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Highlights
•	 We developed equations for aboveground biomass components of young silver birch stands 

on post-agricultural lands in central Poland for single tree level.
•	 Simplified	equations	were	based	exclusively	on	diameter	at	ground	level	or	breast	height,	

while expanded ones were based on the appropriate diameter and tree height.
•	 For	 large	 trees,	diameter	at	breast	height	 is	a	more	appropriate	explanatory	variable	 than	

diameter at ground level.
•	 Biomass estimations based on models from neighboring countries were consistent with our 

results.

Abstract
We	determined	empirical	models	for	estimating	total	aboveground	as	well	as	stem,	branches,	and	
foliage dry biomass of young (age up to 16 years) silver birch (Betula pendula Roth.) growing on 
the post-agricultural lands. Two sets of allometric models for trees with a height below or above 
1.3	m	(small	and	large	trees	respectively)	were	developed.	Simplified	models	were	elaborated	
based	exclusively	on	appropriate	tree	diameter	(diameter	at	ground	level	for	small	trees,	diameter	at	
breast	height	for	large	trees),	while	expanded	models	also	included	tree	height.	Total	aboveground	
biomass was estimated as the sum of biomass of all tree components. To assure additivity of the 
developed	equations,	the	seemingly	unrelated	regression	approach	for	the	final	model	fitting	was	
used.	Expanded	models	in	both	tree	groups	were	characterized	by	a	better	fit	to	the	data	(R2 for 
total	aboveground	biomass	for	small	and	large	trees	equaled	0.8768	and	0.9752,	respectively).	
Diameter at breast height appeared to be a better predictor than diameter at ground level – simpli-
fied	models	had	better	fit	for	large	trees	(R2 for total aboveground biomass equals 0.9611) than for 
small ones (R2 = 0.7516). The developed equations provide biomass predictions consistent with 
available	Latvian,	Estonian,	Finnish,	Swedish,	and	Norwegian	models	for	silver	birch.
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1 Introduction

Recent socio-economic changes in Central and Eastern Europe have resulted in abandonment of 
farming in many rural areas. These areas are frequently subjected to rapid secondary succession of 
pioneer	forest	tree	species,	such	as	silver	birch	(Betula pendula	Roth.)	(Karlsson	et	al.	1998;	Zając	
and	Gil	2003;	Uri	et	al.	2007).	The	scale	of	this	phenomenon	is	significant	in	many	regions;	yet,	
its	extent	and	ecological	and	economic	consequences	are	still	largely	unknown	(Szwagrzyk	2004).	
In	Poland,	there	are	only	rough	estimations	about	the	area	of	silver	birch	secondary	succession	on	
abandoned	farmlands,	covering	around	900	000	hectares	(Krawczyk	2015),	which	corresponds	to	
almost 10% of contemporary Polish forests area.

The large scale of silver birch secondary succession on abandoned farmlands can play an 
important	role	in	atmospheric	carbon	sequestration,	as	increasing	afforestation	and	the	intensity	of	
forest management are considered the most effective ways of offsetting CO2 emissions. In recent 
decades,	issues	related	to	climate	change	have	become	more	and	more	frequently	the	subject	of	
both	discussions	between	policy	makers	and	scientific	research	activities	around	the	world.	One	of	
the examples is the world’s strongest climate-energy policy that was agreed upon by the European 
Union leaders (European Council conclusions 2014). Its objective assumes that within the European 
Union,	at	least	27%	of	the	energy	demand	is	being	covered	by	renewable	energy	sources	by	2030.	
Forest	 ecosystems,	 including	secondary	 succession	on	abandoned	 farmlands,	are	an	 important	
source	of	biomass	and	make	a	significant	contribution	to	the	global	carbon	budget	and	the	mitiga-
tion of climate change (van Kooten et al. 2004; Fahey et al. 2009; Rittenhouse and Rissman 2012). 
In	addition,	management	of	natural	silver	birch	ecosystems	can	result	in	considerable	economic	
impacts by providing biomass for energy production and wood for the timber industry (Elowson 
1996).	Therefore,	analysis	of	biomass	and	carbon	sequestration	and	modeling	growth	rates	and	
yields of such ecosystems are important research challenges.

For	a	number	of	years,	many	countries	have	been	making	commitments	to	increase	biomass	
production	in	forest	ecosystems	for	bio-energy	production	and	carbon	sequestration.	A	significant	
number	of	publications	consider	 this	 issue	in	different	forest	 types	of	North	America	(Birdsey	
1992;	Brown	et	al.	1999;	Van	Tuyl	et	al.	2005),	tropical	forests	(Detwiler	and	Hall	1988;	Alves	
et	al.	2010;	Ribeiro	et	al.	2011),	and	in	Europe	(Zasada	et	al.	2009;	Skovsgaard	and	Nord-Larsen	
2012; González-García et al. 2013).

