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Highlights
•	 We developed and tested a method to monitor insect induced defoliation in forests based on 

coarse-resolution satellite data (MODIS).
•	 MODIS data may fail to detect defoliation in fragmented landscapes, especially if defoliation 

history is long. More homogenous forests results in higher detection accuracies.
•	 The method may be applied to future coarse and medium-resolution satellite data with high 

temporal resolution.

Abstract
We investigated if coarse-resolution satellite data from the MODIS sensor can be used for 
regional monitoring of insect disturbances in Fennoscandia. A damage detection method based on 
z-scores of seasonal maximums of the 2-band Enhanced Vegetation Index (EVI2) was developed. 
Time-series smoothing was applied and Receiver Operating Characteristics graphs were used for 
optimisation. The method was developed in fragmented and heavily managed forests in eastern 
Finland dominated by Scots pine (Pinus sylvestris L.) (pinaceae) and with defoliation of European 
pine	sawfly	(Neodiprion sertifer	Geoffr.)	(Hymenoptera:	Diprionidae)	and	common	pine	sawfly	
(Diprion pini L.) (Hymenoptera: Diprionidae). The method was also applied to subalpine mountain 
birch (Betula pubescens ssp. Czerepanovii N.I. Orlova) forests in northern Sweden, infested by 
autumnal moth (Epirrita autumnata Borkhausen) and winter moth (Operophtera brumata L.). 
In Finland, detection accuracies were fairly low with 50% of the damaged stands detected, and 
a	misclassification	of	healthy	stands	of	22%.	In	areas	with	long	outbreak	histories	the	method	
resulted	in	extensive	misclassification.	In	northern	Sweden	accuracies	were	higher,	with	75%	of	
the	damage	detected	and	a	misclassification	of	healthy	samples	of	19%.	Our	results	indicate	that	
MODIS data may fail to detect damage in fragmented forests, particularly when the damage history 
is long. Therefore, regional studies based on these data may underestimate defoliation. However, 
the method yielded accurate results in homogeneous forest ecosystems and when long-enough 
periods	without	damage	could	be	identified.	Furthermore,	the	method	is	likely	to	be	useful	for	
insect disturbance detection using future medium-resolution data, e.g. from Sentinel-2.
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1 Introduction

Insect outbreaks can result in altered structure and functioning of forest ecosystems, as well as 
influence	 tree	 species	 composition	 and	 forest	 succession	 (Linke	 et	 al.	 2007;	Dix	 et	 al.	 2009).	
Severe	defoliation	by	insects	can	influence	carbon	dynamics	with	a	reduced	uptake	of	carbon	due	
to reductions of photosynthesis (Kurz et al. 2008; Jepsen et al. 2009; Heliasz et al. 2011), which in 
turn can lead to reduced growth and economic losses. For example, in Finland the estimated aver-
age	annual	economic	loss	of	a	single	year	of	defoliation	by	the	European	pine	sawfly	(Neodiprion 
sertifer Geoffr.) (Hymenoptera: Diprionidae) can reach up to $40·ha–1, and by the common pine 
sawfly	(Diprion pini L.) (Hymenoptera: Diprionidae) up to $310·ha–1 (Lyytikäinen-Saarenmaa and 
Tomppo 2002). As a consequence of climate change, insect outbreaks are predicted to become more 
frequent (Björkman et al. 2011; Netherer and Schopf 2012). Insect populations may experience 
increased survival, development, reproduction, and dispersal rates due to increasing temperatures 
(Logan et al. 2003; Lindner et al. 2010). A number of forest insects have already begun to expand 
their	normal	ranges	of	distribution	(Vanhanen	et	al.	2007;	Jepsen	et	al.	2008;	Hlásny	et	al.	2011),	
or change their status into disturbance agents within their original distributions (De Somviele et 
al.	2007).	Hence,	mapping	and	monitoring	of	insect	outbreaks	is	a	highly	important	topic	that	calls	
for	development	of	cost-efficient	technologies,	such	as	satellite	based	remote	sensing	applications	
(Lyytikäinen-Saarenmaa et al. 2008; Kantola et al. 2010).

Remote	 sensing	provides	a	vast	 array	of	 efficient	 tools	 for	 forest	disturbance	detection,	
including mapping of insect induced defoliation; see reviews in (Wulder et al. 2006; Adelabu et 
al. 2012; Rullan et al. 2013). Besides the use of aerial photography or data from meter-resolution 
satellites, which may be unavailable or very expensive, several remote sensing applications for 
insect damage detection have been developed based on medium spatial resolution (10−30 m) 
satellite data: Landsat Thematic Mapper (TM) images have been used in mapping damage by the 
mountain pine beetle (Dendroctonus ponderosae Hopkins) (Franklin et al. 2003; Skakun et al. 
2003;	Goodwin	et	al.	2008;	Coops	et	al.	2010),	and	the	common	pine	sawfly	(Ilvesniemi	2009).	
Système Pour l’Observation de la Terre (SPOT) data have been used to map Hungarian spruce 
scale (Physokermes inopinatus	Danzig	and	Kozfir)	damage	(Olsson	et	al.	2012).	Remote	sens-
ing data at medium-resolution has been provided for large areas by the opening of the Landsat 
archive (Wulder et al. 2012), and methods to map different forest disturbance types from this long 
data record have been successfully developed (Cohen et al. 2010; Kennedy et al. 2010; Meigs et 
al. 2011; Zhu et al. 2012). Based on Landsat, annual global forest cover change maps have been 
created (Townshend et al. 2012; Hansen et al. 2013). However, medium spatial resolution sensors 
have low temporal resolution (e.g. 16 days revisit time for Landsat). This long interval between 
images is a limitation for insect defoliation monitoring in many areas since many insects only 
have a short period when an outbreak is detectable (Rullan-Silva et al. 2013), and cloudy condi-
tions may result in a situation with no available medium-resolution images during an outbreak. 
This precludes the use of some of the otherwise successful general forest disturbance monitoring 
methods (e.g. Kennedy et al. 2010) for detecting insect defoliation. To reduce the problems with 
clouds, pixel-wise time-series have been created to detect general forest disturbances (Zhu et al. 
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2012)	and	to	create	phenological	profiles	(Melaas	et	al.	2013).	However,	in	Fennoscandia	it	is	not	
uncommon to have few or even no cloud-free Landsat scenes during an entire growing season. For 
example, for one of the insect outbreaks included in this study there were only small fractions of 
the disturbed areas visible in Landsat images during the outbreak. These conditions limits the use 
of currently available medium-resolution data for insect disturbance monitoring

