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Highlights
•	 An airborne laser scanning grid-based approach for determining stand structure enabled 

bi-	or	multimodal	predicted	distributions	that	fitted	well	to	the	ground-truth	harvester	data.
•	 EMO	and	Trestima	applications	needed	stand-specific	inventory	for	sample	measurements	

or sample photos, respectively, and at their best, provided superior accuracy for predicting 
certain stand characteristics.

Abstract
Accurate	timber	assortment	information	is	required	before	cuttings	to	optimize	wood	allocation	
and logging activities. Timber assortments can be derived from diameter-height distribution that 
is most often predicted from the stand characteristics provided by forest inventory. The aim of this 
study	was	to	assess	and	compare	the	accuracy	of	three	different	pre-harvest	inventory	methods	in	
predicting the structure of mainly Scots pine-dominated, clear-cut stands. The investigated methods 
were	an	area-based	approach	(ABA)	based	on	airborne	laser	scanning	data,	the	smartphone-based	
forest inventory Trestima app and the more conventional pre-harvest inventory method called 
EMO.	The	estimates	of	diameter-height	distributions	based	on	each	method	were	compared	to	
accurate tree taper data measured and registered by the harvester’s measurement systems during the 
final	cut.	According	to	our	results,	grid-level	ABA	and	Trestima	were	generally	the	most	accurate	
methods	for	predicting	diameter-height	distribution.	ABA	provides	predictions	for	systematic	16	m	
×	16	m	grids	from	which	stand-wise	characteristics	are	aggregated.	In	order	to	enable	multimodal	
stand-wise	distributions,	distributions	must	be	predicted	for	each	grid	cell	and	then	aggregated	for	
the stand level, instead of predicting a distribution from the aggregated stand-level characteristics. 
Trestima	required	a	sufficient	sample	for	reliable	results.	EMO	provided	accurate	results	for	the	
dominating	Scots	pine	but,	it	could	not	capture	minor	admixtures.	ABA	seemed	rather	trustworthy	
in predicting stand characteristics and diameter distribution of standing trees prior to harvesting. 
Therefore,	if	up-to-date	ABA	information	is	available,	only	limited	benefits	can	be	obtained	from	
stand-specific	inventory	using	Trestima	or	EMO	in	mature	pine	or	spruce-dominated	forests.
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1  Introduction

In	the	prevailing	Nordic	harvesting	system,	trees	are	cut	to	final	lengths	in	the	forest.	Efficient	manu-
facturing	of	both	existing	and	new	wood	and	fibre-based	products	can	be	considerably	enhanced	
by improved recognition and optimization of harvesting, transportation and product manufactur-
ing	procedures.	To	make	wood	supply	systems	more	efficient,	the	physical	manufacturing	of	each	
product should start in the forest, not at industrial sites. The potential economic gain from initiating 
more	advanced	production	processes	at	the	beginning	of	the	supply	chain	may	well	be	10–40%	of	
the	value	of	the	end	products	before	retailing	(Uusitalo	et	al.	2008).	With	better	fitness	and	inte-
gration	of	the	forestry	procedures	into	the	industrial	production	chains,	higher	process	efficiency	
and	increased	profitability	can	be	realized.	Consequently,	considerably	lower	emissions	and	lower	
energy	consumption	could	be	achieved	as	well.

The	 current	 harvesting	 and	 transportation	 processes	 used	 in	 the	Nordic	 countries	 were	
recently thoroughly described and modelled (Nurminen et al. 2006; Nurminen and Heinonen 
2007; Niemistö et al. 2012). Moreover, costs can be assigned by the activity-based costing tech-
nique	for	each	log	(product)	cut	by	a	harvester,	extracted	to	the	roadside	by	a	forwarder	and	trans-
ported	by	a	timber	truck	to	the	mill	(Nurminen	et	al.	2009).	It	is	also	possible	to	make	accurate	
estimations	about	the	costs	and	revenues	of	producing	a	final	product	from	a	single	log.	Recent	
findings	showed	that	cost	structure	for	different	 type	of	 logs,	 in	 terms	of	quantity	and	quality,	
may differ considerably in each manufacturing process (Korpunen et al. 2010; Korpunen et al. 
2013). With the help of the process models described above it is possible to calculate optimal 
wood	allocation	solutions	–	what	products	are	cut	and	from	which	stand.	However,	reliability	of	
these calculations is highly dependent on the quality of the information available from the stand 
prior to cutting.

In	Finland,	the	earliest	method	for	obtaining	timber	assortment	information	prior	to	cut-
ting	was	the	PMP	system,	which	was	based	on	measuring	the	diameter	at	breast	height	(dbh)	of	
every	tree	(PMP-ohje	1982).	The	method	provided	accurate	estimates	at	the	stand	level,	but	the	
system	was	found	to	be	too	laborious	and	expensive.	After	that,	the	common	practice	for	obtain-
ing	information	on	timber	assortments	prior	to	cutting	was	based	on	stand-wise	field	inventory	
(SWFI).	In	SWFI,	every	stand	has	been	visited	by	a	forest	planner,	and	stand	characteristics	have	
been derived from relascope measurements and/or visual assessment. The main purpose of the 
SWFI	has	been	collecting	information	for	forest	planning	and	thus	it	has	been	conducted	on	an	
approximate	10-year	interval.	If	the	SWFI-based	information	is	outdated	for	the	area	of	interest,	
a	similar	inventory	would	have	been	implemented	for	stands	to	be	harvested.

During the past decade in forest mapping and monitoring applications, the possibility of 
acquiring spatially accurate, 3D remote-sensing information by means of airborne laser scanning 
(ALS)	has	been	a	major	opportunity	(Holopainen	et	al.	2014).	An	ALS-based	forest	 inventory	
method	in	which	low	density	(~0.5	pulses	per	m2)	ALS	data	are	used	to	generalize	field-measured	
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stand	characteristics	over	an	entire	inventory	area	has	replaced	SWFI.	Compared	to	SWFI,	the	
ALS-based	inventory	method,	also	known	as	area-based	approach	(ABA),	has	provided	a	compa-
rable	or	even	more	precise	estimation	of	stand	characteristics	as	well	as	cost	savings	(Suvanto	et	
al. 2005; Haara and Korhonen; Uuttera et al. 2006; Järnstedt et al. 2012; Holopainen et al. 2010). 
Although	the	 total	 timber	volume	is	obtained	with	relatively	high	accuracy,	 information	about	
size-distribution,	timber	assortments	or	the	number	of	trees	has	reliability	no	better	than	SWFI	
(Næsset	et	al.	2004;	Holopainen	et	al.	2010).	Currently,	pre-harvest	information	is	obtained	from	
ABA,	but	reliability	of	the	information	is	inspected	in	the	field	and	additional	measurements	are	
carried out if required (Suomen metsäkeskus 2014).

To	achieve	further	cost-saving,	ABA	should	be	linked	with	the	planning	systems	of	the	wood	
supply	chain.	If	accuracy	of	the	ABA	is	not	satisfactory,	additional	pre-harvest	information	should	
be	collected	by	cost-efficient	means	in	the	field.	The	possible	alternatives	include,	for	example	
the	EMO	method	(Uusitalo	and	Kivinen	2000)	as	well	as	the	smartphone-based	app	and	inven-
tory	method,	Trestima	(Rouvinen	2014),	which	are	based	on	subjective	cruising	along	the	stand	
combined	with	sample	measurements	or	sample	photos,	respectively.

The	timber	assortment	information	can	be	calculated	from	species-specific	dbh	distribu-
tions.	In	the	PMP	system	dbh	distributions	were	obtained	by	measuring	the	dbh	of	every	tree	and	
tree	heights	were	predicted	using	a	stand-specific	height	curve	fitted	for	 the	sample	 trees	with	
measured	dbh	and	height.	In	ABA,	Trestima	and	EMO	inventories,	stand	characteristics,	such	as	
species-specific	number	of	stems	(N, ha–1), basal-area (G, m2ha–1),	basal-area	weighted	mean	dbh	
(DG,	cm),	Lorey’s	height	(HG, m) and stem volume (m3ha–1) are obtained.

