	of	heuristic	methods	which	are	search	processes	that	
apply	logical	strategies	and	rules	which	provides	satisfactory	results	in	a	reasonable	time.	However,	
there is no guarantee, that the best solution located is the global optimum solution. The pertinence 
of	choosing	heuristics	is	presented	by	Pukkala	and	Kurttila	(2005).	In	addition,	heuristics	are	more	
promising, than classical methods, due to its better accommodation to complex planning problems 
encompassing	spatial	concerns	(Bettinger	and	Kim	2008).

In	order	to	solve	the	decision	problem	presented	in	subsection	2.1	we	use	a	meta-heuristic	
called Simulated Annealing (SA) because it is one of the most used heuristic methods. Further 
different	implementations	of	this	heuristic	techniques	are	analyzed.

2.2.1 Simulated Annealing

The	first	 implementation	of	SA	in	optimization	was	proposed	by	Kirkpatrick	et	al.	(1983)	and	
emanates	from	Metropolis	et	al.	(1953).	This	method	mimics	the	annealing	physical	process	by	
simulating	a	process	of	cooling	a	material	that	was	heated	well	above	its	known	melting	point	(initial	
temperature T0 ), until the system is frozen. Cooling is controlled by cooling schedule parameter, 
and refers to the geometrical decrement:

where
ζ	˂	1	and
Tt = temperature at iteration t,	where	t = 1, 2,..., n, and n is a number of iterations.

Usually	in	the	literature	ζ	is	close	to	1	but	not	lower	than	0.8	(Heinonen	and	Pukkala	2004).

The	 algorithm	 at	 first	 searches	 for	 a	 good	 local	 optimum	 solution	 by	 accepting	 worse	
moves	with	a	probability	according	to	the	Metropolis	criteria.	In	addition	to	the	cooling	schedule	
parameter, initial temperature has also an impact in the acceptance of an inferior solution. The 
lower	the	initial	temperature,	the	higher	probability	of	rejecting	the	worse	solution	according	to	
the	Metropolis	criteria.

The	heuristic	allows	finding	a	near	optimal	solution	to	the	problem	with	a	relatively	short	
simulation	time.	SA	involves	a	sequence	of	iterations	each	consisting	of	randomly	changing	the	
current	solution	 to	find	a	new	solution	 in	 the	neighborhood	of	 the	current	solution	(Pham	and	
Karaboga	2000).

In	order	to	avoid	premature	convergence	to	a	local	optimum,	an	inferior	solution	may	be	
accepted.	This	is	a	fundamental	property	of	metaheuristics	because	it	allows	for	a	more	extensive	
search	for	 the	optimal	solution.	Yet,	 the	frequency	of	these	moves	decreases	with	the	iteration	
number	according	to	the	value	of	a	control	parameter	(temperature)	(Reeves	1993).	A	candidate	
solution	is	generated	at	each	iteration.	If	the	current	solution	is	better	than	the	best	solution	found	
so	far,	it	replaces	the	latter.	If	not,	the	inferior	solution	may	be	accepted	and	the	search	process	
moves	forward.	The	probability	of	doing	so	is	directly	dependent	on	the	temperature	and	is	given	
by	following	formula	known	as	Metropolis	criteria	(Pham	and	Karaboga	2000):

T T (13)t t 1,ζ= × −
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≥e random(0,1) (14)T
Dij

where:
D	ij = the value of objective function of selected solution pi minus the value of objective function 
of the best solution found so far p j.

The	probability	of	accepting	inferior	solutions	decreases	with	temperature	decreases,	and	it	also	
decreases	with	the	magnitude	with	larger	differences	between	the	objective	function	values	of	the	
proposed and the best solutions.

Key	to	successful	algorithm	implementation	is	the	choice	regarding	the	solution	data	struc-
ture,	the	fitness	evaluation	function	and	the	cooling	schedule	(Pham	and	Karaboga	2000).	In	general,	
the	latter	involves	the	specification	of	the	initial	temperature	parameter,	of	the	rate	at	which	the	
temperature is reduced and of the number of iterations at each temperature.

The	algorithm	shown	below	describes	Simulated	Annealing	search	process.

Algorithm Simulated Annealing:

begin

Initialization:	T0	-	initial	temperature,	n	-	number	of	iterations,	ζ		-	cooling	rate,	pj	-	initial
treatment schedule.