To achieve daily temporal resolution, the only current data source for large-area monitoring 
of forest disturbances is low spatial resolution (250−1000 m) satellite data. In general, these data 
are freely available with global cover. Several low spatial resolution sensor systems have been used 
in insect disturbance monitoring; for example, data from the National Oceanic and Atmospheric 
Administration (NOAA) Advanced Very High Resolution Radiometer (AVHRR), the Moderate 
Resolution Imaging Spectroradiometer (MODIS), and SPOT VEGETATION were utilized by 
Kharuk	et	 al.	 (2004,	2007,	2009)	 to	monitor	damage	by	 the	Siberian	 silk	moth	 (Dendrolimus 
superans sibiricus Tschetverikov) in Siberia. MODIS data have also been used to detect defoliation 
by the European gypsy moth (Lymantria dispar L.) (de Beurs and Townsend 2008; Spruce et al. 
2011) in North America, and SPOT VEGETATION and NOAA AVHRR data were used by Fraser 
et al. (2005) to monitor changes in forest cover at continental scale. The high acquiring frequency 
(daily) of MODIS has been utilized in several studies to perform time-series analysis to detect 
insect disturbance: Jepsen et al. (2009) performed a time-series analysis with MODIS Normal-
ized Difference Vegetation Index (NDVI) to monitor outbreaks of the autumnal moth (Epirrita 
autumnata Borkhausen) and the winter moth (Operophtera brumata L.) in mountain birch (Betula 
pubescens ssp. Czerepanovii N.I. Orlova) forests in northern Fennoscandia; Eklundh et al. (2009) 
successfully	mapped	defoliation	by	the	European	pine	sawfly	in	southeastern	Norway;	and	Anees	
and Aryal (2014) developed methods based on MODIS data for near real-time detection of bark 
beetle infestations on pine forest in North America. Insect disturbances have also been included as 
a class in general forest disturbance monitoring methods based on MODIS data (Sulla-Menashe 
et al. 2014). These studies provide evidence of the general potential of low spatial resolution data 
with high temporal resolution for mapping of insect defoliation. With a number of new coarse-
resolution satellite system being launched (e.g. the American Joint Polar Satellite System (JPSS) 
Visible Infrared Imaging Radiometer (VIIRS) (JPSS 2015) and the European Sentinel-3 Ocean 
and Land Color Instrument (OLCI) (ESA 2015b)) the provision of global data with a historical 
continuity with MODIS is ensured for several years to come. It is important to establish if this type 
of remote sensing data is useful for general insect damage monitoring in forests.

It can be noted that several of the cited MODIS-based studies have been conducted in large 
homogenous	forest	areas,	and	it	is	questionable	if	the	spatial	resolution	of	MODIS	is	sufficient	for	
monitoring	also	of	fragmented	and	intensively	managed	forests.	The	difficulty	in	these	areas	is	
further aggravated by the low spatial precision for the 250  m resolution MODIS data due to grid-
ding	artefacts	(Tan	et	al.	2006).	Furthermore,	the	reflectance	of	a	single	MODIS	pixel	is	recorded	
over an area on the ground that may be considerably larger than the nominal size of the pixel, 
and varying with the viewing angle (Townshend et al. 2000). It is also not clear how generally 
applicable the developed MODIS based disturbance detection methods are, as many studies are 
tailored	for	specific	 insects	and	outbreak	events.	 It	 is	 therefore	 likely	 that	mapping	accuracies	
strongly depend on spatial scale, pattern and intensity of an attack, as well as the data used. To 
investigate the possibility to use data at MODIS spatial resolution for general insect defoliation 
monitoring in Fennoscandian forests with different levels of fragmentation we selected three study 
areas with known insect defoliation and with different characters: two managed and fragmented 
forests in eastern Finland that mostly consist of pure Scots pine (Pinus sylvestris L.) (pinaceae) 
stands, and with different insect outbreak histories; and one unmanaged deciduous birch forest 
in northern Sweden of patchy and rather sparse character. Even with the highest available spatial 
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resolution for MODIS (250 m) this inevitably leads to mixed pixels and challenging conditions 
for detecting defoliation.

Our overall study aim was to analyse the potential to use time-series methodology applied 
to high temporal resolution remotely sensed data for insect disturbance monitoring in fragmented 
forest landscapes in Fennoscandia. This will demonstrate the accuracy of regional or global dis-
turbance monitoring methods based on current and future coarse-resolution sensor data in Fen-
noscandian forest landscapes, and also indicate the potential of future high temporal resolution 
medium	spatial	resolution	data,	e.g.	Sentinel-2.	Two	specific	study	objectives	were	defined:	(1)	to	
develop and apply a general forest defoliation detection method based on MODIS data, and (2) 
to test the accuracy and discuss the limitations of these data in different forest landscapes with 
different defoliators, levels of fragmentation and outbreak histories.

2 Materials and methods

2.1 Study areas

2.1.1 Eastern Finland

The study areas in eastern Finland were selected due to well documented insect outbreaks with avail-
able time-series of defoliation data. They are located in the municipalities of Ilomantsi (62°53´N, 
30°54´E)	and	Outokumpu	(62°46´N,	28°57´E)	(Fig.	1).	The	growing	season	is	around	160	days,	and	
the annual mean temperature (1950–2013) is 3.3 °C. January and February are the coldest months 
with mean temperatures of –10.2 °C, and July is the warmest month with a mean temperature of 
16.5 °C (data derived from the E-OBS dataset; Haylock et al. 2008). These landscapes are generally 
flat	and	mostly	covered	by	managed	forests	dominated	by	Scots	pine.	The	main	forest	site	types	in	
both areas are poor and dry heath of Calluna type, quite poor and dryish heath of Vaccinium type, 
and medium fertile fresh heath of Myrtillus type (Cajander 1926). Landscapes in both areas are 
fragmented with heavily managed forests; the average size of a forest stand in both study areas is 
between 1 and 3 ha, which means that MODIS pixels are likely to contain fractions of different 
forest stands, clear cut areas, water, etc.

Outbreak	frequencies,	as	well	as	spatial	and	temporal	scales	of	outbreaks	by	pine	sawflies	
have	experienced	changes	during	the	recent	decades	in	Finland	(De	Somviele	et	al.	2007;	Talvitie	et	
al.	2011).	In	Ilomantsi,	the	first	symptoms	of	a	common	pine	sawfly	outbreak	were	visible	already	
in 1999. The outbreak has resulted in notable damage including tree mortality within an area of 
approximately 10 000–15 000 ha. Ilomantsi was the eastern edge of a 500 000 ha wide outbreak, 
the	largest	outbreak	in	the	Finnish	forest	health	records	(De	Somviele	et	al.	2007).	Until	present,	
population density and defoliation intensity, as well as the spatial extent of the damage have been 
fluctuating.	In	Outokumpu,	the	outbreak	history	is	shorter.	A	progradation	phase	of	the	European	
pine	sawfly	populations	started	in	2008	within	an	area	of	approximately	50	000	ha.	Population	
densities reached the peak in 2011 and started to collapse into a postgradation phase.

