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Highlights
•	 The performances of neighborhood, hybrid and reversion search strategies of simulated 

annealing were evaluated when implemented with a forest spatial harvest scheduling problem.
•	 The performances of alternative search strategies of simulated annealing were all systematic 

and clear better than the conventional strategy.
•	 The	reversion	techniques	were	significant	superior	to	the	other	search	strategies	in	solving	

forest spatial harvest scheduling problems.

Abstract
Heuristic techniques have been increasingly used to address the complex forest planning problems 
over	the	last	few	decades.	However,	heuristics	only	can	provide	acceptable	solutions	to	difficult	
problems, rather than guarantee that the optimal solution will be located. The strategies of neigh-
borhood, hybrid and reversion search processes have been proved to be effective in improving 
the quality of heuristic results, as suggested recently in the literature. The overall aims of this 
paper were therefore to systematically evaluate the performances of these enhanced techniques 
when implemented with a simulated annealing algorithm. Five enhanced techniques were devel-
oped using different strategies for generating candidate solutions. These were then compared to 
the	conventional	search	strategy	that	employed	1-opt	moves	(Strategy	1)	alone.	The	five	search	
strategies	are	classified	into	three	categories:	i)	neighborhood	search	techniques	that	only	used	the	
change version of 2-opt moves (Strategy 2); ii) self-hybrid search techniques that oscillate between 
1-opt moves and the change version of 2-opt moves (Strategy 3), or the exchange version of 2-opt 
moves (Strategy 4); iii) reversion search techniques that utilize 1-opt moves and the change version 
of 2-opt moves (Strategy 5) or the exchange version of 2-opt moves (Strategy 6). We found that 
the performances of all the enhanced search techniques of simulated annealing were systematic 
and often clear better than conventional search strategy, however the required computational 
time	was	significantly	increased.	For	a	minimization	planning	problem,	Strategy	6	produced	the	
lowest mean objective function values, which were less than 1% of the means developed using 
conventional search strategy. Although Strategy 6 performed very well, the other search strategies 
should not be neglected because they also have the potential to produce high-quality solutions.
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1 Introduction

Forest management planning processes often provide detailed guidance to forest managers con-
cerning where, when, and how management prescriptions should be scheduled across a landscape. 
However, broader concerns related to the environment (e.g., wildlife habitat, biodiversity, carbon 
sequestration), and in response to new demands from society, have contributed to planning problems 
becoming increasingly complex and sophisticated. Advancements in harvest scheduling have shown 
that traditional mathematical programming techniques (e.g., mixed integer programming) can be 
exploited to produce feasible forest management plans that accommodate harvest adjacency and 
green-up requirements (McDill et al. 2002; Tóth et al. 2013). However, depending on how these 
problems are formulated, some substantive limitations may arise when the planning techniques are 
applied to large forests (Bettinger et al. 2015). Therefore, heuristic techniques have increasingly 
been assessed for their potential use in the development of large, complex forest management plans. 
The most common reason for using heuristic techniques instead of mathematical techniques may 
be the need to incorporate complex spatial objectives into the planning problems formulation that 
are not easily represented by linear or non-linear equations, but rather by computer programming 
logic (as in Bettinger et al. 1997). For example, heuristic techniques have been applied to forestry 
planning problems that involve the maximization of economic and commodity production objec-
tives (Boston and Bettinger 1999; Crowe and Nelson 2005; Strimbu et al. 2010), the maintenance 
and development of wildlife habitat (Hof and Flather 1996; Kurttila et al. 2006; Marshalek et al. 
2014), the maintenance of forest stand-level structure (Tang et al. 2004; Bettinger et al. 2007), 
the issues related to carbon sequestration of a forest (Hernandez et al. 2014; Pukkala 2014), the 
issues concerning fragmentation of a forested landscape (Kurttila et al. 2002; Bettinger et al. 2007), 
and the impact of management activities on water quality (Bettinger et al. 1998; Fotakis 2015). 
Numerous examples of the use of heuristics for solving complex combinatorial problems from 
fields	outside	of	forestry	can	also	be	found	in	the	literature	(Los	and	Lardinois	1982;	Fuller	et	al.	
2012; Sinclair et al. 2014; Arikan et al. 2016).