Pbest = pj
T = T0

for i = : 1 to n do

  pi  =change_current_treatment_schedule(pj )		Dij = Value[pi ]-	Value[pj ]

	 	 if	Dij > 0 do

   pj = pi
   
   if Value[pi]> Value[pbest] do

    pbest = pi

  else

   if 
e
D
 
ji
T  ≥	random(0,1) do

    pj = pi

  Tt = ζ× Tt–1

end
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2.2.2 Experimental Design

In	this	study	the	heuristic	technique	(Simulated	Annealing)	was	used	to	solve	the	harvest	scheduling	
problems	presented	in	current	section.	The	first	objective	of	the	article	was	to	compare	the	efficiency	
of	the	technique	when	increasing	the	number	of	opt-moves	(from	one	to	three).	By	increasing	the	
number	of	opt-moves,	the	treatment	schedule	is	changed	in	more	than	one	stand	simultaneously	in	
each	iteration.	Two	experiments	were	developed	differing	in	the	size	of	the	final	problems	to	solve.	
In	experiment	I	we	solved	three	problems	defined	in	Section	2	for	a	planning	problem	covering	a	
30	years	planning	horizon.	In	this	experiment	a	large	number	of	treatment	schedules	are	available	
(up	to	278).	In	experiment	II,	we	reduced	the	size	of	the	planning	problem	to	address	by	decreasing	
the	planning	horizon	and	the	number	of	treatment	schedules	available	for	each	stand.	In	this	case,	
only	the	problem	III	(i.e.	the	most	complicated	due	to	the	use	of	adjacency	constraints)	presented	
in	section	2	was	solved	for	a	planning	horizon	of	15	years	(1-year	period)	and	with	a	small	number	
of treatment schedules (i.e. up to 15). Since the objective of the second experiment is to analyze if 
the number of treatment schedules available has an impact on the optimal number of changes per 
move	and	the	amount	of	decision	choices	is	small	to	address,	only	problem	III	(the	most	complex	
to solve) is analyzed in detail.

Heuristics	 are	 sensitive	 to	 the	 parameters	 used	 (Pukkala	 and	 Heinonen	 2006).	 Thus	 a	
second	goal	of	this	article	was	to	analyze	the	impact	of	different	SA	parameters	in	the	quality	of	
the	solutions	found.	This	was	used	to	parameterize	SA	for	later	comparisons	with	the	MIP	solver	
(i.e.	CPLEX).	For	this	purpose	we	tested	different	values	of	the	cooling	schedule	parameter	and	
the	initial	temperature.	All	parameters	that	are	mentioned	below	were	chosen	based	on	the	experi-
ence	in	Falcão	and	Borges	(2002),	as	well	as	on	several	trial	and	error	runs	of	the	search	process.

In	this	context	we	used	two	different	values	of	the	cooling	schedule	parameter.	Comparing	
small	and	high	values	allowed	us	to	verify,	whether	it	is	recommended	to	accept	inferior	solutions	
at the beginning of the search process and then only search for improvement near local optimum 
or	whether	it	is	appropriate	to	decelerate	the	cooling	process	and	accept	inferior	solutions	during	
more iterations.

In	this	article	we	used	the	following	cooling	schedule	parameters:
ζ1 = 0.8
ζ2 = 0.99996

For	the	initial	temperature	the	following	values	were	tested:
T0	=	{2,	7,	12,	100,	100000}

To	 evaluate	 the	methods	 of	 SA	 parameters	 resolution	we	 tested	 our	models	 on	 several	
instances that varied according to the number of stands. The experimental instances included 100, 
250,	500,	and	1000	stands,	taken	from	the	real	instance	(1000	stands)	at	random,	considering	a	
group of 3 problems formulations stated in Section 2. All of them included the complete forest data, 
without	any	relaxation	from	the	original	formulation.	Moreover,	to	better	evaluate	the	performance	
of	heuristic,	we	compared	the	solution	to	the	solution	from	MIP	solver.

Numerical	experiments	were	carried	out	in	a	computer	with	following	features:
Core:	Intel	i5	650
RAM	Memory:	6	GB
OS:	WIN	8.1	Pro	64	Bits
CPLEX:	Version	12.5.1.0	64	Bits
PYTHON:	Version	2.7	64	Bits
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Fig. 2. Maps	of	study	case	area	presenting	harvest	schedule	generated	by	Simulated	Annealing	(SA)	for	problem	III.	
Stands	in	black	are	harvested	stands	in	the	corresponding	period.	Problem	III	corresponded	to	the	maximization	of	net	
returns	using	even-flow	of	harvest	constraints,	ending	volume	inventory	and	carbon	stock	level	constraints	and	adja-
cency constraints.
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3 Results

3.1 Impact on the heuristic solution of the parameters used

The application of heuristic methods involves the testing of convergence and evaluation of 
parameters	(Falcão	and	Borges	2002).	In	order	to	assess	the	impact	on	the	heuristic	solution	of	the	
parameters	used	in	SA	we	solved	the	planning	problems	presented	in	section	2	using	all	combina-
tions of initial temperature, cooling schedule and number of changes per iteration; in total 30 test 
computer	runs	for	each	problem	instance	analyzed	were	performed.