2.1.2 Northern Sweden

Abisko (68°21´N, 18°48´E) (Fig. 1) is located in the subalpine zone in northern Sweden. The 
area is mainly covered by unmanaged mountain birch forests, mires and heath vegetation with 
dwarf shrubs, grasses and lichens (Wielgolaski 2001). Birch forests in the area are infested by the 
autumnal moth and the winter moth in time intervals of 9−10 years, resulting in severe defoliation 
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(Bylund	1995;	Tenow	et	al.	2007).	The	latest	outbreaks	occurred	in	2004	(Heliasz	et	al.	2011)	
and 2012−2013 (Bengt Landström, County administrative board of Norrbotten, pers. comm. 
31.10.2013). These outbreaks may have substantial impact on the birch forests and result in long 
periods of recovery or mortality (Tenow 1996). The mean annual temperature has been around 0 °C 
during the last century (Callaghan et al. 2010) with January and February as the coldest months 
with	a	mean	temperature	of	–10.7	°C,	and	July	the	warmest	month	with	a	mean	of	11.7	°C.	The	
growing season is around 140 days (monthly means and length of growing season derived from 
climate	data	from	Abisko	Scientific	Research	Station	2015).	Increasing	temperatures	since	2000	
have resulted in mean annual temperatures above 0 °C (Callaghan et al. 2010). Warmer tempera-
tures, especially a lower frequency of years with extremely cold winters (Callaghan et al. 2010) 
strongly	influence	birch	moth	populations	(Babst	et	al.	2010).	The	autumnal	moth	has	a	mortality	
threshold of –36 °C (Tenow and Nilssen, 1990) and the winter moth is slightly more sensitive to 
low temperatures (Jepsen et al. 2008).

Fig. 1. The two study areas in Outokumpu and Ilomantsi, eastern Finland, and the Abisko study area, northern Sweden. 
Reference system: WGS84.
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2.2 Data

2.2.1 Defoliation assessment data

Eastern Finland
In	 Ilomantsi,	 the	first	permanent	plots	 for	monitoring	 the	common	pine	 sawfly	outbreak	were	
established	in	2002.	In	Outokumpu,	the	first	permanent	plots	for	monitoring	the	European	pine	
sawfly	outbreak	were	established	in	2009.	When	sampling	these	areas,	centers	of	sampling	plots	
(radius 8−13 m) were located with a Trimble Pro XH GPS devise (Trimble Navigation Ltd., Sun-
nyvale, CA, USA). Tree-wise defoliation intensity was assessed annually following a method by 
Eichhorn (1998): The foliage of each individual tree was observed from different directions, and 
the	defoliation	level	was	assessed	as	the	tree	specific	loss	of	foliage	in	comparison	with	a	healthy	
tree with full foliage, growing on the same site type and canopy cover layer. The plot-wise mean 
defoliation levels were calculated as the average defoliation of the trees from the two upper canopy 
cover layers (for further information on defoliation assessment, see Kantola et al. 2010).

In addition to the permanent plots, a defoliation assessment over a larger area was per-
formed at stand level in June 2010. The mean defoliation for each forest stand was visually 
estimated	 and	 classified	 into	 two	 classes:	 healthy	 (<	20%	of	mean	 defoliation)	 and	 defoliated	
(≥	20%	of	mean	defoliation).	This	dataset	was	used	for	evaluation	and	is	referred	to	as	the	evalu-
ation	data.	The	assessment	included	87	Scots	pine	stands	in	Ilomantsi;	65	of	these	stands	were	
healthy and 22 defoliated. In Outokumpu the assessment included 43 stands with 35 damaged 
and 8 healthy stands.

Northern Sweden
In	Abisko,	the	field	sampling	was	performed	with	the	sole	purpose	to	collect	field	data	of	defolia-
tion for this study, and was hence performed with a different method compared to that in Finland. 
The	method	was	specifically	developed	 to	efficiently	map	 the	extensive	outbreak	of	autumnal	
moth	in	2013,	and	the	field	sampling	was	performed	during	the	last	week	of	June	that	year.	Since	
MODIS data were utilized in the study, defoliation assessments were performed over sampling 
units covering the nominal extent of one MODIS pixel with 250 m spatial resolution. A grid 
representing the nominal pixels was created and transformed from MODIS sinusoidal projection 
(LPDAAC 2012d) to the Swedish projection SWEREF99 TM. The sampling units were selected 
with the aim to obtain a large spatial coverage with even spatial distribution, and were located 
in	the	field	with	the	aid	of	a	Pocket	LOOX	N520	PDA	(Fujitsu	Siemens	Computers,	Darmstadt,	
Germany) with built-in GPS and 1-m spatial resolution orthophotos. For each sampling unit, 
the level of defoliation was assessed visually. For units with evenly distributed defoliation and 
high visibility, the assessment was performed along two sides and one diagonal of the MODIS 
pixel; the sides were chosen so that all four corners of a pixel were visited. For sampling units 
with unevenly distributed defoliation intensity or poor visibility, the assessment was performed 
along	both	diagonals	 and	 all	 sides.	Due	 to	 the	difficulty	 to	 assess	 the	defoliation	degree	with	
high accuracy over an entire MODIS pixel only two classes were used in this study: (1) pixels 
with	defoliation	of	at	least	50%,	and	(2)	pixels	with	less	than	50%	defoliation.	A	classification	
into	these	two	categories	was	generally	not	difficult	to	perform	since	the	birch	trees	were	either	
heavily defoliated or nearly healthy within a majority of the sampling units. The two classes were 
labelled as “healthy” and “defoliated” since most sampling units with less than 50% of defolia-
tion were only mildly defoliated. A total of 80 sampling units (250 m × 250 m) were assessed, 
yielding 48 damaged and 32 healthy units.
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2.2.2 Satellite data

Two Terra/MODIS satellite sensor data products were utilized in this study: (1) MOD09Q1 (ver. 
5),	 surface	 reflectance	 in	 the	 red	 and	 near	 infrared	 (NIR)	 bands	 in	 8-day	 periods	with	 250	m	
spatial	 resolution	 (LPDAAC	2012a)	 and	 (2)	MOD09A1	 (ver.	 5),	 surface	 reflectance	 in	 8-day	
periods with 500 m spatial resolution (LPDAAC 2012b); these data were used solely for quality 
assurance (QA) information. It has been suggested that data from the MODIS sensor on board 
the Aqua satellite should be preferred to data from the Terra/MODIS sensor due to the sensor 
degeneration	mainly	influencing	Terra/MODIS	(Wang	et	al.	2012).	The	sensor	drift	is	however	
small,	mainly	influencing	detection	of	subtle	trends.	Nevertheless,	as	a	cautious	approach	we	plot-
ted time-series of MODIS Terra and MODIS Aqua 16-day NDVI (LPDAAC 2012c) and made a 
visual comparison, but no obvious difference was indicated. Hence, we did not consider the drift 
to be a limitation to our study.