An	exemplary	approach	to	estimate	carbon	sequestration	in	forest	ecosystems	is	the	assess-
ment of different carbon pools (especially in case of wood) and an evaluation of their physical 
characteristics,	such	as	moisture	and	specific	gravity.	The	results	of	such	estimations	are	used	to	
determine	biomass	of	tree	components	and,	consequently,	biomass	and	the	carbon	accumulation	
in	the	studied	areas.	A	common	procedure	is	also	the	weighting	all	components	in	the	field	and	to	
apply moisture content in order to determine dry weight. The main advantages of such an approach 
are	the	high	accuracy	of	the	estimation	of	the	tree	component	and	its	high	flexibility	in	terms	of	
modeling	carbon	sequestration	at	the	stand	level.	In	this	scenario,	total	aboveground	biomass	and/
or	biomass	of	each	 tree	component	 is	determined	as	a	function	of	 tree	characteristics,	such	as	
diameter	at	breast	height	(Muukkonen	2007),	diameter	and	height	(Ter-Mikaelian	and	Korzukhin	
1997)	and	diameter	at	ground	level	(Kuznetsova	et	al.	2011),	tree	height	(Adegbidi	et	al.	2002),	
diameter	at	ground	level	and	tree	height	(Pajtík	et	al.	2011),	diameter	at	15	cm	from	the	stem	base,	
average height and number of stems (Lupi et al. 2015) in case of young stands or tree equivalent 
diameter at 5 cm above the ground for young coppices (Cotillas et al. 2016).

Biomass of silver birch stands is a vital theme in Fennoscandia and the Baltic Sea region. 
Smith	et.	al.	(2014;	2016)	suited	regional	allometric	biomass	functions	for	Norwegian	conditions.	
In	Finland,	Mälkönen	(1977)	analyzed	total	aboveground	biomass	production	in	40-year-old	silver	
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birch	stands,	Ferm	(1993)	evaluated	the	potential	of	silver	birch	for	biomass	production,	Repola	
(2008)	developed	biomass	equations,	while	Tahvanainen	and	Forss	(2008)	proposed	individual	tree	
models for the biomass distribution in tree crowns. Johansson (1999; 2007) elaborated biomass 
equations	for	silver	birch	stands	growing	on	abandoned	farmland	in	Sweden.	Marklund	(1988)	
analyzed	this	tree	species	for	a	wide	range	of	combinations	of	sites	and	stand	ages,	while	Kuznet-
sova et al. (2011) and Uri et al. (2012) performed similar studies in Estonia and Daugaviete et al. 
(2008) in Latvia.

In	Poland,	studies	on	biomass	and	carbon	accumulation	were	focused	mainly	on	Scots	pine	
(Pinus sylvestris	L.).	Thus,	for	example,	Oleksyn	et	al.	(1999)	analyzed	variability	of	growth	and	
the	distribution	of	above-	and	belowground	biomass	in	young	stands	of	19	provenances.	Allocation	
of	aboveground	biomass	in	stands	up	to	an	age	of	20	years	was	also	assessed	by	Jagodziński	et	al.	
(2014).	Socha	and	Wężyk	(2004)	as	well	as	Zasada	et	al.	(2008)	studied	aboveground	biomass	of	
this	tree	species	in	a	greater	age	range.	Recent	studies	have	also	included	other	tree	species,	such	
as	black	alder	(Alnus glutinosa	(L.)	Gaertn.)	(Ochał	et	al.	2014).	So	far,	biomass	of	silver	fir	stands	
in	Poland	was	analyzed	only	by	Bijak	et	al.	(2013)	and	Zasada	et	al.	(2014).

The	general	objective	of	this	study	was	to	develop	empirical	equations	of	total	aboveground,	
stem,	branches	and	foliage	biomass	of	young,	naturally	regenerated,	silver	birch	trees	growing	on	
abandoned	farmlands	in	central	Poland.	The	specific	primary	objectives	were	to	create	two	sets	
of	models	for	two	groups	of	trees:	i)	simplified	models	based	on	the	diameter	at	ground	level	for	
small trees (height below 1.3 m) and diameter at breast height for large trees (height above 1.3 m) 
and ii) expanded models based on diameter at ground level and height for small trees and diameter 
at breast height and height for large trees.