The	quality	of	the	solutions	provided	by	SA	differed	depending	on	the	problem,	instance	
and	parameters	used.	The	SA	was	particularly	sensitive	to	the	number	of	iterations	which	was	
chosen	based	on	several	trial	and	error	runs	of	the	search	process.	Due	to	the	size	of	the	defined	
problem,	it	was	difficult	to	find	a	good	solution	with	a	small	number	of	iterations.	Our	goal	was	to	
obtain	a	solution	within	a	maximum	gap	of	3%	compared	to	the	best	solution	found	by	CPLEX.	
Consequently	the	search	process	encompassed	300000	iterations.	In	fact,	using	a	higher	number	
of	iterations	did	not	show	improvement	and	the	same	solutions	were	obtained.	As	an	example	of	
feasible	solution	we	show	the	harvest	schedule	generated	by	SA	for	periods	1,	10,	20	and	30	(Fig.	2).

3.1.1 Experiment I

Results	show	that	regardless	of	the	problem	solved	(Problems	I,	II	and	III),	the	initial	temperature	
and	cooling	schedule,	when	using	a	high	number	of	treatment	schedules,	one-opt	move	implemen-
tation	of	the	SA	achieved	a	better	solution	than	the	two-opt	and	three-opt	moves	implementations	
(Fig.	3).	In	addition	performing	more	changes	per	iteration	increased	the	solution	time	and	for	
smaller	instances	(100	and	250	stands)	they	were	not	able	to	find	feasible	solutions.	Therefore	to	
show	the	effect	of	initial	temperature	and	cooling	schedule	we	only	present	the	impacts	on	the	SA	
implementation	using	one-opt	move.

Fig. 3. Performance	of	the	different	implementations	of	Simulated	Annealing	(SA)	(one,	two	and	three-opt	moves)	for	
all	problem	formulations	and	for	the	instance	of	1000	stands	for	different	combinations	of	initial	temperature	(2,	7,	12,	
100,	100000)	and	cooling	schedule	(0.8,	0.99996).	The	graph	shows	the	best,	the	average	and	the	worst	solution	for	
each	implementation	problem.	Problem	I	encompassed	the	use	of	even-flow	of	harvest	constraints,	Problem	II	further	
included	the	use	of	ending	volume	inventory	and	carbon	stock	level	constraints.	Problem	III	was	an	extension	of	previ-
ous models and further included adjacency constraints.
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After	a	series	of	experiments	for	different	configuration	of	parameters	on	the	defined	prob-
lems,	the	results	of	the	objective	function	varied	slightly	(about	0.5%)	with	a	small	difference	in	
solution time (see Fig. 4). This indicates that for the problems analyzed the Simulated Annealing 
algorithm	is	robust	and	does	not	require	selecting	some	parameters.	For	this	reason	and	for	further	
evaluation	of	 the	implementation	of	SA	we	analyzed	the	average	objective	value	of	all	results	
performed	for	all	configurations	of	parameters.	To	evaluate	the	computational	time,	we	calculate	
the	average	time	of	all	runs	for	each	problem	defined	in	Section	II.	The	result	showed	that	adding	
adjacency	constraints	increases	the	computational	time	needed	to	find	a	near	optimal	solution	due	
to the inherent complexity of such constraints and the time spent in evaluation procedures. The 
relative	gaps	between	the	best	and	the	average	value	(GAP1)	ranged	between	0.1954	and	0.2313%	
(Table	1).	Further	the	relative	gap	between	the	best	objective	value	found	and	the	worst	value	
achieved	by	SA	(GAP2)	was	0.5%	at	maximum.

Fig. 4. Comparison	of	cooling	scheduling	(0.8	and	0.99996)	and	initial	temperature	(2,	7,	12,	100,	100000)	for	each	
problem	formulation	for	the	instance	1000	stands.	Problem	I	encompassed	the	use	of	even-flow	of	harvest	constraints,	
Problem	II	further	included	the	use	of	ending	volume	inventory	and	carbon	stock	level	constraints.	Problem	III	was	an	
extension of previous models and further included adjacency constraints.
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Table 1. Configuration	of	parameters	(initial	temperature	T0, cooling schedule ζ )	for	the	Instance	of	1000	stands.	Prob-
lem	I	encompassed	the	use	of	even-flow	of	harvest	constraints,	Problem	II	further	included	the	use	of	ending	volume	
inventory	and	carbon	stock	level	constraints.	Problem	III	was	an	extension	of	previous	models	and	further	included	
adjacency constraints.

Model Average
objective

Best  
objective

Worst	 
objective

Average 
time[s]

GAP1	1  
[%]

GAP2	2  
[%]

Best  
parameters

Problem	I 253654092.6 254242073 252974250 11560 0.2313 0.499 T0 = 100000,
ζ = 0.8

Problem	II 254044417.2 254553811 253337282 13913 0.2 0.478 T0 = 100000,
ζ = 0.99996

Problem	III 253998184.9 254495562 253219220 20134 0.1954 0.502 T0 = 100000,
ζ = 0.99996

1 GAP1	refers	to	the	relative	gap	between	the	best	and	the	average	value.
2 GAP2	refers	to	the	relative	gap	between	the	best	objective	value	found	and	the	worst	value	achieved	by	SA.