2.3 Method development

Four general steps were taken to develop the method to be applied in both study areas: (1) red and 
near	infrared	(NIR)	reflectances	were	extracted	from	the	MOD09Q1	data,	and	vegetation	indices	
were computed; (2) time-series were created from these vegetation indices and processed with 
the	TIMESAT	software	(Jönsson	and	Eklundh	2002,	2004)	to	find	a	metric	to	represent	the	forests	
health condition for a season; (3) mean and standard deviation during healthy conditions were 
estimated	for	this	metric;	and	(4)	the	MODIS	pixels	were	classified	into	damaged	or	healthy	based	
on z-scores of the metric. Details are given below.

2.3.1 Vegetation indices

Due to the level of landscape fragmentation, only MODIS data with the highest spatial resolution 
(250 m) were used. This precludes the use of other spectral bands than red and NIR. In this study, 
we tested NDVI, the Enhanced Vegetation Index (EVI), the 2-band Enhanced Vegetation Index 
(EVI2)	 and	 the	Wide	Dynamic	Range	Vegetation	 Index	 (WDRVI).	NDVI	 (Rouse	et	 al.	 1973;	
Tucker	1979)	has	been	widely	used	in	ecological	studies.	However,	a	limitation	is	that	NDVI	can	
reach	saturation	in	high	biomass	regions,	such	as	forested	areas	(Huete	et	al.	1997).	Huete	et	al.	
(2002) developed EVI, which includes blue, red and NIR wavelength bands, to enhance the signal 
from vegetation in high biomass regions. Jiang et al. (2008) developed EVI2 as a two-band ver-
sion	of	EVI,	utilizing	red	and	NIR	bands,	and	showed	that	there	were	no	significant	differences	
between EVI and EVI2. WDRVI is a similar vegetation index, based on red and NIR spectral 
bands that also was developed to improve the sensitivity in high biomass regions (Gitelson 2004). 
WDRVI has been used to detect Scots pine defoliation by insects, with similar results as NDVI 
(Eklundh et al. 2009). Initial tests between defoliation data and vegetation indices indicated that 
damage could not be detected with EVI (LPDAAC 2012c) or WDRVI with high accuracy in 
the study area. Hence, only NDVI and EVI2 were studied further. These indices were computed 
according to Eqs. 1 and 2.

NDVI NIR red NIR red (1)( ) ( )= − +

EVI NIR red NIR red2 2.5 2.4 1 (2)( )( )= − + +∗ ∗



8

Silva Fennica vol. 50 no. 2 article id 1495 · Olsson et al. · Development of a method for monitoring of insect…

2.3.2 Time-series creation and TIMESAT processing

Time-series of NDVI and EVI2 with a temporal resolution of eight days were generated for the 
years 2001−2011 and processed with TIMESAT ver. 3.2. (Jönsson and Eklundh 2002, 2004). In 
TIMESAT,	noise	 is	reduced	by	fitting	smooth	functions	 to	 time-series	of	data,	and	seasonality	
parameters, such as start and end of a growing season, are extracted. In this study, the seasonality 
parameter	giving	the	maximum	value	of	the	fitted	function	during	a	season,	from	here	on	called	
“season max”, was used as a metric for the forest condition of a season (Fig. 2). An advantage of 
season max compared to methods based on single data points or averages over short periods, is 
that season max is based on weighted data from the entire growing season; hence, it is relatively 
insensitive to noise and outliers.

Weights	were	assigned	to	each	data	value	in	TIMESAT	to	suppress	the	influence	of	data	
with	 poor	 quality	 on	 the	 fitted	 functions	 (see	 Fig.	 2,	where	 the	 size	 of	 circles	 represents	 the	
MODIS data quality). Pixels with the highest quality were assigned a weight of 1.0, moderate 
quality a weight of 0.8, and poor quality a weight of 0.1, where the quality is an overall indicator 
of	data	reliability	based	on	quality	assurance	(QA)	flags	from	both	MOD09Q1	and	MOD09A1.	
The reason for including MOD09A1 is that these quality data are more comprehensive, including 
e.g.	 solar	zenith	angle.	Pixels	were	assigned	 the	highest	quality	only	 if	all	QA	flags	 indicated	
no disturbance and the solar zenith angle was low. The quality was downgraded to moderate if 
the cloud status was mixed, the solar zenith angle was higher than 82°, or if any of the other 
QA	flags	indicated	disturbance.	Pixels	were	considered	to	be	of	poor	quality	if	disturbance	was	
indicated	 in	 the	QA	flags	or	 the	 solar	 zenith	angle	was	higher	 than	86°.	Pixels	with	no	cloud	
status set, but “assumed clear”, according to Vermote et al. (2011), were downgraded to medium 
quality.

Potential outliers were removed with the median method available in TIMESAT (Jönsson 
and	Eklundh	2002,	2004),	and	no	adaptation	to	an	upper	envelope	was	performed.	All	three	fitting	
functions	available	in	TIMESAT	ver.	3.2	were	tested	to	derive	season	max:	Savitzky-Golay	filter-
ing, asymmetric Gaussian and double logistic functions. Gaussian and logistic functions result in 
smooth	curves	and	have	the	advantage	of	only	few	parameters	to	be	set.	Savitzky-Golay	filtering,	
on	the	other	hand,	has	the	advantage	that	the	fitted	function	follows	the	vegetation	index	data	more	
closely, and hence, might be better for detecting smaller deviations. However, with a larger number 
of	parameters	Savitzky-Golay	filtering	requires	more	work	to	be	fine-tuned.	In	areas	with	different	
seasonal trajectories the method requires slightly different settings, making the method less general.

2.3.3 Statistical decision criteria

In order to make the method more general and less reliant on absolute thresholds for damage 
detection we based our analyses on z-scores. A z-score is the number of standard deviations a data 
value deviates from the mean value of a dataset, thereby taking the natural variability of a pixel 
into account. Hence, a deviation in a dataset with large variance will result in a lower z-score, 
compared to the same absolute deviation in a dataset with low variance. Z-scores have proven 
valuable in similar types of analyses, e.g. drought monitoring (Peters et al. 2002).