Stand-level information is converted into tree-level information through size distribution 
modelling,	which	means	selecting	the	distribution	function	and	the	distribution	modelling	approach	
(Cao	2004;	Siipilehto	2011).	Diameter	distributions	are	presented	as	either	unweighted	with	respect	
to	tree	frequency	(i.e.,	dbh-frequency	distribution)	or	weighted	with	respect	to	tree	basal	area	(i.e.,	
basal	area-dbh	distribution)	(Gove	and	Patil	1998).	Weighting	affects	the	shape	of	the	distribution	
(Gove	and	Patil	1998;	Siipilehto	1999)	and	it	has	been	commonly	used	in	Finland	for	beta,	Weibull	
or	Johnson’s	SB	distribution	(Päivinen	1980;	Kilkki	et	al.	1989;	Maltamo	et	al.	1995;	Siipilehto	
1999).	In	the	parameter	recovery	method,	the	input	mean	(e.g.	DG) and sum characteristics (G and 
N)	are	compatible	with	those	of	the	solved	distribution.	Thus,	when	basal	area	and	number	of	stems	
are	compatible,	the	used	mean	dbh	(e.g.	arithmetic	vs.	basal	area-weighted	mean)	or	weighting	of	
dbh distribution has only marginal meaning (Siipilehto and Mehtätalo 2013). Finally, tree height 
is	predicted	for	the	known	dbh	sampled	from	the	predicted	distribution.	One	option	is	a	bivariate	
dbh-height	distribution	(Schreuder	and	Hafley	1977;	Siipilehto	2000;	Wang	and	Rennols	2007)	
but	typically	height	is	predicted	using	a	commonly	known	height	curve	(see	Mehtätalo	et	al.	2015	
for	e.g.	Chapman-Richards,	Curtis,	Korf,	Näslund,	Prodan,	Schumacher	curve).	The	predicted	
height curve is used for the expected tree height, or tree height is randomized utilizing the standard 
deviation of the residual error (Mehtätalo 2005; Siipilehto 2000; Siipilehto and Kangas 2015). 
The	reliability	of	the	predicted	stand	characteristics	followed	by	size	distributions	determines	the	
quality of the pre-harvest information (Holopainen et al. 2010).

The	aim	of	this	study	was	to	assess	and	compare	the	accuracy	of	three	pre-harvest	inventory	
methods in predicting a dbh-height distribution in boreal forest stands marked for clear-cutting. The 
investigated	methods	were	ABA,	Trestima	and	EMO	inventories.	Trestima	and	EMO	inventories	
require	stand-specific	cruising	whereas	ABA	does	not	require	stand-specific	field	measurements.	
The	predicted	dbh	and	height	distributions	based	on	these	methods	were	compared	to	accurate	tree	
taper data measured and registered by a harvester’s measurement system.
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2 Materials and methods

2.1 Study area and measurement of ground-truth data

The study material comprised seven stands from southern Finland, situated in the municipalities of 
Hämeenlinna,	Orimattila	and	Myrskylä	(Table	1).	The	sites	were	grove-like	(OMT),	mesic	(MT)	
and	dryish	(VT)	heath	(Cajander	1925).	The	forests	were	dominated	by	Scots	pine	(Pinus sylves-
tris L.)	or	Norway	spruce	(Picea abies (L.)	Karst.)	and	were	roughly	90	to	120	years	in	age.	Most	
stands also contain a minor birch admixture (Betula pendula Roth or B. pubescens Ehrh.). Four 
stands	were	owned	by	the	HAMK	University	of	Applied	Sciences	and	the	remaining	three	stands	
were	privately	owned.	All	stands	had	updated	forest	plans	based	on	the	SWFI	method.	The	stands	
were	marked	with	coloured	ribbons	to	allow	easy	detection	of	the	boundaries	during	harvesting.	
Stand	boundaries	were	then	digitized	using	ArcGIS	software.

The	study	stands	were	clear-cut	during	autumn	2014	with	three	harvesters:	two	manufactured	
by John Deere and one by Komatsu. While processing, tree taper data for each commercial tree is 
registered	in	the	STM-format	(StandForD	1997),	in	which	tree	diameter	is	registered	to	an	accuracy	
of	1	mm	every	10	cm	from	the	height	of	1.3	m	from	the	stump	(10	cm)	to	the	final	cutting	point.	
Cubing	of	trees	was	calculated	by	summing	the	stem	profile	in	10	cm	intervals.	Species-specific	
functions	by	Laasasenaho	(1982)	were	applied	for	cubing	of	the	first	1.3	metres	that	harvester	does	
not	register.	The	missing	top	of	a	tree	was	estimated	with	the	models	by	Varjo	(1995)	having	the	
root	mean	square	error	(RMSE)	of	73	cm	(27%),	69	cm	(21%)	and	107	cm	(22%)	for	Scots	pine,	
Norway	spruce	and	birch,	respectively.	Varjo’s	models	are	relevant	when	assuming	the	minimum	
of	the	timber	length	to	be	1.5	m	and	the	last	cut	diameter	5–10	cm.	The	last	condition	was	not	
always	fulfilled	and	thus,	a	restriction	for	total	height	was	needed	in	order	to	avoid	unrealistic	tree	
heights.	The	maximum	tree	height	was	limited	by	the	simple	function	hmax	=	5√dbh	resulting	in,	
e.g.,	hmax	of	31.6	m,	when	dbh	is	40	cm	and	hmax	of	35.4	m	with	dbh	of	50	cm.	Without	restric-
tion	the	known	tallest	trees	in	Finland	were	exceeded	in	some	cases	due	to	the	last	cut	diameter	
being	around	15	cm.	Species-specific	thresholds	for	the	minimum	commercial	dbh	were	7,	8	and	
6	cm	for	Scots	pine,	Norway	spruce	and	birch,	respectively.	The	stand	characteristics	based	on	
harvester	measurements	are	shown	in	tables	1	and	2.	Table	2	includes	all	the	stand	characteristics	
that	are	used	for	validating	different	inventory	methods.	They	are	given	as	species-specific	and	as	
stand total characteristics (Table 2).

Table 1. General	characteristics	of	the	study	stands.	Volumes	of	trees	are	calculated	from	the	harvester	data.

No Area ha Site type Volumes Latitude Longitude	 Municipality
Pine

m3/ha
Spruce
m3/ha

Birch
m3/ha

Total
m3/ha

1 1.7 VT 194 3.2 2.9 200 61.2149 25.0953 Hämeenlinna
2 1.1 VT 206 5.8 4.5 216 61.2061 25.0981 Hämeenlinna
3 1.6 OMT 188 30 18 236 61.1976 25.1361 Hämeenlinna
4 0.7 MT 268 388 30 686 61.1822 25.1523 Hämeenlinna
5 1.6 MT/VT 142 104 40 286 61.2043 25.0651 Hämeenlinna
6 0.7 MT 218 359 9.5 586 60.9049 25.6822 Orimattila
7 2.0 VT 106 47 19 172 60.7142 25.8791 Myrskylä
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2.2 Airborne laser scanning-based forest inventory

2.2.1	General	workflow

When	predicting	species-specific	stand	characteristics	and	tree	lists	for	marked	stands,	best	practices	
of	the	ALS-based	forest	inventory	were	followed	(White	et	al.	2013).	In	the	used	approach,	sample	
plots	were	distributed	over	the	study	area	based	on	ALS	data.	Then	tree-by-tree	measurements	
were	collected	from	the	sample	plots.	After	that,	ALS	metrics	were	calculated	from	the	respective	
areas	and	predictive	models	were	developed	between	the	field	measured	stand	characteristics	and	
ALS	metrics.	Finally,	stand	characteristics	were	predicted	for	a	systematic	grid	with	a	resolution	
corresponding	to	plot	size.	These	steps	are	described	in	more	detail	in	the	following	subsections.	
It	should	be	noted	that	sample	plots	used	in	ABA	located	around	the	studied	stands,	not	within	
the stands.

2.2.2 Sample plot inventory for ABA

The	field	data	consisted	of	individual	tree	measures	for	364	plots	around	the	Hämeenlinna	test	site	
(Yu	et	al.	2015),	each	with	a	size	of	16	m	×	16	m.	Sampling	of	the	field	plots	was	based	on	pre-
stratification	of	existing	airborne	laser	scanning	data	to	distribute	plots	over	various	stand	height	
and	density	 classes.	The	plots	were	georeferenced,	 i.e.,	 spatially	 located,	 to	 a	map	coordinate	
system	using	GNSS	and	total	station	measurements	with	an	expected	accuracy	better	than	10	cm.	
Field	measurements	were	collected	during	the	summer	2014	from	May	to	August.	The	following	
variables	were	measured	for	trees	with	a	dbh	larger	than	5	cm:	tree	species,	dbh,	and	height.	Stem	
volumes	were	calculated	according	to	models	developed	by	Laasasenaho	(1982)	using	tree	species,	
dbh,	and	height	as	input	variables.	Plot-level	estimates	were	obtained	by	summing	the	tree-level	
data.	An	average	of	23	trees	was	measured	per	field	plot.	Mean,	standard	deviation	and	the	range	
of	these	characteristics	are	shown	in	Table	3.

Table 2. The average ground-truth stand characteristics calculated from harvester data (Cut trees).

Cut trees N, ha–1 G, m2ha–1 DG, cm HG, m V, m3ha–1 Log,	m3ha–1 Pulp,	m3ha–1

pine 240.2 17 31.9 26.4 188.8 149.8 38.4
spruce 249.8 11.3 27 22.1 133.7 113.6 18.8
broadleaves 57.2 1.8 25.5 21.4 17.7 6.2 11.3
Total 547.3 30.1 30.3 25.3 340.4 269.7 68.5

N denotes number of stems, G basal area, DG	basal	area-weighted	mean	diameter,	HG	Lorey’s	height,	V	total	volume,	Log	log	wood	
volume	and	Pulp	pulp	wood	volume.