3.1.2 Experiment II

Opposite	to	experiment	I,	results	show	that	for	the	problem	solved	(Problem	III)	and	regardless	of	
initial	temperature	and	cooling	schedule,	when	selecting	a	small	number	of	treatment	schedules	
available	per	stand	 (up	 to	15)	changing	 the	 treatment	schedule	 in	 two	stands	 in	each	 iteration	
(two-opt	moves)	implementation	of	the	SA	achieved	better	solutions	that	one-	and	three-opt	moves	
(Fig. 5).

Fig. 5. Performance	of	 the	different	 implementations	of	Simulated	Annealing	(SA)	(one,	 two	and	three-opt	moves)	
for	problem	formulation	III	and	for	the	instance	of	1000	stands	for	different	combinations	of	initial	temperature	and	
cooling	schedule.	Problem	III	corresponded	to	the	maximization	of	net	returns	using	even-flow	of	harvest	constraints,	
ending	volume	inventory	and	carbon	stock	level	constraints	and	adjacency	constraints.
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3.2 Comparison of experimental results achieved by SA and CPLEX

Results	showed	that	problem	instances	of	smaller	size	and	with	lower	number	of	constraints	for	
experiment	I	were	easily	resolved	under	the	exact	optimization	methods,	while	for	the	large	and	very	
constrained problems SA algorithm implementation performed better than exact methods in terms 
of	computational	time	(Table	2).	In	fact,	for	instances	between	250	and	1000	stands	for	problems	
I	and	II,	CPLEX	performed	better	than	SA.	For	example,	for	the	250	and	500	stands	instances	
for	both	problems	I	and	II,	CPLEX	found	the	optimum	less	than	9	minutes,	while	SA	procedure	
needed	300000	iterations	(around	30	minutes)	to	find	a	solution	within	a	satisfying	gap	(Table	2).

It	is	also	important	to	note	that	although	the	instance	size	tended	to	increase	the	solution	
time	involved,	the	smallest	instance	(i.e.	using	only	100	stands)	was	extremely	time	consuming	
in	CPLEX.	Although	this	instance	can	be	considered	as	a	small	problem,	it	was	a	combinatorial	
problem very hard to solve due to the limited possibility of feasible combinations to meet the 
demand	and	flow	constraints	compared	to	instances	that	had	a	larger	number	of	stands.	Although	
SA	overcomes	this	problem	and	finds	solution	in	reasonable	time,	the	result	were	disappointing	
due	to	a	big	relative	gap	compared	to	the	optimal	solution	found	in	CPLEX.

Adding	adjacency	constraints	to	all	instances	(Problem	III)	increased	significantly	solution	
time	in	both	CPLEX	and	SA	regardless	of	the	instances	analyzed.	These	constraints	increased	the	
complexity	of	the	problem	and	the	differences	between	CPLEX	and	SA.	The	results	show	that	
SA	obtains	satisfying	solutions	in	much	shorter	computing	time	than	CPLEX.	Moreover,	CPLEX	
could not handle the adjacency constraints in large instances (e.g. instance of 1000 stands) and 
got	out	of	memory.	Defining	adjacency	constraints	as	lazy	constraints	in	CPLEX	did	not	show	any	
improvement	and	in	the	large	instances	the	solution	was	not	found	either.	Further,	the	solutions	
obtained	SA	were	satisfactory	near-optimal	with	a	very	reasonable	computation	time.

Table 2. Comparison	of	performance	of	exact	(CPLEX)	and	heuristic	(Simulated	Annealing	(SA))	methods.

Stands Problem CPLEX SA Statistics
Best

objective
Time[s] Gap[%]3 Best

objective
Average
time[s]

Saved
time[%]

Relative
gap[%]4

100 I 19385252 6591 3.78 18208598 784 88 6.07
100 II 18787533 24348 6.93 18247907 1039 96 2.87
100 III 19987548 32813 0.51 18244260 1523 95 8.72
250 I 49576379 80 0.85 47641286 2248 –2710 3.90
250 II 49705423 148 0.58 47762817 2775 –1775 3.91
250 III 49535258 10890 0.92 47787089 4212 61 3.53
500 I 110140532 405 0.14 107751035 4967 –1126 2.17
500 II 109921875 523 0.33 107789228 6416 –1127 1.94
500 III 110059776 13460 0.20 107729193 9448 30 2.12
1000 I 261614671 8459 0.01 254242073 11560 –37 2.82
1000 II 261604515 34076 0.01 254553811 13913 59 2.70
1000 III - - - 254495562 20134 n.a. n.a.