The mean and standard deviation of season max had to be estimated for each pixel at healthy 
conditions (no disturbance) before z-scores were computed. In this study we use the term “reference 
condition” to represent healthy conditions. The reference condition is unique for each pixel and 
defined	as	the	mean	and	standard	deviation	of	season	max	for	years	with	no	or	little	disturbance.	
We assumed that high vegetation index values represent healthy conditions. Hence, the reference 
condition for a pixel is computed as follows: (1) identify the n years with highest season max, 
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where n is the number of years that gives the highest detection accuracy; and (2) estimate mean 
and standard deviation for season max based on these n years.

We began the method development with the data from Finland. Although the Ilomantsi area 
had	the	longest	time-series	of	defoliation	assessment	available,	a	difficulty	was	that	the	duration	of	
the insect outbreak was as long as the entire time-series of MODIS data. In addition, the outbreak 
has led to forestry activities, such as salvage cutting, around some defoliation assessment plots. 
Hence, the number of years without disturbance in Ilomantsi to identify reference conditions was 
insufficient.	For	this	reason	only	plots	from	Outokumpu	were	included	in	the	method	development.

Since the spatial precision of the 250  m MODIS data is low (Tan et al. 2006), only train-
ing plots located in stands covering nearly entire MODIS pixels were included in the method 
development; this resulted in a total of 10 plots. Each mean defoliation estimate was considered 
as an independent observation regardless of year of assessment, i.e. each plot contributed with 3 
values,	one	for	each	of	the	years	with	defoliation	assessment	2009−2011,	resulting	in	a	total	of	30	
observations	(10	plots	×	3	years).	These	observations	were	classified	into	two	classes:	(1)	damaged,	
and (2) healthy. To enable evaluation, the same threshold as for the evaluation data (20% defolia-
tion) was used. We also tested to classify the observations with defoliation thresholds of 15% and 
25% defoliation to evaluate how sensitive the training data were to selection of threshold. Finally, 
z-scores	were	computed	for	each	pixel	and	year	(2009−2011)	according	to	Eq.	3.

z sm (3)p y p y p p, , µ σ( )= −

where zp,y is the z-score for pixel p and year y; smp,y is season max for pixel p at year y; μp is the 
mean of season max for pixel p; and σp is the standard deviation of season max for pixel p.

In	order	to	determine	the	number	of	years	to	base	the	reference	conditions	on	and	to	find	
suitable z-score thresholds, Receiver Operating Characteristics (ROC) graphs were utilized. In the 
ROC	graph	the	ratio	of	the	damaged	samples	that	are	classified	as	damaged	is	termed	True	Positive	

Fig. 2. MODIS	derived	2-band	Enhanced	Vegetation	Index	(EVI2)	(grey	line)	and	EVI2	fitted	in	TIMESAT	with	a	
double logistic function (black line) for the year 2001 and one MODIS pixel in the Outokumpu area. Blue circles show 
the quality of the data, with large circles for high quality and small circles for low quality. Season max, the seasonality 
parameter	used	in	this	study,	is	the	maximum	vegetation	index	value	of	the	TIMESAT	fitted	function.
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Rate (TPR) and plotted on the y-axis; and the ratio of the non-damaged samples that are classi-
fied	as	damaged	(i.e.	false	alarm)	is	termed	False	Positive	Rate	(FPR)	and	plotted	on	the	x-axis	
(Fawcett,	2006).	The	point	(FPR	=	0,	TPR	=	1)	in	an	ROC	graph	represents	a	perfect	classification,	
and the diagonal (0,0−1,1)	represents	a	random	classifier.	In	this	study	FPR	and	TPR	were	taken	
from the confusion matrix in Table 1.

By computing TPR and FPR for a series of z-score thresholds an ROC curve is created. In 
this study TPR and FPR were computed with thresholds ranging from the lowest to the highest 
z-score for all observation with an increment of 0.1.

To decide n, the number of years to base the reference conditions on, z-scores were computed 
with reference conditions (i.e. mean and standard deviation of season max) estimated from different 
numbers of years. The starting assumption was that the reference conditions should be based on 
a large number of years to obtain reliable mean values and standard deviations. However, when 
including more years into the reference conditions the risk of including years with disturbances 
increases, i.e. the reference conditions will no longer represent the healthy conditions, which is likely 
to	result	in	lower	detection	accuracies.	Consequently,	we	first	created	an	ROC	curve	with	refer-
ence conditions based on four years, which was considered the smallest number of years required 
to get reliable reference conditions. Additional ROC curves, based on an increasing number of 
years, were then added until the damage detection ability started to decrease. Since the outbreak 
in Outokumpu started in 2008, the maximum number of healthy years was considered to be seven 
(2001−2007).	Hence,	ROC	curves	were	computed	with	reference	conditions	based	on	n	=	4−7	
years	(ROC4−ROC7),	and	the	optimal	number	of	years	to	estimate	the	reference	conditions	from,	
as	well	as	the	z-score	threshold,	were	identified.	Z-scores	were	then	computed	for	each	year	and	
pixel,	and	the	pixels	were	classified	as	damaged	if	their	z-score	was	below	the	threshold	value.	
The	z-score	threshold	can	be	adjusted	to	fit	the	purpose	of	a	study;	a	lower	threshold	will	detect	
more damaged forests stands, but also misclassify more healthy stands as damaged. In this study, 
we	identified	the	optimal	z-score	threshold	as	the	point	along	the	ROC	curve	closest	to	(1,	0),	i.e.	
closest	to	the	perfect	classification.	This	gives	an	objective	threshold	that	can	be	detected	with	
automated	methods.	The	developed	damage	classification	method,	illustrated	in	Fig.	3,	was	also	
applied to the training data with NDVI to compare the performance of the two vegetation indices.

2.3.4 Evaluation and generalization

Evaluation data were divided into two areas: (1) Outokumpu, with a short history of insect defolia-
tion, and (2) Ilomantsi, where the insect infestation has been persistent during the entire time-series 
of	MODIS	data.	Evaluation	was	then	performed	with	the	threshold	identified	in	the	training	data.

The method was also applied to the sampling units in Abisko: Time-series of EVI2 with a 
temporal resolution of eight days were created for the years 2001–2013. ROC curves were computed 
as	for	Outokumpu	and	plotted	to	find	the	optimal	number	of	years	to	base	the	reference	conditions	

Table 1. Confusion	 matrix	 of	 terminology	 for	 a	 classification	 into	 damaged	 and	
healthy pixels. True Positive Rate (TPR) is the ratio of the damaged MODIS pixels 
that	were	 classified	 as	 damaged,	 and	 False	 Positive	Rate	 (FPR)	 is	 the	 ratio	 of	 the	
healthy	pixels	that	were	misclassified	as	damaged.

True condition
Damaged Healthy

Result of
classification

Damaged True damaged (TPR) False damaged (FPR)

Healthy False healthy True healthy
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on,	and	to	find	the	z-score	threshold.	In	Abisko	all	field	data	were	used	as	training	data	to	get	more	
data to support the ROC graph.