Table 3. The	descriptive	statistics	of	8763	trees	from	364	sample	plots	of	16	×	16	m	used	for	ABA	modelling	around	
the Hämeenlinna test site (e.g. Yu et al. 2015).

minimum maximum mean Standard deviation

N, ha–1 195 3242 940 596
G, m2ha–1 3.7 57.3 26.8 9.2
DG, cm 10.4 53.0 25.7 7.9
HG, m 7.6 33.2 21.0 4.5
V, m3ha–1 21.3 786.1 270.1 123.8
Tree dbh, cm 5.0 71.9 16.6 9.4

N denotes number of stems, G basal area, DG	basal	area-weighted	mean	diameter,	HG	Lorey’s	height,	V total volume.
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2.2.3 ALS data and extraction of predictors

The	ALS	data	collection	was	carried	out	in	May	2014	by	the	National	Land	Survey	of	Finland	
using	the	ALS50	airborne	laser	scanner.	The	used	aircraft	was	OH-CAN	Turbo	Commander	and	
the	flying	altitude	was	2500	m	at	a	speed	of	333	km	h–1 (92.6 ms–1, 180 knots). The scan angle 
of	40	degrees	was	used	and	the	density	of	the	first	pulse	echoes	returned	within	the	plots	was	0.6	
hits per m2.	Digital	 terrain	model	(DTM)	and,	consequently,	heights	above	ground	level,	were	
computed	by	the	data	provider.	The	expected	accuracy	of	the	ALS-derived	DTM	varies	in	boreal	
forest	conditions	by	around	10–50	cm	(Hyyppä	et	al.	2009).	Statistical	metrics	describing	canopy	
structure	were	extracted	for	the	sample	plots	(16	m	×	16	m)	following	suggestions	by	White	et	
al. (2013).

2.2.4	Prediction	of	species-specific	stand	characteristics

Species-specific	N, G, DG, HG	and	volume	were	predicted	by	means	of	ALS	metrics	using	the	
nearest-neighbour	(NN)	approach.	Stand	characteristics	measured	in	the	field	were	used	as	target	
observations,	and	plot-specific	metrics	derived	from	ALS	were	used	as	predictors.	The	random	
forest	approach	(RF,	Breiman	2001)	was	applied	in	the	NN	search.	In	the	RF	method,	several	
regression	trees	are	generated	by	drawing	a	replacement	from	two-thirds	of	the	data	for	training	
and one-third for testing for each tree. The samples that are not included in training are called 
out-of-bag samples, and they can act as a testing set in the approach. The measure of nearness in 
RF	is	defined	based	on	the	observational	probability	of	ending	up	in	the	same	terminal	node	in	
the	classification.	The	R	statistical	computing	environment	and	yaImpute	library	(Crookston	and	
Finley	2008)	were	applied	in	the	RF	predictions.	In	the	present	study,	1200	regression	trees	were	
generated,	and	the	square	root	of	the	number	of	predictor	variables	was	picked	randomly	at	the	
nodes	of	each	regression	tree.	The	number	of	neighbours	was	set	to	one	to	keep	the	original	vari-
ance in the data (Hudak et al. 2008).

Prior	to	the	final	modelling,	RF	was	used	to	reduce	the	number	of	predictor	variables.	The	
aim	of	the	variable	reduction	was	to	build	up	parsimonious	models	that	are	capable	of	accurate	
predictions.	A	step-wise	looping	procedure	was	used	to	iterate	RF,	discarding	the	least	important	
of the candidate variables at each iteration, based on variable importance. The used predictors in 
the	final	imputations	were	penetration	of	the	laser	pulses,	mean,	standard	deviation	and	maximum	
laser	height	as	well	as	percentiles	(30%,	50%,	70%	and	90%)	calculated	from	point	height	dis-
tribution.	To	improve	accuracy	of	the	species-specific	estimates,	the	marked	stands	were	divided	
into	three	strata	according	to	existing	stand	register	information.	The	first	stratum	included	Scots	
pine-dominated	stands,	the	second	stratum	Norway	spruce-dominated	stands	and	the	third	stratum	
Scots	pine-dominated	stands	with	Norway	spruce	mixture.	The	first	stratum	comprised	185	sample	
plots	as	the	second	and	third	strata	had	104	and	26	sample	plots,	respectively.	The	final	imputations	
were	carried	out	for	each	stratum	separately.

The	study	stands	appeared	as	geo-referenced	polygons	while	the	results	of	the	ALS	inven-
tory	are	input	as	16	m	×	16	m	grid	cells.	Match	of	each	grid	in	relation	to	stand	boundaries	were	
analysed	with	ArcGIS	software.	The	proportion	of	the	pixels	(1.3	m2)	within	each	16	m	×	16	m	
cell	that	locate	inside	the	stand	polygon	was	calculated.	The	lidar	metrics	from	imperfect	grid	cells	
were	weighted	with	this	proportion	1)	when	the	stand	characteristics	for	each	stand	were	summed	
from	the	grid	level	predictions	and	2)	when	the	number	of	trees-based	sample	size	was	calculated	
for the boundary grids.
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2.3 Trestima app for standwise forest inventory

The	Trestima	app	for	stand-wise	forest	inventory	is	based	on	image	analyses	of	photos	taken	with	
a	smartphone.	Photos	taken	with	the	Trestima	app	are	transferred	to	the	Trestima	cloud	service	
(Rouvinen 2014; Trestima 2015). Trestima’s basal area calculation is fundamentally based on the 
principles	of	the	Bitterlich	(1984)	relascope.	Trunk	widths	and	heights,	as	well	as	tree	species	from	
each sample, are measured in the cloud service.

The	angle	count	sampling	principle	in	the	app	uses	a	dynamic	basal	area	factor	where	a	
single tree leads to a response of basal area of 0.6 to 1.4 m2ha–1	(Vastaranta	et	al.	2015).	The	total	
basal area is then obtained by multiplying the number of trees by their respective basal area factor. 
Species-specific	basal	area	can	be	calculated	in	a	similar	way	but	by	tree	species.	The	Trestima	app	
calculates mean error of basal area after each basal area shot and thus actively instructs the user to 
take an additional image or not. Trestima inventory is based on freely chosen cruising along the 
stand. Estimation of standing volumes and timber assortments requires some information about 
tree	heights.	Trestima	allows	the	user	to	input	median	tree	dbh	and	tree	heights	manually,	but	these	
can also be measured by shooting extra diameter and tree height photos. Once the sample tree is 
selected, a yardstick is attached to the surface of the trunk and special tree diameter and tree height 
photos	are	taken	separately.	It	is	recommended	to	measure	at	least	2–3	median	trees	for	each	tree	
species	from	the	whole	stand	(Trestima	2015).

The	Trestima	 application	was	 utilized	 differently	 from	 the	 application’s	 general	 guide-
lines. At the inventory phase, a fixed	 number	 of	 ten	 basal	 area	 shots	 were	 taken	 from	 each	
stand.	 In	 addition,	more	 than	 thirty	 trees	 per	 each	 stand	were	 photographed	 for	 tree	 dbh	 and	
tree	 height	 for	 a	 forthcoming	 tree	 quality	 study.	 In	 order	 to	 modify	 the	 sampling	 to	 resem-
ble	 the	 typical	 Trestima	method,	 the	 following	modifications	 were	 made.	At	 the	 office,	 four	
sample trees around the estimated mean dbh (D,	 cm)	 were	 chosen	 for	 estimating	 the	 mean	
height (H, m). Finally, H	was	 calculated	 from	 the	 fitted	 stand-specific	 trendline,	 i.e.	h	 =	a + 
b×dbh by inputting D	 to	 the	 equation.	 Thus,	 the	 Trestima	 app	 determined	 species-specific	
basal area, mean dbh, quadratic mean dbh (Dq, cm), mean height and the number of stems in 
the cloud service.

2.4 A pre-harvest measurement tool EMO for predicting stand structure

The EMO method employs combined nearest trees/basal area sampling and modelling applications 
to create estimation of forest composition (Uusitalo 1997; Uusitalo and Kivinen 1998; Uusitalo 
and	Kivinen	2000).	In	this	method	the	measurer	walks	along	a	subjectively	chosen	route	inside	
a	forest	stand	and	distribute	certain	number	of	sampling	points	evenly	within	the	stand.	For	each	
sampling	point	a	certain	number	of	the	nearest	trees	are	selected	as	sample	trees.	Breast	height	
diameter is measured from every sample tree. From Scots pines, dead branch height is measured 
as	well.	In	order	to	calibrate	the	height	and	crown	height	models,	some	sample	trees	need	to	be	
measured	also	for	these	variables.	Beside	the	nearest	trees’	selection,	the	basal	area	of	the	stand	is	
determined by using a relascope.