The	specific	secondary	objectives	of	this	study	were	to	analyze	influence	of	applied	explana-
tory	variables	(diameter	at	ground	level,	diameter	at	breast	height,	and	height)	and	compare	devel-
oped models to estimates obtained with equations from neighboring countries.

2 Materials and data

2.1 Study sites

Data for this study were collected in 20 pure silver birch stands growing on post-agricultural lands 
in	the	Mazowieckie	province,	central	Poland	(52°21´–51°24´N,	20°39´–21°26´E,	Table	1).	The	
former	farmland	status	and	the	cessation	of	agricultural	use	were	checked	and	confirmed	by	the	
owners	and	local	administration.	All	sampled	stands	originated	from	natural	regeneration	after	
the	cessation	of	farming	practices.	No	silvicultural	treatments	were	applied	to	any	of	these	stands	
prior to sampling.

Table 1. Average	stand	age	(a	[years]),	average	study	plot	area	(A	[ha]),	stocking	(N	[trees	ha–1]),	basal	area	at	breast	
height	(BA	[m2 ha–1]),	average	diameter	at	breast	height	(DBH	[cm]),	mean	height	(H	[m]),	and	growing	stock	(V	[m3 
ha–1])	of	the	study	sites.

 a A N BA DBH H V

Min 2 0.0002 2987 - - 0.15 0.61
Max 14 0.0500 1555556 51.49 8.40 10.65 263.00
Mean 8 0.0135 144849 12.09 3.01 4.70 60.66
Median 7 0.0061 33194 10.50 1.55 3.23 35.53
Standard deviation 4 0.0148 345547 13.31 2.91 3.93 71.93
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All	study	sites	were	located	in	a	transition	zone	from	the	maritime	to	the	continental	type	
within	temperate	climate	(Martyn	2000).	Mean	annual	temperature	reaches	6	to	8	°C.	January	is	the	
coldest	month	with	average	temperature	slightly	below	–2	°C.	The	highest	temperature	is	recorded	
in	July	and	ranges	from	16	to	18	°C.	The	investigated	region	has	generally	poor	precipitation	and	
occasionally suffers from droughts. The average annual rainfall rarely exceeds 550 to 600 mm 
(Martyn	2000).	Soils	developed	on	glacio-fluvial	sands,	glacial	tills,	clays,	as	well	as	peats.	In	
general,	these	soils	are	rather	nutrient	poor	and	relatively	unfertile.

2.2 Material collection and preparation

At	each	plot,	we	randomly	chose	ten	trees	from	the	range	of	diameters	in	the	stand.	Felled	trees	
were section-wise (1 m section length) measured for their volume and divided into the components: 
stems,	foliage,	and	branches.	All	parts	of	each	individual	tree	were	weighed	in	the	field	using	port-
able scales (precision 0.1 g). Samples of each of the components (stem discs in the middle of each 
1	m	section,	random	samples	of	branches	and	foliage)	from	every	tree	were	taken	to	determine	the	
relationship	between	fresh	and	dry	biomass.	The	samples	were	oven-dried	at	105	°C	(Samuelsson	
et al. 2006) until they reached a constant weight. The dry biomass of various components was cal-
culated for each tree on the basis of corresponding fresh to dry mass ratios (Snowdon et al. 2002).

2.3 Tree data

Measurements	were	performed	on	200	 trees	 in	 total.	During	 the	 initial	analyses,	outliers	were	
removed	and	for	further	calculations,	189	trees	were	taken	into	account.	Assessment	of	outlier	
trees was carried out on the basis of graphical behavior (Belsley et al. 1980) and evaluation of 
the	contribution	of	 the	 individual	biomass	components.	Presumably,	 these	 trees	were	growing	
under	specific	conditions	such	as	forest	gaps	or	local	soil	and	water	conditions.	In	total,	148	of	the	
analyzed trees were taller than 1.3 m and their diameter at breast height (dbh) could be measured 
(those	trees	were	referred	to	as	“large	trees”,	Table	2).	The	remaining	41	trees,	which	were	smaller	
than	1.3	m,	were	included	into	a	group	called	“small	trees”	(Table	2).

Table 2. Age	(a	[years]),	diameter	at	ground	level	(d0	[cm]),	diameter	at	breast	height	(dbh	[cm]),	height	(h	[m]),	total	
aboveground	(AB),	stem	(ST),	branches	(BR),	and	foliage	(FL)	dry	biomass	[kg]	of	the	sampled	trees.