3	The	column	“Gap”	refers	to	the	default	gap	calculation	in	CPLEX	and	stands	for	the	relative	difference	between	the	highest	
objective	value	and	the	lowest	upper	bound	that	is	found	during	optimization	process	[%].
4	The	column	“Relative	gap”	refers	to	the	relative	percentage	difference	between	the	CPLEX	and	SA	solutions.
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4 Discussion and conclusion

In	this	paper	we	compared	the	performance	of	different	implementations	of	a	well-known	heuristic	
technique	(i.e.	Simulated	Annealing)	when	applied	to	a	harvest	scheduling	problem.	Similarly	to	
the	work	presented	by	Garcia-Gonzalo	et	al.	(2012)	we	implemented	SA	with	up	to	three	decision	
choice	moves	 (one	 to	 three-opt	moves).	However,	 in	addition	 to	using	 the	 forest	management	
problem	including	even-flow	of	harvests	constraints	we	added	adjacency	constraints	and	a	large	
number	of	candidate	management	schedules	which	largely	complicates	the	combinatorial	prob-
lem.	Further,	as	the	values	of	heuristic	parameters	are	problem-specific	(Borges	et	al.	2002)	this	
research	was	influential	to	assess	the	best	approach	to	implement	SA	over	a	wider	range	of	forest	
planning problems.

Different	instances	of	each	problem	were	solved	to	analyze	the	impact	of	the	size	of	the	
problem	in	the	solution	techniques.	We	further	analyze	the	quality	of	outcomes	by	comparing	SA	
solutions	with	the	exact	method	performed	in	CPLEX.	The	decision	variables	used	in	this	article	
were	which	treatment	schedule	to	apply	in	each	stand.	Each	treatment	schedule	consisted	of	a	
calendar	of	operations	to	be	applied	in	the	stand	during	the	whole	planning	horizon.	Since	we	
wanted	to	track	not	only	the	amount	of	resource	produced	by	stands	over	the	planning	horizon	but	
also	the	spatial	distribution	of	stand	treatment	programs	we	needed	to	ensure	the	integrity	of	the	
stands (i.e. stands cannot be divided). This means that a very large volume of information needed 
to	be	processed	and	tracked	and	that	the	size	of	the	combinatorial	problem	became	very	large	(Bet-
tinger	et	al.	1999;	Weintraub	and	Murray	2006).	In	order	to	check	the	sensitivity	of	the	optimal	
number	of	decision	choice	moves	to	the	number	of	treatment	schedules	available	we	performed	
two	experiments:	i)	a	large	planning	problem	using	a	large	set	of	treatment	schedules	available	for	
each	stand	(i.e.	up	to	278)	and	ii)	a	smaller	planning	problem	using	reduced	number	of	treatment	
schedules (i.e. up to 15).

For	 the	 problems	 under	 study,	 the	 instances	 of	 smaller	 size	 and	with	 lower	 number	 of	
constraints	were	easily	solved	using	exact	optimization	methods,	while	for	the	instances	with	big	
problems and/or very complex to solve SA algorithm performed better than the exact method. 
In	fact	for	large	problems	with	spatial	concerns	and/or	with	extremely	high	number	of	decision	
choices	the	commercial	MIP	solver	consumed	much	larger	computational	time	than	SA	or	it	was	
unable	to	solve	them.	Thus,	for	these	large	and	constrained	ARM	problems	we	propose	the	use	of	
an	advanced	heuristic	technique	instead	of	exact	method.	This	pattern	has	been	already	stated	by	
other	authors	(e.g.	Zhu	et	al.	2007)	who	affirmed	that	for	ARM	problems	and	depending	on	the	
size of the instance the resulting solution solving process can easily consume the memory of a 
computer	or	the	software	used	concluding	that	in	these	cases	relying	on	exact	optimization	methods	
as a solution approach may not be the best option.

In	our	results,	when	analyzing	what	is	the	optimal	number	of	changes	(from	one-opt	to	three-
opt	moves),	the	results	were	sensitive	to	the	number	of	treatment	schedules	available.	For	a	very	
large	number	of	choices	available	one-opt	move	implementation	was	better	than	two	or	three-opt	
moves for any combination of initial temperature and cooling schedule. This is contrary to other 
results	found	by	other	authors	(Bettinger	et	al.	1999;	Heinonen	and	Pukkala	2004).	However,	they	
used considerably smaller number of alternative treatment schedules per management unit and 
their	problem	had	significantly	less	decision	choices.	In	fact,	in	order	to	test	this	hypothesis	we	
run the same problem instances but reducing the number of possible management schedules to 
15	(experiment	II).	In	this	test	we	also	found	that	two-opt	moves	was	better	than	one-opt	move.	
Additionally	we	also	found	that	three-opt	moves	provided	inferior	solutions	than	two	and	one-opt	
move.	Since	the	use	of	one-opt	move	was	the	best	option	we	tested	if	intensifying	the	search	by	
using	two-opt	moves	every	a	certain	number	of	iterations	would	improve	the	results.	One	test	was	
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to	intensify	the	search	by	using	one	two-opt	moves	every	one	hundred	iterations,	the	second	test	
was	to	use	ten	iterations	with	two-opt	moves	every	hundred	iterations.	None	of	these	tests	improved	
the	solutions	found	by	using	only	one-opt	move.	Thus,	we	conclude	that	for	very	large	problems	
with	a	large	number	of	decision	choices	one-opt	move	is	preferable.

The	parameter	of	initial	temperature	is	related	to	the	number	of	iterations	and	we	have	showed	
that	for	a	very	large	scale	problem	the	search	procedure	requires	a	bigger	number	of	iterations	to	
achieve	better	solution.	The	impact	of	cooling	schedule	parameters	was	negligible.