Within	the	study	stands,	 the	six	nearest	 trees	were	measured	for	dbh	from	five	different	
sampling points (30 sample trees per stand). At each sampling point one relascope measurement 
was	carried	out	for	basal	area.	In	addition,	one	tree	for	each	species	at	each	sampling	point	was	
measured for tree height.
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2.5 Prediction of dbh distribution and tree height

2.5.1 Weibull in ABA and Trestima

Theoretic	dbh	distributions	were	solved	using	parameter	recovery	for	the	two-parameter	Weibull	
function (Siipilehto and Mehtätalo 2013). The needed second moment (Dq2)	was	obtained	from	
the predicted basal area and number of stems as G/qN (q	=	π/2002).	Predicted	basal	area-weighted	
mean dbh (DG)	was	used	as	an	input	variable	with	ABA	while	the	first	moment	(arithmetic	mean	
dbh, D)	was	used	with	Trestima.	There	is	basically	no	difference	in	the	recovered	Weibull	distribu-
tions solved from D or DG as far as these input mean characteristics are as accurate (Siipilehto and 
Mehtätalo 2013). Further, Weibull dbh-frequency distribution can easily be transformed to a basal 
area-weighted	distribution	(see	Gove	and	Patil	1998;	Siipilehto	and	Mehtätalo	2013).	Throughout	
this	study,	dbh-frequency	distribution	was	recovered.

ABA	provided	predicted	stand	characteristics	for	16	m	×	16	m	grid	cells.	Thus,	there	were	
two	possibilities	for	estimating	stand-specific	dbh	distribution	based	on	ABA:	1)	By	predicting	dbh	
distribution for each grid cell and summing those (ABA grid) and 2) averaging stand characteris-
tics predicted for the grid cells and then predicting dbh distribution from the average of the mean 
characteristics (ABA stand).	Both	approaches	were	tested.	Because	the	number	of	neighbours	was	
set	to	one	in	the	ABA,	quite	many	grid	cells	within	a	stand	had	equal	imputed	stand	characteristics.	
This means that using dbh-distribution models deterministically (i.e. systematic sampling and 
expected	tree	height)	would	provide	identical	trees/dbh	distribution	for	these	grids.	(Similarly,	if	
the	measured	trees	are	used	as	such,	they	are	identical	whenever	the	same	plot	is	used).	This	seems	
unrealistic	and	inefficient	from	a	natural	perspective.	Thus,	we	applied	random	sampling	from	a	
predicted dbh distribution for each grid. The interpreted number of trees per hectare (N)	by	ABA	
was	divided	by	39	(one	tree	in	a	grid	represents	39	trees	ha–1) in order to get the sample size for a 
grid. We sampled trees from the predicted cumulative probability distribution by randomizing the 
probability (P)	from	the	uniform	0–1	distribution.	The	cumulative	Weibull	distribution	function	
is	F(dbh)	=	1	–	exp{-(dbh/b)c}	and	the	tree	dbh	is	solved	as	dbh	=	b{-ln(1-P)}(1/c)	where	b and c 
are	the	scale	and	shape	parameters	(Bailey	and	Dell	1973).

	In	order	to	test	the	significance	of	the	number	of	images	on	the	accuracy	of	the	Trestima	
method,	two	alternatives	were	formed:	1)	dbh-frequency	distribution	predicted	from	average	stand	
characteristics interpreted from all ten images by the Trestima application (Trestima 10) and 2) 
using only half of the images in the analysis (Trestima 5). (Each image analysed in Trestima app 
has	fixed	expense).	The	Trestima	interface	includes	a	function	to	disable	or	enable	usage	of	the	
image	in	calculations.	Disabling	every	second	basal	area	image	in	chronological	order	was	regarded	
as	a	suitable	way	to	reduce	the	number	of	images	from	ten	to	five.

Randomly	sampled	tree	dbh	from	the	recovered	Weibull	distribution	was	used	with	the	ABA 
grid	method	while	tree	frequencies	in	1-centimeter	intervals	were	calculated	from	the	recovered	dbh-
frequency distributions for further analyses using ABA stand, Trestima 5 and Trestima 10 methods.

2.5.2 Kernel in EMO

In	the	EMO	inventory	method,	the	dbh	distribution	of	the	stand	is	calculated	from	the	nearest	trees’	
selections	and	the	basal	area	of	the	stand	is	calculated	from	the	relascope	measures	with	a	basal	
area factor of 1. Diameter distribution is then constructed by the nonparametric estimation meth-
odology employing the Epanechikov function as the kernel estimator (Uusitalo and Kivinen 1998). 
The dbh distributions of each tree species are proportioned to the real scale according to the mean 
of the relascope measures and sum of each tree species’ basal area calculated from sample trees.
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The	original	distribution	in	2-cm	classes,	constructed	by	the	EMO	software,	were	transformed	
to	1-cm	classes	to	enable	similar	comparison	with	ABA	and	Trestima	methods.

2.5.3 Tree height

Tree height predictions are based on Näslund’s height curve. The parameters of the Näslund’s 
height	curve	were	predicted	with	stand	characteristics	using	models	by	Siipilehto	and	Kangas	
(2015).	These	models	provide	predictions	for	Scots	pine,	Norway	spruce,	and	broadleaves	(mainly	
birch species). The models also include predictions for the standard deviation of the residual 
error	in	the	form	of	a	variance	function.	Random	deviation	was	added	to	the	predicted	tree	height	
resulting	 in	 realistic	variation	 in	 tree	dimensions	as	well	as	a	 reasonable	marginal	distribution	
of	tree	heights	(see	Siipilehto	2000).	When	the	1-cm	dbh	class	was	used,	the	number	of	random	
tree	heights	were	generated	according	to	the	rounded	predicted	frequency	per	dbh-class,	when	
it	was	less	than	or	equal	to	5	trees	ha–1.	However,	a	maximum	of	five	random	heights	per	dbh-
class	were	regarded	adequate,	no	matter	how	high	the	predicted	frequency	was.	The	average	total	
number	of	generated	trees	was	approximately	220	and	ranged	from	85	to	415	trees	per	stands	in	
ABA stand, Trestima and EMO	methods.	Note	that	predicted	trees	with	a	dbh	below	commercial	
limit	were	deleted.

2.6  Validation

The	compared	methods	were	ABA grid, ABA stand, Trestima 10, Trestima 5 and EMO.
We focused on the predicted stand characteristics needed for recovering the dbh distribu-

tion	and	finally	analysed	the	accuracy	in	the	volume	estimates	between	the	alternative	methods.	
The	ground-truth	data	was	the	harvester	measured	data	by	tree	species	(Cut trees). Stand char-
acteristics such as N, G, DG and HG,	total	stem	volume,	log	and	pulp	wood	volumes	were	cal-
culated	species-specific	as	well	as	stand	 totals	and	 they	were	compared	 to	harvester	measured	
data.	Based	 on	 differences	 between	 the	 ground-truth	 and	 evaluated	methods,	 bias	 and	RMSE	
was	calculated.

The	Kolmogorov-Smirnov	one-sided	goodness-of-fit	test	(KS)	was	applied	for	the	predicted	
dbh	distributions	using	the	alpha	0.1	risk	level.	Alpha	0.1	risk	level	was	chosen	due	to	small	data	
set.	Predicted	distributions	were	compared	with	the	ground-truth	distribution	of	the	cut	trees	(tree	
species pooled) in each clear-cut stand. When the number of sampled trees (n) exceeded 100, the 
approximate	limit	value	was	calculated	as	√(-ln(alpha/2)/2n)	(Sokal	and	Rohlf	1981).	In	practice,	
we	calculated	the	KS-quotient	as	the	actual	KS	value	divided	by	the	limit	KS	value	(Tham	1988).	
Thus,	when	the	KS-quotient	was	below	one,	the	predicted	distribution	passed	the	test	and	vice	
versa;	a	KS-quotient	above	one	meant	a	rejected	case.	Generally,	the	KS-quotient	can	be	used	
for ranking different methods regardless of the sample sizes (Tham 1988; Siipilehto 2000). The 
KS	test	measures	the	maximum	difference	between	compared	distributions.	Error-Index	(EI)	by	
Reynolds	et	al.	(1988),	instead,	measures	the	differences	along	the	whole	distribution.	EI	is	the	
sum	(or	weighted	sum)	of	the	absolute	values	of	the	differences	in	the	real	or	relative	frequencies	
by	dbh	classes.	In	this	study,	the	differences	were	calculated	between	the	relative	frequencies	in	
1-cm	dbh	classes	without	weighting.