Small trees
 a d0 h AB ST BR FL

Min 1 0.23 0.26 0.0007 0.0004 0 0.0003
Max 5 1.30 1.27 0.0540 0.0286 0.0126 0.0143
Mean 3 0.77 0.71 0.0145 0.0066 0.0029 0.0050
Median 3 0.72 0.68 0.0095 0.0042 0.0019 0.0032
Standard deviation 1 0.26 0.28 0.0130 0.0066 0.0029 0.0042

Large trees
 a d0 dbh h AB ST BR FL

Min 3 0.90 0.10 1.41 0.0183 0.0128 0.0034 0.0021
Max 16 15.80 9.70 13.08 24.045 20.6267 4.2564 1.1328
Mean 9 5.78 3.22 5.57 3.5891 2.9820 0.4431 0.1740
Median 9 5.15 2.90 4.85 1.4377 1.0776 0.2414 0.1083
Standard deviation 4 3.41 2.17 2.96 5.4407 4.6867 0.6440 0.2114
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3 Methods

3.1 Biomass models

All	biomass	components	were	estimated	based	on	models	found	in	the	literature,	which	were	divided	
into	two	groups.	The	first	one	consisted	of	eight	models	[Eq.	1–8]	based	exclusively	on	diameter	
at ground level (d0) for small and large trees and diameter at breast height (dbh) for large trees 
(e.g.	Johansson	2007;	Pajtík	et	al.	2008;	Teobaldelli	et	al.	2009;	Uri	et	al.	2012).	The	other	group	
consisted	of	six	models	[Eq.	9–14]	based	on	d0	or	dbh	and	height	(Zianis	et	al.	2005;	Cienciala	et	
al.	2006;	Zasada	et	al.	2008;	Ochał	et	al.	2014):

= ⋅y a x (1)b

= + ⋅y a b x (2)2

( )= + ⋅y a b xln (3)

= +y a b
x

(4)

= +y a b
x

(5)
c

= +






y a b
x

exp (6)

( )= + ⋅ − ⋅y a b x cexp (7)

( )( )= + ⋅y a b xexp ln (8)

( )= ⋅y a x h (9)
b2

= ⋅ ⋅y a x h (10)b c

( )= + ⋅ ⋅y a b x hln (11)2

= + ⋅ + ⋅y a b x c h (12)2

= ⋅ ⋅y a x h (13)2

= + ⋅ + ⋅y a b x c h (14),2 2

where:
y	–	each	dry	biomass	component	[kg],
x	–	diameter	at	ground	level	(small	trees)	or	diameter	at	breast	height	(large	trees)	[cm],
h	–	tree	height	[m],
a,	b,	c – model parameters.
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3.2	Model	fitting	and	comparison

All	models	were	fit	to	data	separately	for	stem,	branches	and	foliage	biomass	and	compared	based	
on	the	following	goodness-of-fit	measures:	coefficient	of	determination	(R2),	residual	standard	error	
(RSE)	and	Schwarz’s	Bayesian	information	criterion	(BIC).	We	also	analyzed	statistical	significance	
of	model	parameters	and	normality	of	residuals	based	on	Shapiro-Wilk	test.	In	the	final	step,	the	
best	simplified	and	extended	models	for	small	and	large	trees	were	used	as	a	base	for	Seemingly	
Unrelated	Regression	(SUR).	This	approach	enabled	fulfillment	of	 the	 logical	assumption	 that	
the	sum	of	the	estimated	biomass	values	of	tree	parts	(stem,	branches,	and	foliage)	matches	the	
estimated	total	aboveground	biomass,	assuring	additivity	of	the	biomass	equations	(Kozak	1970;	
Chiyenda	and	Kozak	1984;	Cunia	and	Briggs	1984).	Despite	the	limitations	caused	by	the	addi-
tivity	constraint,	assuming	homoscedasticity	of	variance,	SUR	estimators	have	smaller	variances	
and are more effective than those constructed using alternative estimation methods (Zellner 1962; 
Parresol 1999; Bi et al. 2010). To assure the homoscedasticity of variance during SUR analyses 
model	parameters,	weighting	by	the	inverse	of	diameter	(d0	for	small	and	dbh	for	 large	trees)	
square root was applied (Carvalho and Parresol 2003; Balboa-Murias et al. 2006).