3 Results

 3.1 ROC curves and evaluation

Receiver Operating Characteristics curves for EVI2 computed from the training data in Outokumpu 
are shown in Fig. 4. They show that when reference conditions are estimated from four (ROC4) 
and	five	(ROC5) years, the curves are similar, and identical at the optimal threshold (z = –2.9). 
The ROC curve for six years (ROC6)	 is	 lower,	 i.e.	more	healthy	observations	are	classified	as	
damaged. ROC7 is lower than ROC6	and	omitted	in	the	figure	for	reasons	of	legibility.	Since	we	
considered	it	more	statistically	robust	to	base	the	reference	conditions	on	five	years	than	four,	the	
reference	conditions	were	estimated	from	the	five	years	with	highest	season	max.	The	optimal	
z-score threshold for our purpose is at –2.9, which resulted in 50% of the damaged plots being 
detected	with	no	misclassification	of	healthy	plots	(Fig.	4).	When	the	training	data	were	classified	
into damaged and healthy observations with a defoliation threshold of 25%, a z-score threshold of 
–4.5	resulted	in	61%	of	the	damaged	pixels	being	detected	with	a	misclassification	of	healthy	pixels	
of 6%. A defoliation threshold of 15% resulted in accuracies identical to the 20% threshold. This 
suggests	that	the	defoliation	threshold	did	not	have	a	major	influence	on	the	detection	accuracy.	
Since	the	evaluation	data	were	classified	into	damaged	and	healthy	with	a	threshold	of	20%	no	
evaluation could be performed with the other defoliation thresholds.

Fig. 3. Workflow	of	the	developed	defoliation	detection	method.	The	2-band	Enhanced	Vegetation	Index	(EVI2)	is	de-
rived from MODIS data with 250 m spatial and 8 days temporal resolution, and smoothed with double logistic functions 
in the TIMESAT software (Jönsson and Eklundh 2002, 2004). Receiver Operating Characteristics (ROC) graphs are 
used	to	visualize	the	ratio	of	the	damaged	MODIS	pixels	that	were	correctly	classified	and	the	ratio	of	healthy	MODIS	
pixels	that	are	misclassified	as	damaged.	The	number	of	years	to	base	the	reference	condition	on	and	the	z-score	thresh-
old were decided based on the ROC graph.
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Fig. 4. Receiver Operating Characteristics (ROC) curves for the 2-band Enhanced Vegetation Index (EVI2) in Ou-
tokumpu.	True	Positive	Rate	is	 the	ratio	of	 the	damaged	MODIS	pixels	 that	were	classified	as	damaged,	and	False	
Positive	Rate	is	the	ratio	of	the	healthy	pixels	that	were	classified	as	damaged.	A	single	curve	is	created	by	applying	
the developed method with the damage detection based on a range of different z-score thresholds. The different curves 
are created by basing the reference conditions on the 4 years (ROC4), 5 years (ROC5) and 6 years (ROC6) with highest 
season	max	values.	z	=	–2.9	is	the	threshold	that	gives	a	result	closest	to	the	theoretically	best	classification	at	coordi-
nate (0,1).

Fig. 5. Receiver Operating Characteristics (ROC) curves for the Normalized Difference Vegetation Index (NDVI) in 
Outokumpu.	True	Positive	Rate	is	the	ratio	of	the	damaged	MODIS	pixels	that	were	classified	as	damaged,	and	False	
Positive	Rate	is	the	ratio	of	the	healthy	pixels	that	were	classified	as	damaged.	A	single	curve	is	created	by	applying	
the developed method with the damage detection based on a range of different z-score thresholds. The different curves 
are created by basing the reference conditions on the 4 years (ROC4), 5 years (ROC5) and 6 years (ROC6) with highest 
season	max	values.	z	=	–2.9	is	the	threshold	that	gives	a	result	closest	to	the	theoretically	best	classification	at	coordi-
nate (0,1).

Receiver Operating Characteristics curves for NDVI (Fig. 5) show a zig-zag pattern sug-
gesting that it is not obvious what number of years to base the reference conditions on, and that 
there	is	no	obvious	optimal	z-score	threshold.	For	lower	TPR	(~0.25)	the	classification	is	more	or	
less random; for higher thresholds the ROC curves are nearly parallel to the diagonal. Hence, the 
most suitable threshold strongly depends on the purpose of a study. Since NDVI results in exten-
sive	misclassification	of	healthy	plots	for	low	TPR,	EVI2	was	the	preferred	index	in	this	study.	
However,	if	the	main	purpose	of	a	study	is	to	detect	defoliation,	and	misclassification	of	healthy	
stands is to a larger degree acceptable, NDVI may be more suitable.



13

Silva Fennica vol. 50 no. 2 article id 1495 · Olsson et al. · Development of a method for monitoring of insect…

The method was evaluated by applying the z-score thresholds for EVI2 to the evaluation data. 
In Outokumpu, with a shorter history of insect infestation, 50% of the defoliated evaluation stands 
were	detected	with	a	misclassification	of	healthy	stands	of	22%	(Table	2).	In	Ilomantsi,	with	a	long	
history	of	insect	infestation,	the	method	was	not	successful;	only	27%	of	the	damaged	stands	were	
detected	with	a	misclassification	of	54%.	These	results	indicate	the	importance	of	years	with	satellite	
data	available	for	a	number	of	years	prior	to	an	outbreak	to	enable	identification	of	reference	condi-
tions.	To	illustrate	the	ability	to	adjust	the	z-score	threshold	to	tailor	the	method	to	a	specific	purpose,	
we	also	applied	a	higher	(z	=	–2.1)	threshold	that	resulted	in	50%	misclassification	of	healthy	stands	
in the training data. In the evaluation data this threshold resulted in 63% of the damaged stands being 
detected	with	a	misclassification	of	healthy	stands	of	37%	in	Outokumpu.	In	Ilomantsi,	the	higher	
threshold	resulted	in	46%	damaged	stands	detected	with	a	70%	misclassification	of	healthy	stands.

3.2 Method generalization

The Receiver Operating Characteristics graph for Abisko suggests that the reference conditions 
should be based on six years and the threshold should be set to z = –6.0 (Fig. 6). ROC curves 
based on fewer or more years are closer to the diagonal. The point closest to (0,1) for ROC6 is at 
TPR	=	0.75	and	FPR	=	0.19.	This	suggests	that	75%	of	the	damage	can	be	detected	with	a	misclas-
sification	of	healthy	sampling	units	of	19%.	These	considerably	better	results	indicate	that	MODIS	
data perform better in the natural and more homogenous forest landscapes in Abisko.