In	order	to	rank	the	applied	methods,	we	counted	the	numbers	of	the	best	and	worst	cases	
by	the	fit	criterions:	bias	and	RMSE	in	stand	characteristics	and	KS	and	EI	goodness-of-fit	tests.
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3 Results

3.1 Accuracy in generated stand structure

Biases	and	RMSEs	for	stand	(total)	and	for	each	species	(pine,	spruce	and	broadleaves)	separately	
are	given	in	Table	4	and	5.	Both	Trestima	alternatives	were	the	least	biased	in	the	predicted	stand	
sum characteristics, N and G (Table 4). ABA grid provided generally the most accurate estimates 
for dimensions (DG and HG)	for	individual	species.	In	addition,	ABA grid resulted in the highest 
bias	only	in	one	case	while,	e.g.,	the	ABA stand	provided	the	highest	bias	in	five	cases	(individual	
species	or	stand	totals)	In	general,	the	most	biased	stand	characteristics	typically	resulted	from	
use of the EMO	method	(6	times	out	of	16	cases).	However,	EMO	was	the	least	biased	in	terms	of	
HG	for	the	whole	data	and	for	Scots	pine.

If	we	look	at	the	stand	totals,	the	largest	biases	were	found	in	the	number	of	stems,	namely	
a 251 ha–1	(46%)	underestimation	by	EMO method and a 181 ha–1	(33%)	overestimation	using	the	
ABA stand	method	(Table	4).	The	worst	result	in	total	basal	area	was	the	underestimation	by	27%	
using the EMO	method.	Scots	pine	was	typically	the	dominant	species	and	its	characteristics	were	
generally	most	accurately	inventoried.	With	Norway	spruce	and	birch	(including	all	broadleaved	
species) admixtures, results varied more. For example, if the applied method did not capture the 

Table 4. Absolute and relative bias in stand characteristics by the optional methods. The best methods by tree species 
and stand totals are highlighted in bold	and	the	worst	are	shown	in	italics.

N,ha–1 G, m2ha–1 DG, cm HG, m Bias% N,	% G,	% DG,	% HG,	%

ABA grid
pine –51.62 –1.64 –1.68 1.97 –21.5 –9.6 –5.3 7.5
spruce 28.51 4.12 4.82 3.32 11.4 36.4 17.8 15.0
broadleaves –43.94 0.01 5.65 1.94 –76.8 0.8 22.2 9.1
Total –67.05 2.49 0.64 2.03 –12.3 8.3 2.1 8.0
ABA stand
pine –52.97 –1.61 –1.19 2.46 –22.1 –9.5 –3.7 9.3
spruce –50.80 3.91 9.93 7.05 –20.3 34.5 36.7 31.9
broadleaves –77.17 –0.50 8.18 3.49 –134.9 –27.9 32.1 16.4
Total –180.94 1.80 3.02 3.27 –33.1 6.0 10.0 12.9
Trestima 5
pine –25.27 0.79 0.37 2.76 –10.5 4.6 1.2 10.4
spruce 29.74 1.53 8.71 8.28 11.9 13.6 32.2 37.5
broadleaves –45.41 –0.23 9.22 9.38 –79.4 –13.0 36.2 43.9
Total –40.95 2.10 1.43 3.07 –7.5 7.0 4.7 12.1
Trestima 10
pine –35.60 0.25 0.34 4.04 –14.8 1.5 1.1 15.3
spruce 40.95 2.17 4.48 4.73 16.4 19.1 16.6 21.4
broadleaves 4.78 0.29 10.52 8.33 8.4 16.5 41.3 39.0
Total 10.13 2.71 0.84 3.16 1.9 9.0 2.8 12.5
EMO 
pine 44.37 0.86 –1.80 1.83 18.5 5.1 –5.6 6.9
spruce 160.09 6.03 6.64 7.92 64.1 53.3 24.6 35.9
broadleaves 46.66 1.17 7.41 9.25 81.5 65.7 29.1 43.3
Total 251.12 8.06 –2.60 1.50 45.9 26.8 –8.6 5.9

N denotes number of stems, G basal area, DG	basal	area-weighted	mean	diameter,	HG	Lorey’s	height.
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admixture	at	all,	the	resulting	error	was	100%.	EMO did not capture birch admixture in stand no. 
1	and	spruce	admixture	in	stand	no.	2,	while	EMO, Trestima 5 and Trestima 10 did not capture 
birch	admixtures	in	stand	no.	4	and	finally	EMO and Trestima 5	in	stand	no.	6.	Both	ABA	methods	
instead detected all the tree species admixtures from all of the stands.

Generally,	the	RMSEs	were	lowest	in	determining	the	mean	characteristics.	RMSE	for	the	
stand DG	varied	between	8–16%	and	for	stand	HG	between	8–18%	(Table	5).	For	total	basal	area	
the	RMSEs	varied	between	25–40%.	Total	number	of	stems	was	the	least	accurately	predicted	
characteristic	with	RMSEs	varying	between	34–58%.	In	terms	of	RMSE,	EMO	was	the	best	per-
forming	method	for	Scots	pine	(Table	5).	The	smallest	RMSE	for	Norway	spruce	and	broadleaves	
admixtures	was	most	frequently	provided	by	Trestima 10 and ABA grid methods. Even if the ABA 
stand	method	provided	the	smallest	bias	in	stand	basal	area,	it	was	never	among	the	best	methods,	
when	comparing	species-specific	biases	or	RMSEs	(Tables	4	and	5).	This	indicates	a	high	variation	
among stand predictions using the ABA stand	method.	Quite	naturally,	the	results	were	generally	
close to those of the ABA grid method. Also, the results by Trestima 5 and Trestima 10	were	close	
to each other but systematically utilizing all 10 images provided a slightly smaller RMSE.

Table 5. Absolute and relative RMSE in stand characteristics by methods. The best methods by tree species and stand 
totals are highlighted in bold	and	the	worst	are	shown	in	italics.

N, ha–1 G, m2ha–1 DG, cm HG, m RMSE% N,	% G,	% DG,	% HG,	%

ABA grid
pine 145.6 7.5 7.1 2.5 60.6 44.0 22.4 9.6
spruce 182.1 10.9 6.2 4.4 72.9 96.4 23.0 19.9
broadleaves 73.5 1.3 10.4 6.5 128.5 70.3 40.8 30.4
Total 193.5 7.8 3.2 2.3 35.4 26.0 10.6 9.3
ABA stand    
pine 150.0 7.9 6.6 3.5 62.5 46.3 20.7 13.2
spruce 204.8 10.6 11.7 8.7 82.0 94.0 43.2 39.4
broadleaves 105.1 1.5 11.6 8.9 183.7 83.7 45.7 41.9
Total 315.6 7.6 5.0 4.6 57.7 25.1 16.4 18.3
Trestima 5    
pine 129.1 6.6 4.6 4.2 53.7 38.7 14.6 15.9
spruce 93.8 5.7 15.6 12.4 37.5 50.6 57.6 56.4
broadleaves 156.2 1.9 17.0 14.2 273.0 108.0 66.8 66.4
Total 240.3 9.3 4.0 4.2 43.9 30.9 13.2 16.5
Trestima 10     
pine 128.7 5.4 2.6 4.7 53.6 31.5 8.2 17.6
spruce 81.5 4.7 10.8 8.2 32.6 41.7 39.9 37.2
broadleaves 52.7 1.2 15.9 12.4 92.2 67.2 62.6 57.9
Total 187.0 9.4 2.5 3.7 34.2 31.3 8.2 14.6
EMO    
pine 60.7 2.7 2.6 2.2 25.3 16.2 8.0 8.3
spruce 230.8 10.1 15.7 12.3 92.4 88.9 58.1 55.6
broadleaves 57.0 1.7 18.7 14.9 99.6 96.2 73.5 69.9
Total 317.4 12.1 3.4 1.9 58.0 40.3 11.1 7.6

N denotes number of stems, G basal area, DG	basal	area-weighted	mean	diameter,	HG	Lorey’s	height.



12

Silva Fennica vol. 50 no. 3 article id 1568 · Siipilehto et al. · Reliability of the predicted stand structure for…

3.2 Reliability in volume characteristics

The ABA grid	performed	the	best	in	terms	of	bias	in	stand	total	stem	volume	and	log	volume	while	
Trestima 5	provided	the	least	biased	estimates	for	stand	total	pulpwood	volume	(Table	6).	The	
least	biased	species-specific	results	were	split	among	ABA	and	Trestima	options.	The	largest	bias	
was	most	often	found	in	the	EMO results (9 out of 12 cases) and all	were	underestimations for 
Norway	spruce	and	broadleaves	admixtures	as	well	as	for	stand	totals	(Table	6).

ABA grid	provided	the	lowest	RMSEs	in	stand	total	and	assortment	volumes	(18–37%)	and	
the EMO	method	the	lowest	(18–21%)	RMSEs	for	Scots	pine	(Table	7).	Trestima 10	was	the	most	
accurate	inventory	method	for	Norway	spruce	and	broadleaves	except	for	broadleaved	species	
pulpwood	volume,	which	was	most	accurately	estimated	by	the	ABA stand method. ABA grid and 
Trestima 10	methods	did	not	result	in	any	worst	result	in	terms	of	RMSE	(Table	7)	but	simulta-
neously, their variants, ABA stand and Trestima 5,	resulted	in	the	highest	RMSE	in	two	and	four	
cases out of 12 cases, respectively. The EMO method generated six the highest RMSE (Table 7).