Both predicted and measured total aboveground biomass values for large trees from this 
study were compared with predictions obtained by Baltic and Scandinavian models from the lit-
erature. Predicted total aboveground biomass was analyzed using graphical behavior of models 
from	this	study	(both	simplified	and	expanded)	and	reference	ones	from	the	literature.	Measured	
total	aboveground	biomass	was	 tested	based	on	coefficient	of	determination	 (R2) and residual 
standard	error	(RSE),	achieved	by	compared	models	from	the	literature.	We	also	assessed	correla-
tion	between	analyzed	models.	In	case	of	simplified	models,	Swedish	(Johansson	1999),	Estonian	
(Varik	et	al.	2009;	Uri	et	al.	2012),	and	Latvian	(Liepiņš	2013)	solutions	were	analyzed.	Repola’s	
(2008)	model	for	Finland	and	the	solution	for	Norway	from	Smith	et	al.	 (2014)	allowed	us	 to	
compare	the	expanded	models.	For	convenient	analysis,	all	included	models	were	numbered	with	
Roman numerals (Fig. 3).

Calculations	and	analyses	were	performed	using	RStudio	(RStudio	Team	2015),	packages:	
nls (Bates and Watts 2007) and ggplot2	(Wickham	2009)	in	R	software	(R	Development	Core	Team	
2008)	and	PROC	MODEL	in	SAS	(SAS	9.1.3	Help	and	Documentation	2002).

4 Results

4.1	Model	fitting

Based	 on	 the	 goodness-of-fit	measures	 and	model	 parameters	 accuracy,	 the	most	 appropriate	
simplified	and	expanded	equations	to	estimate	stem,	branches,	and	foliage	biomass	for	small	and	
large	trees	were	chosen	separately	(Table	3).	Models	number	6	(simplified),	10,	and	12	(expanded)	
presented	the	best	goodness-of-fit	statistics	in	most	cases.	The	expanded	models	for	both	small	and	
large	trees	are	characterized	by	a	better	fit	to	data	than	the	simplified	ones	(for	foliage,	coefficient	
of determination and residual standard error were almost the same for both model types). Both 
simplified	and	expanded	models	for	large	trees	based	on	dbh	are	characterized	by	a	better	fit	then	
models	based	on	d0	(except	simplified	models	for	branches).	Also,	in	some	cases	(p-value	>	0.05),	
model residuals followed normal distribution (Table 3).



7

Silva Fennica vol. 50 no. 4 article id 1559 · Bronisz et al. · Empirical equations for estimating aboveground…

4.2 Seemingly Unrelated Regression

Total aboveground biomass was not included in the system of equations as it is explicitly related 
to	the	biomass	of	tree	components	as	their	sum.	First,	models	for	small	trees	were	fitted.	Estimates	
for	all	biomass	components	for	simplified	models	were	obtained	as	a	function	of	d0,	whereas	for	
the	expanded	ones,	as	a	function	of	d0	and	height	(h)	(Table	4).	Comparisons	of	residual	distribu-
tion for analyzed models for small trees are shown based on the example for total aboveground 
biomass (Fig. 1).

Table 3. Goodness-of-fit	measures	(R2	=	coefficient	of	determination,	RSE	=	residual	standard	error,	BIC	
=	Schwarz’s	Bayesian	information	criterion,	p-value	=	Shapiro-Wilk	test	result	for	residuals	normality)	for	
the	best	simplified	(S)	and	expanded	(E)	models	for	estimating	stem	(ST),	branches	(BR),	and	foliage	(FL)	
dry biomass in analyzed tree groups.

Model type and 
number

 R2 RSE BIC p-value

Small	trees	(S	for	d0,	E	for	d0	and	h)

S 6 ST 0.6476 0.0040 –327.49 0.002
6 BR 0.6528 0.0017 –396.07 0.018
1 FL 0.7003 0.0023 –371.38 0.648

E 10 ST 0.9007 0.0021 –375.72 <0.0001
13 BR 0.7165 0.0015 –408.09 0.087
9 FL 0.7018 0.0023 –371.58 0.818

Large	trees	(S	for	dbh,	E	for	dbh	and	h)

S 6 ST 0.9625 0.9110 405.40 <0.0001
1 BR 0.8105 0.2813 57.56 <0.0001
5 FL 0.7556 0.1052 –229.55 <0.0001

E 10 ST 0.9826 0.6226 296.69 <0.0001
12 BR 0.8267 0.2700 49.36 <0.0001
12 FL 0.7681 0.1025 –237.34 0.004

Large	trees	(S	for	d0,	E	for	d0	and	h)

S 6 ST 0.9270 1.2709 503.94 <0.0001
1 BR 0.8196 0.2745 50.33 <0.0001
5 FL 0.6865 0.1192 –192.71 <0.0001

E 10 ST 0.9733 0.7706 359.82 <0.0001
12 BR 0.8196 0.2754 55.29 <0.0001
12 FL 0.6866 0.1191 –192.76 <0.0001

Table 4. Parameters	(a,	b,	c)	with	their	standard	errors	(SE)	and	goodness-of-fit	measures	(R2	=	coefficient	of	determi-
nation,	RSE	=	residual	standard	error,	p-value	=	Shapiro-Wilk	test	result	for	residuals	normality)	for	the	final	simplified	
(S)	and	expanded	(E)	models	for	small	trees.	All	parameters	are	statistically	significant	at	the	significance	level	0.05.