Table 2. Results of the method evaluation for the Outokumpu and Ilomantsi areas. Thresholds are z-scores of the sea-
sonal	maximum	of	the	2-band	Enhanced	Vegetation	Index	(EVI2)	fitted	to	a	double	logistic	function	in	TIMESAT.	The	
lower	threshold	is	the	threshold	that	gave	a	classification	closest	to	the	theoretically	perfect	classification,	while	the	
higher	threshold	is	a	threshold	that	resulted	in	50%	misclassification	of	healthy	pixels	in	the	training	data.

Outokumpu Ilomantsi

Threshold (EVI2 z-score) –2.9 –2.1 –2.9 –2.1
Detected defoliation 50% 63% 27% 46%
Misclassified	healthy	stands 22% 37% 54% 70%

Fig. 6. Receiver Operating Characteristics (ROC) curves for the 2-band Enhanced Vegetation Index (EVI2) in Abisko. 
True	Positive	Rate	is	the	ratio	of	the	damaged	MODIS	pixels	that	were	classified	as	damaged,	and	False	Positive	Rate	
is	the	ratio	of	the	healthy	pixels	that	were	classified	as	damaged.	A	single	curve	is	created	by	applying	the	developed	
method with the damage detection based on a range of different z-score thresholds. The different curves are created by 
basing the reference conditions on the 4 years (ROC4), 6 years (ROC6) and 8 years (ROC8) with highest season max 
values.	z	=	–2.9	is	the	threshold	that	gives	a	result	closest	to	the	theoretically	best	classification	at	coordinate	(0,1).
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4 Discussion

4.1 Factors affecting detection accuracy

This	 study	has	 indicated	both	possibilities	and	difficulties	 in	using	 low	spatial	 resolution	data	
for monitoring of insect induced defoliation in Fennoscandian forests. In the more homogenous 
natural	area	in	northern	Sweden	the	method	was	successful	and	detected	75%	of	the	damaged	
sampling	units	with	a	misclassification	of	healthy	units	of	19%.	In	the	fragmented	and	heavily	
managed forest landscapes in Finland with small individual forest stands the accuracies were 
lower	with	50–63%	of	the	defoliation	detected	and	with	a	misclassification	of	healthy	stands	of	
22–37%.	Where	the	history	of	the	insect	outbreak	was	long,	as	in	Ilomantsi,	the	method	resulted	
in	extensive	misclassification	rates.	The	main	reason	for	the	limitation	in	the	fragmented	areas	is	
most likely the low spatial resolution of MODIS, which results in mixed pixels that may contain 
both healthy and damaged forest stands. The detection accuracies in Finland are lower than in a 
study conducted in Ilomantsi with Landsat TM images, where Ilvesniemi (2009) reached a clas-
sification	accuracy	of	85.9%	for	two	defoliation	classes.	These	results	are	also	generally	lower	
than corresponding studies using MODIS in more homogeneous forest areas in North America 
(de	Beurs	and	Townsend	2008)	and	Russia	 (Kharuk	et	al.	2007).	However,	 the	high	detection	
accuracies observed in Abisko show that the developed method does enable defoliation detection 
in other forest types.

The	outbreak	history	also	influences	the	detection	accuracy,	as	noted	by	Sulla-Menashe	et	
al.	(2014)	who	concluded	that	a	history	of	forest	disturbances	influences	the	ability	to	detect	pre-
sent disturbance events. In Ilomantsi the accuracy was poor, mainly as a consequence of recurring 
insect	attacks	during	the	entire	time	period	studied,	and	the	associated	difficulty	in	establishing	
stable reference conditions. In Outokumpu, where the MODIS record was long enough to establish 
stable reference conditions, results were more accurate (50% of the damage detected with 22% 
false alarm). It is likely that the main problem is that the foliage in the pine forests does not fully 
recover between insect outbreaks. Growth recovery after an attack may continue over a time period 
of 5−10 years (Lyytikäinen-Saarenmaa and Tomppo 2002). Hence, the years with low defoliation 
are	still	influenced	by	previous	defoliation	events,	and	the	reference	conditions	will	be	based	on	
recovering rather than healthy forest. In the deciduous forests in Abisko the situation is different. 
Even though the birch forests require long periods of recovery; after an outbreak in Abisko 1954−55 
the	forests	had	regained	only	75%	of	the	pre-outbreak	biomass	as	late	as	in	1987	(Tenow	1996),	
we	observed	that	the	foliage	regains	sufficient	leaf	area	to	return	to	pre-outbreak	levels	of	EVI2	
already the year after an outbreak. Hence, reference conditions could be established despite the 
fact that there were insect outbreaks present in the available time-series of MODIS data. These 
results	also	indicate	that	in	areas	with	frequent	insect	attacks	coniferous	forests	are	more	difficult	
to monitor than deciduous forests. Furthermore, it is quite likely that the severity of the defoliation 
influences	the	ability	to	monitor	an	outbreak.	In	Abisko,	and	in	the	study	of	pine	sawfly	attacks	
by Eklundh et al. (2009) that resulted in high detection accuracies (82%), large areas were almost 
totally	defoliated.	In	Finland,	on	the	other	hand,	defoliation	intensities	were	more	fluctuating	and	
generally less severe.

Other factors, such as the timings of defoliation events, may also affect the detection accuracy. 
In	Outokumpu	the	larval	period	of	the	European	pine	sawfly	took	place	early	in	June	(Lyytikäinen-
Saarenmaa	1999).	Also	in	Abisko	the	defoliation	occurred	in	the	early	summer	(Tenow	et	al.	2007).	
In	Ilomantsi,	on	the	other	hand,	the	defoliation	was	caused	by	the	common	pine	sawfly	having	a	
larval period later, in July–September (Lyytikäinen-Saarenmaa 1999), i.e. well after the season 
max. In addition, in late summer, solar elevation angles are lower, resulting in more shadows and 
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bi-directional	 scattering	 effects,	which	 influence	 the	 remotely	 sensed	 reflectances,	 and	 hence,	
vegetation indices.

4.2	 Z-score	classification	and	season	max

We used z-scores in order to develop a method that is adaptive to the natural variability of the 
satellite data. It could be argued that a one-tailed t-test could be applied instead and that this might 
have	the	advantage	of	being	less	site-specific.	However,	since	the	method	is	applied	pixel-wise	we	
considered the amount of data too low to estimate robust mean values and standard deviations to 
apply	a	t-test	at	a	specific	significance	level.	In	addition,	z-scores	allows	utilizing	ROC	curves	to	
decide the threshold for disturbance detection, which allows a user to weight the trade-off between 
disturbance detection and false alarm to suit the purpose of a study. Furthermore, we anticipate 
that the z-score thresholds can be applied for similar land cover over extensive areas and that the 
thresholds	are	land	cover	specific	rather	than	site-specific.	The	method	does,	however,	require	that	
land cover data are available to identify which MODIS pixels to monitor.