Table 6. Absolute and relative bias in volume characteristics by methods. The best methods by tree species and stand 
totals are highlighted in bold	and	the	worst	are	shown	in	italics.

Volume,
m3ha–1

Logs,
m3ha–1

Pulp,
m3ha–1

Bias% Volume Logs Pulp

ABA	grid
pine –10.33 –1.62 –9.01 –5.5 –1.1 –22.2
spruce 54.83 51.98 3.56 41.0 45.7 15.8
broadleaves 1.58 1.49 0.17 8.9 23.9 2.4
Total 46.13 51.87 –5.26 13.6 19.2 –7.7
ABA stand
pine –5.09 3.23 –8.15 –2.7 2.2 –21.3
spruce 60.11 63.64 –2.74 44.9 56.0 –14.5
broadleaves 0.29 1.94 –1.35 1.7 31.2 –11.9
Total 55.36 68.85 –12.22 16.3 25.5 –17.8
Trestima 5
pine 23.10 21.87 –1.70 12.2 14.6 –4.4
spruce 38.48 35.51 1.35 28.7 31.2 7.2
broadleaves 1.59 0.30 2.26 9.0 4.7 20.0
Total 59.66 57.70 1.94 17.5 21.4 2.8
Trestima10
pine 19.86 21.82 –1.82 10.5 14.6 –4.8
spruce 30.32 28.29 1.84 22.7 24.9 9.7
broadleaves 7.00 2.78 4.21 39.6 44.6 37.2
Total 57.22 52.91 4.24 16.8 19.6 6.2
EMO 
pine 14.42 8.73 5.53 7.6 5.8 14.4
spruce 80.34 67.70 11.69 60.0 59.6 62.1
broadleaves 12.21 3.33 8.76 69.0 53.4 77.4
Total 107.01 79.78 26.00 31.4 29.6 37.9
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3.3	Goodness-of-fit	test

The	goodness-of-fit	results	varied	substantially	between	inventory	methods.	According	to	 the	
Kolmogorov-Smirnov (KS) test the EMO application resulted in only one rejected case, ABA grid 
and Trestima 10	resulted	in	two,	while	ABA stand	resulted	in	five	rejected	cases	and	finally,	Tres-
tima 5 resulted in a total of six rejection cases out of seven possible (stands) (Table 8). The ABA grid 
method	was	rejected	mainly	because	of	overestimating	the	understory	(spruce)	cohort.	The	number	
of	the	smallest	trees	was	too	high	for	stands	1	and	3	(see	example	in	Fig.	1	for	stand	1).	However,	
sometimes	the	phenomenon	of	a	predicted,	peak	in	small	dimensions,	fitted	the	ground-truth	data	
surprisingly	well	(see	Fig.	2	and	3	for	stands	5	and	7,	respectively).	The	smallest	Error-Index	(EI)	
was	most	often	found	with	the	EMO	method	(Table	8).	In	addition,	the	ABA grid and Trestima 10 
provided	twice	the	best	EI.	Trestima 5 provided the least accurate dbh distributions according to 
goodness-of-fit	statistics	(8	times	the	worst	KS	or	EI	test	result).

Note	that	in	terms	of	goodness-of-fit	statistics,	generally	the	best	method	was	EMO and 
Trestima 10,	which	both	requires	a	visit	to	the	target	stand.

Table 7. Absolute and relative RMSE in volume characteristics by methods. The best methods by tree species or stand 
totals are highlighted in bold and	the	worst	are	shown	in	italics.

Volume,
m3ha–1

Logs,
m3ha–1

Pulp,
m3ha–1

RMSE% Volume Logs Pulp

ABA grid
pine 77.7 60.0 20.3 41.1 40.1 52.8
spruce 140.0 125.5 14.4 104.6 110.4 76.3
broadleaves 14.1 6.6 7.8 80.0 105.6 69.4
Total 111.3 106.1 11.9 32.7 39.3 17.3
ABA stand
pine 77.3 60.4 20.5 40.9 40.3 53.5
spruce 141.7 130.4 15.9 105.9 114.8 84.4
broadleaves 14.2 7.3 7.6 80.2 117.0 67.0
Total 115.2 111.6 20.7 33.8 41.4 30.3
Trestima 5
pine 79.0 66.0 20.8 41.9 44.0 54.3
spruce 85.1 79.9 7.6 63.6 70.3 40.5
broadleaves 14.9 7.5 10.2 84.1 120.7 89.8
Total 146.9 126.9 26.9 43.2 47.1 39.3
Trestima10
pine 65.3 51.8 18.9 34.6 34.5 49.3
spruce 67.1 61.6 6.7 50.1 54.2 35.4
broadleaves 12.9 4.4 8.7 73.0 71.1 77.3
Total 129.2 109.6 25.0 38.0 40.6 36.5
EMO 
pine 34.4 27.0 8.2 18.2 18.0 21.3
spruce 138.3 119.6 17.8 103.3 105.2 94.7
broadleaves 18.5 6.7 12.0 104.4 108.2 106.4
Total 166.0 133.2 33.4 48.8 49.4 48.8
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In	stand	no.	1,	EMO	provided	visually	the	best	fit	and	was	the	only	one	that	passed	the	KS	
test (Fig. 1). Trestima 10	followed	slightly	better	the	observed	distribution	than	Trestima 5, espe-
cially	when	focusing	on	the	largest	dbh	classes	(Fig.	1).	In	stand	no.	5,	Trestima 5	showed	excess	
kurtosis	but,	when	all	ten	images	were	utilized	in	Trestima 10,	the	predicted	distribution	was	one	

Table 8. Goodness	of	fit	tests	using	Kolmogorov-Smirnov	(KS-quotient,	Tham	1998)	and	Error-Index	(Reynolds	et	al.	
1988).	The	smaller	the	value,	the	better	the	fit	is.	KS-quotient	<	1	means	passed	case.	The	best	test	values	by	stands	are	
highlighted in bold and	the	worst	in	italics.

Stand ABA	grid ABA
stand

Trestima
5

Trestima
10

EMO 

1 KS-quotient 1.541 1.341 1.229 1.070 0.695
Error-Index 0.575 0.767 0.616 0.536 0.553

2 KS-quotient 0.744 1.021 2.242 1.226 0.384
Error-Index 0.494 0.809 0.783 0.646 0.393

3 KS-quotient 1.629 1.340 1.774 0.833 0.424
Error-Index 0.467 0.622 0.783 0.499 0.570

4 KS-quotient 0.577 0.796 1.132 0.558 0.678
Error-Index 0.609 0.505 0.618 0.313 0.446

5 KS-quotient 0.859 1.182 1.258 0.618 0.599
Error-Index 0.486 0.669 0.745 0.443 0.394

6 KS-quotient 0.574 0.793 0.608 0.566 0.591
Error-Index 0.477 0.499 0.419 0.328 0.624

7 KS-quotient 0.829 1.005 1.028 0.973 1.045
Error-Index 0.372 0.514 0.803 0.567 0.992

Fig. 1. Example of the breast height diameter (dbh) distributions for stand no. 1. EMO	provided	the	best	fit	for	total	dbh	
distribution (all species together) according to Kolmogorov-Smirnov (KS) and Trestima 10	according	to	Error-Index	
(EI)	goodness-of-fit	tests.
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with	the	best	fit	(Fig.	2).	The	ABA grid	reproduced	the	peaks	and	hollows	of	the	observed	distribu-
tion but the ABA stand resulted in a biased location for the peak for the smallest dbh classes and 
thus,	generated	the	worst	KS	test	values.	Stand	no.	7	had	a	decreasing,	almost	inverse	J-shaped,	
dbh distribution. ABA grid and ABA stand	were	best	at	capturing	the	type	of	distribution	(Fig.	3).	

Fig. 2. Example of the breast height diameter (dbh) distributions for stand no. 5. ABA grid, Trestima 10 and EMO 
methods	passed	the	Kolmogorov-Smirnov	goodness-of-fit	test	while	EMO had the best test values. Trestima 5 resulted 
in a too peaked dbh distribution.

Fig. 3. Example of the breast height diameter (dbh) distributions for stand no. 7. ABA stand and ABA grid methods 
performed	the	best	and	second	best	according	to	Kolmogorov-Smirnov	(KS)	but	according	to	Error-Index	(EI),	the	ABA 
grid	was	slightly	better.	Trestima 5 and EMO did	not	pass	the	KS	test	and	they	provided	the	highest	EI	values.
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The rejected case by Trestima 5 overestimated the proportion of the largest dbh classes but quite 
evenly distributed trees by Trestima 10	passed	the	KS	test.	Stand	no.	6	was	the	easiest	case	to	pre-
dict	as	each	method	passed	the	KS	test.	However,	there	were	clear	differences	between	predicted	
distributions.	The	observed	dbh	distribution	was	almost	symmetric	but	with	a	slight	bimodality	
due	to	the	high	proportion	of	the	smallest	dbh	classes	(Fig.	4).	In	terms	of	visual	interpretation	and	
according	to	KS	and	EI	goodness-of-fit	tests,	Trestima 10	was	the	best.	In	this	case,	the	peak	by	
ABA grid	methods	did	not	coincide	well	with	the	peak	of	cut	trees.	The	EMO generated distribu-
tion	had	an	overabundance	of	trees	with	a	DBH	greater	than	35	cm.