Model type and 
number

 a SE b SE c SE R2 RSE p-value

S 6+6+1 AB - - - - - - 0.7516 0.0068 0.3683
6 ST –1.91375 0.2144 –2.52269 0.2165 - - 0.6653 0.0039 0.0506
6 BR –2.76320 0.2066 –2.51018 0.2085 - - 0.6646 0.0017 0.0863
1 FL 0.00807 0.0003 2.26422 0.1880 - - 0.6982 0.0024 0.8324

E 10+13+9 AB - - - - - - 0.8768 0.0048 0.5060
10 ST 0.01291 0.0004 1.28721 0.1880 1.875852 0.1935 0.9057 0.0021 0.0007
13 BR 0.00537 0.0002 - - - - 0.7286 0.0016 0.1216
9 FL 0.00881 0.0004 0.77260 0.0619 - - 0.7030 0.0024 0.9626
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Fig. 1. Distribution	of	weighted	residuals	of	simplified	(a)	and	expanded	(b)	models	for	small	trees.

Table 5. Parameters	(a,	b,	c)	with	their	standard	errors	(SE)	and	goodness-of-fit	measures	(R2	=	coefficient	of	determi-
nation,	RSE	=	residual	standard	error,	p-value	=	Shapiro-Wilk	test	result	for	residuals	normality)	for	the	final	simplified	
(S)	and	expanded	(E)	models	for	large	trees.	All	parameters	are	statistically	significant	at	the	significance	level	0.05.

Model type and 
number

 a SE b SE c SE R2 RSE p-value

S 6+1+5 AB - - - - - - 0.9611 0.6997 <0.0001
6 ST 4.55434 0.0556 –14.57160 0.3815 - - 0.9616 0.5930 <0.0001
1 BR 0.02126 0.0048 2.176631 0.1136 - - 0.8235 0.1753 <0.0001
5 FL 0.03489 0.0200 0.007996 0.0043 –2.09076 0.2573 0.7460 0.0713 <0.0001

E 10+12+12 AB - - - - - - 0.9752 0.5612 <0.0001
10 ST 0.02606 0.0032 1.705293 0.0620 1.163906 0.0814 0.9820 0.4063 <0.0001
12 BR 0.12882 0.0399 0.037619 0.0023 –0.04669 0.0126 0.8379 0.1683 <0.0001
12 FL 0.06611 0.0180 0.011822 0.0010 –0.01331 0.00553 0.7561 0.0698 0.0046

Fig. 2. Distribution	of	weighted	residuals	of	simplified	(a)	and	expanded	(b)	models	for	large	trees.
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Secondly,	parameters	for	large	trees	were	estimated.	Simplified	model	parameter	estimates	
for	all	biomass	components	were	obtained	as	a	function	of	dbh,	whereas	for	expanded	models,	
estimation was based on a function of dbh and h (Table 5). Those models were chosen because of 
their	better	fit	to	data	than	those	based	on	d0.	Comparisons	of	residual	distribution	for	analyzed	
models for large trees are shown based on the example of total aboveground biomass (Fig. 2).

4.3 Comparison with other models

Predicted	total	aboveground	biomass	for	large	trees	based	on	the	Johansson	(1999,	model	II)	and	
Varik	et	al.	(2009,	model	III)	models	give	similar	values	of	total	aboveground	biomass	compared	
to	those	determined	by	simplified	models	for	large	trees	from	this	study	(Fig.	3a,	model	I).	Applica-
tion	of	the	Uri	et	al.	(2012)	model,	created	for	young	silver	birch	stands	from	Järvselja	in	Estonia	
(model	IV),	to	the	data	from	central	Poland	leads	to	an	explicit	underestimation	of	total	aboveground	
biomass,	whereas	the	Estonian	model	for	older	stands	from	Kambja	(model	V)	fits	best	(Fig.	3a).	
This	is	also	confirmed	in	the	assessment	of	compared	model	fits	to	measured	total	aboveground	
biomass	(Table	6).	Goodness-of-fit	(Table	6)	and	compared	expanded	model	application	for	three	
levels	of	all	large	tree	heights	(minimum,	mean	and	maximum	height,	Table	2),	shown	in	Fig.	3b,	
explained	that	predicted	biomass	values	based	on	the	Norwegian	model	(Smith	et	al.	2014,	model	
IX) is more consistent with predicted and measured total aboveground biomass from this study 
than	predicted	biomass	values	based	on	the	Finnish	model	(Repola	2008,	model	VIII).