Season max was used as a metric for forest health to detect defoliation in this study. The 
motivation is that season max is a robust parameter since it is based on all data from a season, 
weighted according to data quality, and thereby less sensitive to noise and low quality data. 
Another advantage with season max is that it makes the method less sensitive to phenological 
variability; season max from different seasons can be directly compared without any need to 
identify the start of the growing season. In addition, season max makes the method more general 
since the same metric can be applied to monitor outbreaks regardless of the defoliation period 
of the insect studied. During the method development we made tentative visual tests with mean 
values for shorter periods, where the periods were chosen to coincide with the main defoliation 
period of the insect studied. These tests did not perform better than z-scores of season max. 
However, a high value of season max after an outbreak might be due to other reasons than recov-
ering forests, such as understory vegetation development favoured by improved light conditions, 
and should not be considered as recovered trees per se. For a disturbance monitoring method 
this is likely to be less of a problem, since the main aim is to detect the defoliation event in the 
first	place.

4.3 Implications for developing a forest defoliation monitoring system and future 
satellite data

Given the variation in accuracies achieved in this study and the fact that high spatial resolution 
satellite data generally are more accurate, the role of low-resolution systems in forest disturbance 
monitoring can be discussed. While considering their weaknesses, these low spatial resolution sys-
tems do have advantages in terms of more frequent coverage in time, low computational demand, 
and historical continuity in time. Consequently, low spatial resolution data may have a role to play 
in regional and global forest disturbance monitoring, especially in areas where cloudy conditions 
limits the number of available medium-resolution images, and where a short growing season limits 
the number of potentially available medium-resolution images. As an example, only small frac-
tions of the study area in Abisko were visible in any Landsat image during the outbreak in 2013. 
However, it must be realized that in areas with fragmented forest landscapes low-resolution data 
results in low detection accuracies, and where the disturbance history is longer than the satellite 
time-series record, damage might be undetected. Forest conditions similar to those in Finland are 
common elsewhere in Fennoscandia, but also not uncommon elsewhere in the world. Hence, it is 
quite likely that forest damage based on MODIS data in these areas is underestimated. Therefore, 
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if	there	is	a	sufficient	number	of	medium-resolution	images	available	during	the	main	growing	
season these data should be preferred.

One possibility to reduce the limitation of the low spatial resolution of MODIS could be to 
apply	data	fusion	methods,	such	as	the	Spatial	and	Temporal	Adaptive	Reflectance	Fusion	Model	
(STARFM) (Gao et al. 2006) and the Enhanced STARFM (ESTARFM) (Zhu et al. 2010) that were 
developed to combine e.g. Landsat and MODIS data. Both STARFM and ESTARFM enable crea-
tion of images with high temporal and spatial resolution; however, they cannot detect ephemeral 
disturbances with high accuracy if the disturbance is not registered in any of the Landsat images 
utilized	(Zhu	et	al.	2010).	The	Temporal	Adaptive	Algorithm	for	mapping	Reflectance	Change	
(STAARCH) is a data fusion method that was developed for disturbance detection (Hilker et al. 
2009).	STAARCH	enables	detection	of	disturbances	such	as	clear	cuts	and	fires	with	high	accuracy,	
but has limitations in detecting short-term transient disturbances such as insect outbreaks since the 
detection of spatial change mainly relies on Landsat, while MODIS data are applied to identify 
the timing of disturbances. Hence, the ability of data fusion methods to detect insect defoliation 
events to a large extent depends on the ability of MODIS data to detect the damage in areas with 
frequent cloud cover.

With	 the	 launch	 of	 the	 first	 Sentinel-2	 satellite	 in	 2015	 and	 the	 planned	 launch	 of	 the	
second satellite in 2016 (ESA 2015a), the possibilities to detect damage in fragmented forests is 
likely to be improved. These satellites, carrying the Multi Spectral Instrument (MSI), will have 
the advantage of high spatial resolution (10−60 m) and high temporal resolution, with a revisit 
time of 5 days at the equator (Drusch et al. 2012) and 2−3 days at mid-latitudes (ESA 2015a). 
The high spatial resolution will substantially decrease the number of mixed pixels, and the high 
temporal	resolution	may	turn	out	to	be	sufficient	for	modelling	the	seasonal	trajectory	for	each	
pixel and to detect insect defoliation. In addition, Sentinel-2 MSI provides 13 spectral bands 
(Drusch et al. 2012) which open up for the possibility to monitor forest disturbances with a wide 
range of vegetation indices that might further improve detection accuracy. For example, indices 
including shortwave infrared (SWIR) wavelength bands derived from Landsat data have been 
successful	 for	 accurate	 detection	 of	 insect	 defoliation	 (Skakun	 et	 al.	 2003;	Wang	 et	 al.	 2007;	
Goodwin et al. 2008; Coops et al. 2010). In principle, the z-score method is well suited also to 
these band combinations and to high spatial resolution data. If the lower temporal resolution 
of Sentinel-2 compared to MODIS will be a limitation in Fennoscandia remains to be tested, 
however, opportunities exist to merge the data with Landsat-8 to increase the temporal resolu-
tion. The z-score method developed in this study requires that the reference conditions can be 
estimated also for Sentinel-2 MSI pixels, which implies that Sentinel-2 data must be available 
for	several	years	before	the	methods	can	be	applied,	and	that	these	years	are	not	influenced	by	
disturbances. An alternative approach would be to apply data fusion methods to derive reference 
conditions based on MODIS and higher spatial resolution data to establish the reference condi-
tion also based on presently available data.

5 Conclusions

The	 results	 of	 this	 study	 indicate	 difficulties	 in	 relying	 solely	 on	MODIS	 data	 for	 a	 general	
insect damage detection system over fragmented Fennoscandian forest landscapes. The coarse-
resolution satellite data can provide high as well as low accuracies, and may fail entirely to 
detect damage in very heterogeneous forests. The problem is aggravated when the damage his-
tory is very long, as in one of our study areas. Therefore, studies of defoliation based on these 
data may underestimate defoliation damage in Fennoscandia and similar forest types. However, 
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MODIS and other low-resolution satellite data may still have an important role to play in distur-
bance monitoring, especially in regions where cloudy conditions limits the number of available 
medium-resolution images. In addition, the developed method based on TIMESAT, z-scores and 
ROC curves developed in this paper is robust, and succeeded in detecting defoliation events 
with high accuracy in the more homogenous forests in Abisko. Hence, it might be possible to 
apply the developed method to other future satellite data. Sentinel-2 MSI data with its high spa-
tial, spectral and temporal resolutions is particularly interesting for future monitoring of forest 
disturbances.
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