3.4 Ranking of the applied methods

Ranking revealed	two	superior	methods:	Trestima 10 and ABA grid (Table 9). The strength of these 
methods	is	a	superior	goodness-of-fit	of	a	predicted	dbh	distribution.	Goodness	of	the	distribution	
fit	also	resulted	in	good	performance	in	standard	stand	and	assortment	characteristics,	namely	9	
and	7	times	the	least	bias	as	well	as	8	and	11	times	the	smallest	RMSE.

The advantage of the Trestima 10	method	was	especially	clear	 in	 the	predicted	number	
of	stems,	basal	area	and	volume	of	the	Norway	spruce	and	broadleaves	admixtures	(see	Table	3	
and	4).	The	Trestima	application,	however,	proved	to	be	quite	sensitive	to	the	number	of	photos	in	
the	analysis.	Applying	5	images	often	resulted	in	the	worst	test	criterion	(Table	9).	Still,	Trestima 
5	had	a	total	of	7	times	the	smallest	bias.	Note	that	a	sample	of	5	images	was	sufficient	to	reach	
10%	standard	error	in	basal	area	in	only	two	stands	(Supplementary	file	1,	available	at	http://dx.doi.
org/10.14214/sf.1568).

Also the EMO application proved sensitive to a small number of sample trees. Namely the 
basal area of a stand is divided into tree species according to measured sample trees (six nearest 
trees per sample plot). EMO provided the best test criterion16 times (out of 70), but simultane-

Fig. 4. Example of the breast height diameter (dbh) distributions for stand no. 6. Trestima 10	fitted	the	best	according	
to	Kolmogorov-Smirnov	(KS)	and	Error-Index	(EI)	goodness-of-fit	tests.	The	second	best	EI	and	KS	test	values	were	
found using Trestima 5 and EMO, respectively. All the predicted dbh distributions passed the KS test.

http://dx.doi.org/10.14214/sf.1568
http://dx.doi.org/10.14214/sf.1568
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ously,	 it	 frequently	provided	 the	worst	criterion	 (30	 times).	EMO performed	well	with	a	
dominating	Scots	pine	stratum,	but	typically	generated	the	worst	test	criteria	for	Norway	spruce	
and birch admixtures (see Tables 4 to 7).

4 Discussion

The	aim	of	this	study	was	to	assess	and	compare	the	accuracy	of	three	pre-harvest	inventory	methods	
in predicting the dbh-height distribution of clear-cut stands. Of the applied methods, Trestima and 
EMO	inventories	require	stand-specific	samples	but	ABA	does	not	require	any	stand-specific	field	
measurements for prediction. The estimates of dbh and height distributions based on these methods 
were	compared	to	accurate	tree	taper	data	measured	and	registered	by	the	harvester	measurement	
systems	during	the	final	cut.	Finally,	the	accuracy	of	the	prediction	method	is	dependent	on	the	
generated	individual	trees	–	how	alike	or	unlike	they	are	compared	with	the	observed	trees	and	
how	alike	they	are	distributed.	The	example	given	for	the	ABA	grid	method	for	stand	3	showed	a	
remarkable	similarity	between	modelled	and	cut	tree	dimensions	(see	Supplementary	file	2,	avail-
able at http://dx.doi.org/10.14214/sf.1568).

In	ABA,	we	used	RF	to	select	NN.	In	our	study,	RF	was	chosen	based	upon	the	quality	of	
the results in previous studies and desirable statistical characteristics (i.e., the capability to predict 
multiple-response	variables	simultaneously,	to	use	a	large	number	of	predictors	without	the	prob-
lem	of	overfitting	and	to	evaluate	the	accuracy	with	built-in	functionality).	The	use	of	RF	in	NN	
estimation	of	forest	variables	has	been	common	(Hudak	et	al.	2008;	Yu	et	al.	2011;	Vastaranta	et	
al. 2013, 2014). For example, Hudak et al. (2008) demonstrated that the RF method is more robust 
and	flexible	for	forest-variable	prediction	when	compared	to	other	NN	distance	measures,	such	as	
Euclidian	distance,	Mahalanobis	distance	or	canonical-correlation	analysis.	In	our	NN	predictions,	
the	number	of	neighbours	was	set	to	one	to	keep	the	original	variance	in	the	data	(Hudak	et	al.	
2008).	ABA	results	were	generally	in	line	or	slightly	worse	than	in	other	ABA	studies	carried	out	
in	the	same	study	area	(Holopainen	et	al.	2010;	Yu	et	al.	2010;	Vastaranta	et	al.	2013).	Vastaranta	et	
al. (2013) predicted G, DG, HG,	and	total	volume	with	RMSEs	of	17.8%,	19.1%,	7.8%	and	17.9%,	
respectively.	Especially	the	differences	in	the	accuracy	of	basal	area	and	total	volume	were	obvious	
compared	to	our	study	and	they	could	be	explained	partly	from	5%	and	12%	underestimations	using	
the ABA grid	method,	while	those	of	Vastaranta	et	al.	(2013)	were	only	0.3–0.4%.	On	the	other	
hand, DG by the ABA grid	method	was	even	better	(RMSE	11.0%)	in	the	present	study.	It	should	

Table 9. Ranking	the	methods	by	the	number	of	the	best	and	the	number	of	the	worst	cases	among	analysed	criteria:	
Bias	and	RMSE	for	number	of	stems,	basal	area,	basal	area-weighted	mean	diameter,	Lorey’s	height,	total	volume,	log	
and	pulp	wood	volume	by	tree	species	and	stand	totals,	as	well	as	Kolmogorov-Smirnov	(KS)	and	Error-Index	(EI)	
tests. (Total of 70 criterion). The best performed method by each criteria is highlighted in bold.

Rank Best Worst

Criteria ABA
grid

ABA
stand

Trestima
5

Trestima
10

EMO ABA
grid

ABA
stand

Trestima
5

Trestima
10

EMO

Bias 9 3 7 7 2 2 4 4 2 15
RMSE 8 1 0 11 8 2 5 8 1 12
KS 1 0 0 2 4 1 1 5 0 0
EI 2 0 0 3 2 0 2 3 0 2
Total 20 4 7 23 16 5 12 20 3 30

http://dx.doi.org/10.14214/sf.1568
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be	pointed	out	that	our	results	were	validated	in	limited	mature	forest	conditions	(7	mature	stands)	
whereas	a	whole	range	of	forest	conditions	(500	sample	plots;	D	from	10	to	60	cm)	were	used	in	
Vastaranta	et	al.	(2013).	It	is	typical	in	remote	sensing-	based	inventories	that	stand	characteristics	
in	densely	stocked	stands	are	underestimated	(Vastaranta	et	al.	2013).	Holopainen	et	al.	(2010)	
used	ABA	for	predicting	dbh	distribution	and	timber	assortments.	Their	results	were	validated	
with	harvester-measured	tree	data	from	12	clear-cutting	sites.	With	ABA	they	obtained	RMSEs	of	
79.2%,	33.6%	and	78.6%,	for	pine,	spruce	and	birch	saw	logs,	respectively.	The	respective	RMSEs	
in	our	study	were	42.2%,	106.2%	and	111.2%.	Thus,	accuracy	of	the	dominating	tree	species	in	
our	study	was	42.2%	(pine)	as	it	was	33.6%	(spruce)	in	study	by	Holopainen	et	al.	(2010).	The	
species composition varied more in our validation stands compared to the study by Holopainen 
et	al.	(2010),	which	limits	an	interpretation.	Based	on	previous	studies,	 it	can	be	deduced	that	
the	accuracy	of	the	predicted	timber	assortments	is	much	lower	than	prediction	accuracy	of	total	
volume	(Peuhkurinen	et	al.	2008)	that	is	often	used	when	validating	quality	of	the	inventory.	In	
general,	low	prediction	accuracy	of	the	species-specific	stand	characteristics	is	seen	as	weakness	
of	the	ABA	(White	et	al.	2013).	Accuracy	of	the	species-specific	stand	characteristics	correlates	
highly	with	the	accuracy	of	the	predicted	timber	assortments.