Fig. 3. Comparison	to	models	from	literature	for	large	trees	(black	squares	–	measured	total	aboveground	biomass).	
Simplified	models	(a):	I	–	from	this	study	(Table	4),	II	–	Johansson	(1999),	III	–	Varik	et	al.	(2009),	IV	and	V	Uri	et	
al.	(2012)	models	from	Järvselja	and	Kambja	respectively,	VI	–	Liepiņš	(2013).	Expanded	models	(b):	VII	–	form	this	
study	(Table	5),	VIII	–	Repola	(2008),	 IX	–	Smith	et	al.	 (2014)	applied	for	minimum	(h.Min),	mean	(h.Mean)	and	
maximum (h.Max) height for all large trees.
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Both	Estonian	simplified	models	(Uri	et	al.	2012),	representing	the	best	(model	V)	and	the	
worst	fit	(model	IV,	Table	6),	as	well	as	two	expanded	ones	(Repola	2008;	Smith	et	al.	2014,	model	
VIII	and	IX,	respectively),	were	characterized	by	different	correlation	with	models	from	this	study	
(Fig.	4).	In	the	case	of	simplified	models,	the	lowest	correlation	coefficient	was	identified	for	the	
Estonian	model	IV	from	Järvselja	(0.3249),	while	the	highest	was	obtained	for	model	V	(0.9619).	
For	expanded	models,	values	of	correlation	coefficients	were	similar	and	equaled	0.9979	for	model	
VIII and 0.9958 for model IX.

Table 6. Goodness-of-fit	measures	(R2	=	coefficient	of	determination,	RSE	=	residual	standard	error)	for	compared	
models	(numbers	defined	in	Fig.	3).

Model type and  
number

Simplified Expanded
II III IV V VI VIII IX

R2 0.9395 0.9609 0.3249 0.9619 0.9474 0.9236 0.9698
RSE 1.3432 1.0799 4.4856 1.0656 1.2523 1.5141 0.9513

Fig. 4. Correlation between total aboveground biomass estimated with models developed in this study (model I and 
model	VII)	and	estimated	with	the	worst	and	best	fitting	models	from	the	literature:	model	IV	(grey)	and	model	V	
(black),	respectively,	for	simplified	models	(a)	and	model	VIII	(grey)	and	model	IX	(black),	respectively,	for	expanded	
models	(b)	(model	numbers	are	defined	in	Fig.	3).
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 5 Discussion

Forest	management	consists	of	many	tools,	including	growth	and	yield	models,	necessary	for	pre-
diction	and	compilation	of	the	inventory	data.	In	this	paper,	we	present	biomass	models	for	young	
silver birch trees and their different components. We proposed two sets of models for small trees 
of a height below 1.3 m and adequate sets for large trees with dbh greater than zero (height above 
1.3	m).	The	first	set	was	exclusively	based	on	tree	diameter,	while	the	other	also	used	tree	height	
as an additional independent variable.

The majority of so-far developed allometric equations model biomass as a function of dbh 
only,	since	 this	parameter	 is	 the	easiest	 tree	attribute	 to	measure.	Zianis	et	al.	 (2005)	 list	only	
30.3% out of the 607 equations that are based on both height and dbh. The inclusion of tree height 
as a variable in allometric equations was studied by various authors (e.g. Xiao and Ceulemans 
2004;	Cienciala	et	al.	2006;	Bronisz	and	Zasada	2016).	According	to	Marklund	(1987),	Socha	
and	Wężyk	(2007),	or	Ruiz-Peinado	et	al.	(2011),	inclusion	of	tree	height	improves	aboveground	
biomass	estimates.	On	the	contrary,	Jenkins	et	al.	(2003)	as	well	as	Peichl	and	Arain	(2006)	found	
that	height	is	an	undesirable	variable	due	to	the	difficulties	in	accurate	measurements	and	only	
marginal	improvements	of	dbh-based	equations.	In	case	of	models	for	small	trees,	application	of	
tree	height	gives	better	biomass	estimates	than	using	only	diameter	at	ground	level,	as	reported	
by	Dutca	et	al.	(2010).	However,	Pajtík	et	al.	(2008)	found	that	stem	base	diameter	offers	slightly	
more	precise	estimates	of	trees	biomass	than	height.	In	our	study,	after	the	inclusion	of	height	as	an	
independent	variable	in	the	allometric	models,	we	observed	a	considerable	increase	in	the	overall	
model accuracy for both biomass components and total aboveground biomass.