With	these	results	we	conclude	that	in	Simulated	Annealing	algorithm	the	number	of	pos-
sible	treatment	schedules	available	for	each	stand	has	an	impact	on	the	optimal	configuration	of	
opt-moves	to	use.	When	using	a	large	set	of	treatment	schedules	available	for	each	stand	using	
one-opt	move	is	preferable	than	two-opt	moves	regardless	of	the	size	of	the	forest	(i.e.	instance).	
If	the	number	of	decision	choices	per	management	unit	is	reduced	then	two-opt	moves	are	prefer-
able.	On	the	other	hand,	for	small	problem	formulations	with	small	number	of	decision	choices	
exact	optimization	methods	provide	better	solutions	in	a	reasonable	time.	On	the	contrary	when	
large	and	very	complex	problems	are	to	be	solved	and	when	the	number	of	decision	choices	per	
management	unit	is	large	SA	performs	considerably	better	than	CPLEX.

Acknowledgements

This	research	was	partially	supported	by	the	projects	PTDC/AGR-FOR/4526/2012	Models	and	
Decision	Support	 Systems	 for	Addressing	Risk	 and	Uncertainty	 in	Forest	 Planning	 (SADRI),	
funded	by	the	Portuguese	Foundation	for	Science	and	Technology	(FCT	-	Fundação	para	a	Ciên-
cia	e	a	Tecnologia).	It	has	received	funding	from	the	European	Union’s	Seventh	Programme	for	
research,	 technological	 development	 and	demonstration	under	 grant	 agreements:	 i)	 nr	 282887	
INTEGRAL	(Future-oriented	integrated	management	of	European	forest	landscapes)	and	ii)	nr	
PIRSES-GA-2010-269257	(ForEAdapt,	FP7-PEOPLE-2010-IRSES).

References

Aarts	 E.,	 Lenstra	 J.K.	 (eds.).	 (1997).	 Local	 search	 in	 combinatorial	 optimization.	 Princetwon	
University	Press.	Wiley,	New	York.

Alfa	A.S.,	Heragu	S.S.,	Chen	M.	(1991).	A	3-OPT	based	simulated	annealing	algorithm	for	vehi-
cle	routing	problems.	Computers	&	Industrial	Engineering	21(1–4):	635–639.	http://dx.doi.
org/10.1016/0360-8352(91)90165-3.

Bertomeu	M.,	Romero	C.	(2001).	Managing	forest	biodiversity:	a	zero-one	goal	programming	approach.	
Agricultural	Systems	68(3):	197–213.	http://dx.doi.org/10.1016/S0308-521X(01)00007-5.

Bettinger	P.,	Kim	Y.H.	(2008).	Spatial	optimisation	-	computational	methods.	In:	Gadow	K.,	Pukkala	
T.	(eds.).	Designing	green	landscapes.	Vol.	15	of	the	book	series	Managing	Forest	Ecosystems,	
Springer,	Dordrecht.	p.	107–136.	http://dx.doi.org/10.1007/978-1-4020-6759-4_5.

Bettinger	P.,	Boston	K.,	Sessions	J.	(1999).	Intensifying	a	heuristic	forest	harvest	scheduling	search	
procedure	with	2-opt	decision	choices.	Canadian	Journal	of	Forest	Research	29:	1784–1792.	
http://dx.doi.org/10.1139/x99-160.

Bettinger	P.,	Graetz	D.,	Boston	K.,	Sessions	J.,	Chung	W.	(2002).	Eight	heuristic	planning	tech-
niques	applied	to	three	increasingly	difficult	wildlife	planning	problems.	Silva	Fennica	36(2):	
561–584. http://dx.doi.org/10.14214/sf.545.

Bettinger	P.,	Sessions	J.,	Boston	K.	(2009).	A	review	of	the	status	and	use	of	validation	procedures	

http://dx.doi.org/10.1016/0360-8352(91)90165-3
http://dx.doi.org/10.1016/0360-8352(91)90165-3
http://dx.doi.org/10.1016/S0308-521X(01)00007-5
http://dx.doi.org/10.1007/978-1-4020-6759-4_5
http://dx.doi.org/10.1139/x99-160
http://dx.doi.org/10.14214/sf.545


17

Silva Fennica vol. 49 no. 4 article id 1326 · Bachmatiuk et al. ·Analysis of the performance of different…

for	heuristics	used	in	forest	planning.	Mathematical	and	Computational	Forestry	&	Natural-
Resource	Sciences	(MCFNS)	1(1):	26–37.

Borges	J.G.,	Hoganson	H.M.	(2000).	Structuring	a	landscape	by	forestland	classification	and	harvest	
scheduling	spatial	constraints.	Forest	Ecology	and	Management	130:	269–275.	http://dx.doi.
org/10.1016/S0378-1127(99)00180-2.