Note	that	Weibull	distribution	in	some	ALS	studies	in	Finland	(Maltamo	et	al.	2006;	Peuhku-
rinen	et	al.	2007;	Packalén	and	Maltamo	2008;	Holopainen	et	al.	2010)	has	been	based	on	an	old	
model by either Mykkänen (1986) or Kilkki et al. (1989). These Weibull models are not capable 
in predicting the smallest dbh classes resulting in serious underestimation in N. Nevertheless, as 
basal	area-dbh	distribution	models	they	were	relevant	for	predicting	total	and	log	wood	volume	
(Siipilehto	1999;	Maltamo	et	al.	2006).	Inaccuracy	in	smallest	diameters	is	due	to	modelling	data	
–	NFI	based	sample	plots	including	trees	selected	with	basal	area	factor	2.	More	accurate	dbh	dis-
tribution	models	exist	(Kangas	et	al.	2007;	Siipilehto	et	al.	2007)	and	here,	we	applied	a	parameter	
recovery	method	(Peuhkurinen	et	al.	2011).	The	advantage	of	parameter	recovery	is	that	it	does	
not involve any additional errors in the used stand characteristics (Mehtätalo et al. 2007; Siipilehto 
and Mehtätalo 2013). Thus, stand characteristics interpreted for each grid could be fully utilized 
for	solving	the	Weibull	distribution.	However,	due	to	small	16	m	×	16	m	grid	area	we	preferred	
random	sampling	when	selecting	dbh	from	the	solved	distribution.

It	should	be	taken	into	account	that	Trestima	and	EMO	applications	required	observations	
(photos	or	sample	trees)	from	the	target	stands	that	are	not	needed	in	ABA.	On	the	other	hand,	ABA	
is typically carried out at 10-year intervals and for large-areas at once (inventoried areas can vary 
from	50	000	ha	to	1	million	ha	with	the	same	scanning	parameters,	field	plots,	etc.).	The	current	price	
of	the	ALS	data	is	around	0.3€	per	ha	whereas	the	price	of	the	field	inventory	is	few	euros	per	ha.	
In	Finland,	forest	owners	can	access	forest	resource	information	collected	using	ABA	for	free.	In	
our	study,	we	had	ABA	information	just	before	the	cutting,	which	is	not	always	possible	in	practice.	
Trestima	and	EMO	provide	flexible	options	for	collecting	stand-specific	information	just	before	
cutting,	but	the	additional	costs	is	an	issue.	The	Trestima	app	was	superior	to	EMO	in	generated	
stand	characteristics	for	admixtures,	whereas	EMO	was	superior	for	Scots	pine.	Trestima	seemed	
quite	sensitive	to	the	number	of	images,	but	users	can	follow	the	results	and	standard	error	in	basal	
area	in	real	time.	If	sequential	sampling	is	presumed,	the	risk	of	having	a	sample	that	is	inadequate	
for target accuracy can be sharply reduced. Some clear cut stands appeared quite heterogeneous 
and	even	with	10	images	the	10%	convergence	in	the	standard	error	of	basal	area	was	not	achieved.	
Further,	if	only	five	images	were	included	into	the	analysis,	basal	area	convergence	was	met	only	
twice	(Suppl.	file	1).	The	EMO	method	generalized	relatively	small	samples	to	characterize	stand	
structure	using	kernel	smoothing.	In	addition,	EMO	divides	the	species-specific	characteristics	
based	on	the	measured	sample	trees.	Nevertheless,	EMO	was	obviously	the	best	when	it	comes	to	
volume characteristics of Scots pine. Unfortunately, EMO performed poorly for minor admixtures. 
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The	small	samples	of	the	EMO	method	translated	into	difficulties	with	capturing	the	shape	of	the	
dbh	distribution.	This	was	shown	in	some	of	the	largest	error-index	values	by	EMO	method.

Trestima	and	ALS	methods	were	the	most	reliable	in	predicting	stand	characteristics	and	
dbh	distribution	of	standing	trees	prior	to	harvesting.	Both	methods	had	their	strengths	and	weak-
nesses.	When	ABA	was	applied	at	grid	level,	it	provided	at	its	best	very	accurate	dbh	distributions	
that	were	able	to	follow	bimodal-	or	even	multimodal-shaped	distributions.	This	is	a	very	useful	
feature in stands having heterogeneous structure. On the other hand, all remote sensing methods 
have	difficulties	in	two-	or	multistoried	stands	or	situations	in	which	trees	have	a	clustered	spatial	
structure	(Uuttera	et	al.	1998;	Mehtätalo	2006;	Peuhkurinen	et	al.	2007).

The	Trestima	method	provides	the	most	accurate	stand	characteristics	for	the	whole	stand	
but the applied Weibull smoothing lacks the ability to produce bimodal- or multimodal-shaped 
species-specific	 distributions.	The	EMO	method	 had	 originally	 been	 developed	 for	 producing	
accurate diameter-height-quality distributions of mature Scots pine forests and comprises features 
that inevitably provide biased results for admixtures. The method could be improved by executing 
relascope	sampling	for	each	tree	species	separately	and	by	measuring	the	dbh	of	each	tree	within	
the relascope sample.

From	the	compared	methods	ABA	is	the	least	expensive,	the	Trestima	method	is	the	second	
least	expensive	and	the	EMO	method	the	most	expensive.	The	stand-specific	cruising	takes	from	
half	an	hour	to	one	hour	in	a	typical	Finnish	stand	of	a	size	ranging	from	1–3	hectares.	With	the	
EMO	method	additional	time	has	to	be	reserved	for	data	input.	It	is	difficult	to	determine	how	
accurate the predictions of standing trees need to be after all. What is the threshold value of accu-
racy	for	making	decisions	resulting	in	more	profitable	wood	allocation	and	conversion	solutions?	
The	final	judgment	of	the	accuracy	required	has	to	be	based	on	analytical	comparisons	of	costs	
and revenues related to these decisions (Eid et al. 2004; Mäkinen et al. 2012).

Alternatives	for	kNN	area-based	ALS	approach	is	to	estimate	regression	models	for	required	
stand	characteristics	and/or	for	dbh	distribution	directly	from	ALS	canopy	metrics	(Næsset	2002;	
Gobakken	and	Næsset	2004;	Suvanto	et	al.	2005;	Uuttera	et	al.	2006;	Maltamo	et	al.	2007;	Magnus-
sen	et	al.	2012)	or	single	tree	detection	(Peuhkurinen	et	al.	2007;	Kankare	et	al.	2015).	Also,	one	
option	is	to	produce	dbh	distributions	directly	from	the	measured	trees	of	the	field	plots	(Packalén	
and	Maltamo	2008;	Peuhkurinen	et	al.	2008).	In	the	latter	case	the	same	trees	will	be	multiplied,	
whenever	the	same	plot	describes	the	grid.	In	the	Trestima	method,	empirical	dbh	distributions	
produced from the interpreted trees included in the relascope samples are also available. Those 
species-specific	distributions	can	be	bi-	or	multimodal.	However,	we	believe	that	smoothing	the	
small	sample	of	interpret	trees	improved	the	results.	At	least,	the	species-specific	distributions	of	
the	ground	truth	data	resembled	more	like	unimodal,	although	often	extremely	skewed	for	Norway	
spruce. Trestima methods included an average of 40 and 76 interpret trees from 5 and 10 images, 
respectively.	This	amount	corresponded	to	7%	and	13%	of	the	total	number	of	cut	trees	per	stand	
(see	Suppl.	file	1).	Kopakka	(2015)	found	that	Trestima	underestimates	individual	tree	dbh	and	
thus, its empirical dbh distribution also underestimated mean dbh. Accordingly, in this study DG 
was	systematically	underestimated	with	Trestima	methods	resulting	in	underestimation	in	basal	
area,	too.	Vastaranta	et	al.	(2015)	instead	found	slight	overestimation	(0.8–1.4%)	in	the	dbh	of	the	
individual	median	tree	for	pine	and	broadleaves	but	3.1%	underestimation	for	spruce,	while	tree	
height	and	stand	basal	area	were	underestimated	using	Trestima.	Trestima	is	under	continuous	
development	work.	Thus,	we	do	not	know	if	the	version	of	the	processing	software	was	the	same	
in these studies.

The study material may be regarded as rather homogenous in terms of stand maturity and 
stand	size.	The	 study	stands	were	all	mature	Scots	pine-	or	Norway	spruce-dominated	 forests	
with	a	stand	size	varying	from	0.7	to	2.0	ha.	The	stand	sizes	may	be	regarded	as	rather	typical	for	
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southern Finland. The pre-harvest inventory methods (Trestima and EMO) tested and compared 
here	comprise	a	system,	where	sampling	and	measurements	are	spatially	distributed	evenly	within	
the	whole	stand.	In	the	ALS	grid	method,	the	diameter	distributions	are	constructed	by	summing	
the	individual	diameter	distributions	of	each	16	m	×	16	m	grid	within	the	stand	instead.	In	this	
sense	the	best	methods,	the	Trestima	and	the	ABA	grid	methods,	probably	produce	similarly	good	
results	also	in	larger	stands.	Actually,	if	we	look,	say,	at	RMSE	of	the	total	volume,	it	seemed	to	
decrease	along	with	increased	stand	size.	This	was	probably	due	to	a	decreased	proportion	of	the	
most uncertain boundary grids.
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