The calculation of the biomass of trees that have not reached the height of 1.3 m yet is 
one	of	the	substantial	issues	in	the	estimation	of	biomass	stocks	in	very	young	stands,	especially	
when dbh-based allometric equations are used in general. One solution could be the addition of 
the intercept to the model for large trees (i.e. dbh-based one). This eliminates the model bias cre-
ated	by	forcing	biomass	to	be	zero	when	trees	are	1.3	meters	tall.	However,	the	inclusion	of	an	
intercept in the model for large trees and its application for trees shorter than 1.3 m results in a 
constant	biomass	value	for	these	trees.	This,	in	turn,	gives	biased	estimation	of	the	total	biomass	
of the stand. More logical and less biased results are obtained when the stem base diameter (d0) 
is	applied	in	the	allometric	equations	(Pajtík	et	al.	2008;	Dutca	et	al.	2010).	However,	as	indicated	
by	our	results,	the	extension	of	this	parameter	usage	for	trees	that	already	have	dbh	results	in	a	
decrease of the model accuracy.

An	important	aspect	of	our	study	is	the	consideration	of	various	tree	components	in	biomass	
calculations. The principal difference between the presented analysis and formulas developed for 
silver	birch	in	the	Baltic	States	and	Scandinavia	by	Johansson	(1999),	Repola	(2008),	Varik	et	al.	
(2009),	Uri	et	al.	(2012),	Liepiņš	(2013),	and	Smith	et	al.	(2014)	is	based	on	the	fact	that	we	used	
a different approach to equation construction than these authors. The applied seemingly unrelated 
regression method assures the logical condition that the sum of biomass of various components 
is equal to the total tree biomass. Such an approach has an obvious advantage for the practical 
application of the elaborated models (Parresol 1999).

Lack	of	local	biomass	models	forces	practitioners	to	use	the	equations	adopted	from	the	
literature.	Such	a	solution	can	be	justified	and	methodologically	proper;	however,	it	may	result	in	
significant	bias	of	the	obtained	estimates	(Wang	et	al.	2002;	Ochał	et.	al	2014).	Literature-taken	
allometric	models	should	be	carefully	used,	especially	outside	the	range	of	the	parameters	used	
for	their	elaboration.	The	majority	of	the	analyzed	‘not-local’	simplified	models	overestimate	total	
aboveground	biomass	for	thin	(dbh	<	4	cm)	as	well	as	for	thick	(dbh	>	8	cm)	trees,	while	underes-
timate this parameter for medium individuals (dbh 4–8 cm). The equation from Johansson (1999) 
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for	all	trees	yields	higher	biomass	values	than	our	simplified	model.	On	the	other	hand,	the	high	
consistency of total aboveground biomass estimates obtained with the expanded models seems 
to	support	the	concept	of	inclusion	of	height	as	the	additional	parameter	in	biomass	equations,	as	
it increases a chance of reducing bias resulting from the use of equations designed for different 
growing conditions.

It might also be important to consider choosing equations developed for the environmental 
conditions	most	similar	to	those	of	the	respective	study.	The	best	fitting	simplified	model	is	based	
on	the	equations	developed	for	the	stand	growing	on	former	farmland,	while	the	worst	fitting	one	
is based on data for forest stands (Uri et al. 2012).

6 Conclusions

Biomass models based on diameter and height (expanded models) were characterized based on 
better	fit	to	data	than	models	based	exclusively	on	diameter	(simplified	ones),	especially	for	the	
variables	 total	aboveground	and	stem	biomass.	Application	of	 the	diameter	at	ground	 level	 in	
the allometric equations should be restricted to estimation of biomass of trees shorter than 1.3 m 
as	for	the	larger	trees,	diameter	at	breast	height	is	a	better	biomass	predictor	in	both	simplified	
and expanded models. Silver birch biomass estimates derived with models from the neighboring 
countries	are	generally	consistent	with	those	determined	with	equations	presented	in	this	study,	
especially for the expanded models and as far as tree parameters such as dbh and/or height are 
similar to those used in model parametrization.
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