Borges	J.G.,	Hoganson	H.M.,	Falcão	A.O.	(2002).	Heuristic	in	multi-objective	forest	planning.	In:	
Pukkala	T.	(ed.).	Multi-objective	forest	planning.	Kluwer	Academic,	Dordrecht.	p.	119–151.	
http://dx.doi.org/10.1007/978-94-015-9906-1_6.

Borges	P.,	Eid	T.,	Bergseng	E.	(2014a).	Applying	simulated	annealing	using	different	methods	
for	the	neighborhood	search	in	forest	planning	problems.	European	Journal	of	Operational	
Research	233(3):	700–710.	http://dx.doi.org/10.1016/j.ejor.2013.08.039.

Borges	P.,	Bergseng	E.,	Eid	T.	(2014b).	Adjacency	constraints	in	forestry	–	a	simulated	annealing	
approach	comparing	different	candidate	solution	generators.	Mathematical	and	Computational	
Forestry	&	Natural-Resource	Sciences	6(1):	11–25.

Constantino	M.,	Martins	I.,	Borges	J.G.	(2008).	A	new	mixed-integer	programming	model	for	
harvest	scheduling	subject	to	maximum	area	restrictions.	Operations	Research	56:	543–551.	
http://dx.doi.org/10.1287/opre.1070.0472.

Falcão	A.O.,	Borges	J.G.	(2002).	Combining	random	and	systematic	search	heuristic	procedures	
for solving spatially constrained forest management scheduling models. Forest Science 48(3): 
608–621.

Falcão	A.O.,	Borges	J.G.	(2005).	Designing	decision	support	tools	for	Mediterranean	forest	eco-
system	management:	a	case	study	in	Portugal.	Annals	of	Forest	Science	62:	751–760.	http://
dx.doi.org/10.1051/forest:2005061.

Garcia-Gonzalo	J.,	Borges	J.G.,	Hilebrand	W.,	Palma	J.H.N.	(2012).	Comparison	of	effectiveness	
of	different	implementations	of	a	heuristic	forest	harvest	scheduling	search	procedure	with	
different number of decision choices simultaneously changed per move. Lectures Notes in 
Management	Science	4:	179–183.

Garcia-Gonzalo	J.,	Borges	J.G.,	Palma	J.H.N.,	Zubizarreta	-	Gerendiain	A.	(2014).	A	decision	sup-
port system for management planning of eucalyptus plantations facing climate change. Annals 
of	Forest	Science	71:	187–199.	http://dx.doi.org/10.1007/s13595-013-0337-1.

Ghaffari-Nasab	N.,	Jabalameli	M.	S,	Saboury	A.	(2013).	Multi-objective	capacitated	location-rout-
ing	problem:	modelling	and	a	simulated	annealing	heuristic.	International	Journal	of	Services	
and	Operations	Management	15(2):	140–156.	http://dx.doi.org/10.1504/IJSOM.2013.053642.

Goycoolea	M.,	Murray	A.T.,	Barahona	F.,	Epstein	R.,	Weintraub	A.	(2005).	Harvest	scheduling	
subject	to	maximum	area	restrictions:	exploring	exact	approaches.	Operations	Research	53(3):	
490–500. http://dx.doi.org/10.1287/opre.1040.0169.

Goycoolea	M.,	Murray	A.T.,	Vielma	J.P.,	Weintraub	A.	(2009).	Evaluating	approaches	for	solving	
the area restriction model in harvest scheduling. Forest Science 55(2): 149–165.

Heinonen	T.,	Pukkala	T.	(2004).	A	comparison	of	one-	and	two-compartment	neighbourhoods	in	
heuristic	search	with	spatial	forest	management	goals.	Silva	Fennica	38(3):	319–332.	http://
dx.doi.org/10.14214/sf.419.

Johnson	K.N.,	Scheurmann	H.L.	(1977).	Techniques	for	prescribing	optimal	timber	harvest	and	
investment	under	different	objectives	-	discussion	and	synthesis.	Forest	Science	Monograph	18.

Kirkpatrick	S.,	Gelatt	C.D.,	Vecchi	M.P.	(1983).	Optimization	by	simulated	annealing.	Science	
220(4598):	671–680.

Lockwood	C.,	Moore	T.	(1993).	Harvest	scheduling	with	spatial	constraints:	a	simulated	annealing	
approach.	Canadian	Journal	of	Forest	Research	23(3):	468–478.	http://dx.doi.org/10.1139/
x93-065.

http://dx.doi.org/10.1016/S0378-1127(99)00180-2
http://dx.doi.org/10.1016/S0378-1127(99)00180-2
http://dx.doi.org/10.1007/978-94-015-9906-1_6
http://dx.doi.org/10.1016/j.ejor.2013.08.039
http://dx.doi.org/10.1287/opre.1070.0472
http://dx.doi.org/10.1051/forest:2005061
http://dx.doi.org/10.1051/forest:2005061
http://dx.doi.org/10.1007/s13595-013-0337-1
http://dx.doi.org/10.1504/IJSOM.2013.053642
http://dx.doi.org/10.1287/opre.1040.0169
http://dx.doi.org/10.14214/sf.419
http://dx.doi.org/10.14214/sf.419
http://dx.doi.org/10.1139/x93-065
http://dx.doi.org/10.1139/x93-065


18

Silva Fennica vol. 49 no. 4 article id 1326 · Bachmatiuk et al. ·Analysis of the performance of different…

McDill	M.E.,	Braze	J.	(2001).	Using	branch	and	bound	algorithm	to	solve	forest	planning	problems	
with	adjacency	constraints.	Forest	Science	47(3):	403–418.

McDill	M.E.,	Rebain	S.A.,	Braze	J.	(2002).	Harvest	scheduling	with	area-based	adjacency	con-
straints. Forest Science 48(4): 631–642.

Metropolis	N.,	Rosenbluth	A.W.,	Rosenbluth	M.N.,	Teller	A.H.,	Teller	E.	(1953).	Equation	of	state	
calculation	by	fast	computing	machines.	Journal	of	Chemical	Physics	21:	1087–1092.	http://
dx.doi.org/10.1063/1.1699114.

Murray	A.T.	(1999).	Spatial	restrictions	in	harvest	scheduling.	Forest	Science	45(1):	45–52.
Murray	A.T.,	Weintraub	A.	(2002).	Scale	and	unit	specification	influences	in	harvest	scheduling	

with	maximum	area	restrictions.	Forest	Science	48(4):	779–789.
Nelson J., Brodie J.B. (1990). Comparison of a random search algorithm and mixed integer program-

ming	for	solving	area-based	forest	plans.	Canadian	Journal	of	Forest	Research	20:	934–942.	
http://dx.doi.org/10.1139/x90-126.

Pham	D.T.,	Karaboga	D.	 (2000).	 Intelligent	 optimisation	 techniques:	 genetic	 algorithms,	 tabu	
search,	simulated	annealing	and	neural	networks.	Springer-Verlag,	London.	302	p.

Pukkala	T.,	Heinonen	T.	(2006).	Optimizing	heuristic	search	in	forest	planning.	Nonlinear	Analy-
sis:	Real	World	Applications	7:	1284–1297.	http://dx.doi.org/10.1016/j.nonrwa.2005.11.011.

Pukkala	T.,	Kurttila	M.	(2005).	Examining	the	performance	of	six	heuristic	optimisation	techniques	
in	different	forest	planning	problems.	Silva	Fennica	39(1):	67–80.	http://dx.doi.org/10.14214/
sf.396.

Reeves	C.R.	(ed.).	(1993).	Modern	heuristic	techniques	for	combinatorial	problems.	John	Wiley	
&	Sons,	Inc.	320	p.

Snyder	S.,	Revelle	C.	(1996).	Temporal	and	spatial	harvesting	of	 irregular	systems	of	parcels.	
Canadian	Journal	of	Forest	Research	26:	1079–1088.	http://dx.doi.org/10.1139/x26-119.

Tóth	S.F.,	McDill	M.E.,	Könnyü	N.,	George	S.	(2013).	Testing	the	use	of	lazy	constraints	in	solv-
ing	area-based	adjacency	formulations	of	harvest	scheduling	models.	Forest	Science	59(2):	
157–176.	http://dx.doi.org/10.5849/forsci.11-040.

Weintraub	A.,	Murray	A.T.	(2006).	Review	of	combinatorial	problems	induced	by	spatial	forest	har-
vesting	planning.	Discrete	Applied	Mathematics	154(5):	867–879.	http://dx.doi.org/10.1016/j.
dam.2005.05.025.

Zhu	J.,	Bettinger	P.,	Li	R.	(2007).	Additional	insight	into	the	performance	of	a	new	heuristic	for	
solving	spatially	constrained	forest	planning	problems.	Silva	Fennica	41(4):	687–698.	http://
dx.doi.org/10.14214/sf.276.

Total of 37 references

http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1139/x90-126
http://dx.doi.org/10.1016/j.nonrwa.2005.11.011
http://dx.doi.org/10.14214/sf.396
http://dx.doi.org/10.14214/sf.396
http://dx.doi.org/10.1139/x26-119
http://dx.doi.org/10.5849/forsci.11-040
http://dx.doi.org/10.1016/j.dam.2005.05.025
http://dx.doi.org/10.1016/j.dam.2005.05.025
http://dx.doi.org/10.14214/sf.276
http://dx.doi.org/10.14214/sf.276

	Analysis of the performance of different implementations of a heuristic method to optimize forest harvest scheduling
	1	Introduction
	2	Material and methods
	2.1	Problem formulation
	2.2	Methods
	2.2.1	Simulated Annealing
	2.2.2	Experimental Design


	3	Results
	3.1	Impact on the heuristic solution of the parameters used
	3.1.1	Experiment I
	3.1.2	Experiment II

	3.2	Comparison of experimental results achieved by SA and CPLEX

	4	Discussion and conclusion
	Acknowledgements
	References