Heuristic	techniques	usually	can	be	classified	into	s-metaheuristic (or point-based) methods, 
where improvements are made to single solution per iteration, or p-metaheuristic (or population-
based) methods, where improvements are made to a population of solutions (or a subset) per itera-
tion. The s-metaheuristics, such as simulated annealing (Metropolis et al. 1953; Öhman and Lämås 
2003; Borges et al. 2014a, 2014b) and tabu search (Richards and Gunn 2000; Bettinger et al. 2007), 
typically only maintain one solution per iteration of the search process, and often it represents a 
feasible	solution.	These	heuristics	utilize	 intensification	and	diversification	search	strategies	 to	
modify the solution in an attempt to locate the global optimum; these processes can further assist 
in escaping local optima. However, p-metaheuristics, such as genetic algorithms (Lu and Eriksson 
2000) and particle swarm optimization (Shan et al. 2012), maintain a set of feasible solutions per 
iteration. With these heuristics, strategies are employed to improve the entire population (or sub-set) 
of solutions so that a broad area of the solution space might be explored simultaneously. Within 
the	field	of	forestry,	s-metaheuristic techniques have been widely used in forest planning problems, 
perhaps because they involve more intuitive processes than p-metaheuristics techniques. More 
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importantly, some studies have suggested that p-metaheuristics techniques may be less effective 
in solving complex forest spatial planning problems when the harvest adjacency restrictions are 
integrated (Bettinger et al. 2002; Liu et al. 2006), but this conclusion highly depends on the actual 
implementation	of	the	heuristic	methods,	and	how	solutions	are	modified	to	allow	the	population	to	
evolve. For example, Bettinger et al. (2002) and Liu et al. (2006) reported that genetic algorithms 
were not appropriate when applied to a strict harvest adjacency problem due to the large number of 
constraint violations incurred, but when limited genetic information is passed from parents to child 
solutions, few constraint violations can occur. Further, others have found more promising results 
when applying p-metaheuristics to spatial forest planning problems (Pukkala and Kurttila 2005).

Well-developed heuristic methods only can guarantee that high-quality, feasible solutions 
to complicated problems can be located within a reasonable amount of computer processing time. 
This does not imply that the global optimal solution can also be located. Therefore, previous 
researchers have put forward some ideas for improving the quality and robustness of solutions 
generated	by	heuristic	techniques.	These	ideas	can	be	classified	into	three	categories:	1)	neigh-
borhood search techniques, 2) hybrid metaheuristic methods, and 3) reversion search methods. 
Depending on the number of the status (i.e., management prescription or harvest periods) of stands 
are changed simultaneously during each iteration of an s-metaheuristic model, the search process 
can be considered as 1-opt, 2-opt or n-opt moves, respectively. For forest management problems, 
the performance of 2-opt moves have been shown to be superior to the use of 1-opt moves alone. 
For example, Bettinger et al. (1999), and Caro et al. (2003), and Heinonen and Pukkala (2004) 
reported	that	the	strategy	of	2-opt	moves	could	significantly	improve	the	quality	of	heuristic	solu-
tions (or forest plans). However, 2-opt moves might be ineffective when the planning problem is 
very large, due to the amount of time required to assess the value of the potential change and to 
assess the resulting constraints (Bachmatiuk et al. 2015).

Hybrid search techniques may also be of value in locating higher quality heuristic solutions 
to planning problems because they can utilize the different search behaviors of heuristic methods. 
The potential performance of hybrid search techniques has been illustrated in a number of forest 
planning papers. For example, Boston and Bettinger (2002) suggested that a hybrid tabu search/
generic algorithm may lead to a 2% increase in objective function values when compared to the 
standard implementation of tabu search. Li et al. (2010) also examined several hybrid models that 
involved simulated annealing, threshold accepting, tabu search and the raindrop method (Zhu and 
Bettinger 2006), and found that more than 75% of the solutions generated by hybrid models were of 
higher quality than solutions generated by standard implementations of basic heuristic algorithms. 
In addition, Bettinger et al. (2002, 2007) introduced an unparalleled search strategy that combined 
1-opt and 2-opt moves together, which could be considered as self-hybrid process. Very recently, 
Bettinger et al. (2015) noted that search reversion may also dramatically improve s-metaheuristic 
results by interrupting the sequence of search process events, and re-initiating the search process 
from a high-quality solution value. However, the performance of this strategy needs to be assessed 
on a wider scale and scope of planning problem.

The above mentioned alternative search techniques of heuristics have previously been illus-
trated in some forestry literature, however few previous research efforts have been made to compare 
the performances of these techniques. Therefore, the overall aims of this article are to evaluate the 
performances of neighborhood search techniques, hybrid search techniques, and reversion search 
techniques when applied to a large forest spatial harvest scheduling problem, using a simulated 
annealing algorithm. The objective function of the planning problem used in this analysis is to 
minimize the deviations from an assigned harvest volume target. A unique strategy is associated 
with	the	policy	constraints,	in	which	the	final	harvest	(clear-cutting)	prescription	should	comply	
with the unit restriction model (URM) of adjacency constraints. However the spatial and temporal 
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assignment of three different intensities of selective cutting prescriptions should comply with the 
area restriction model (ARM) of adjacency constraints. Finally, the stated problems are applied to 
a large and real forest landscape in northeast China.

2 Materials and methods

2.1 Data description

The study area we apply to evaluate the performance of three enhanced search techniques is a 
123 293 ha forest in northeastern China (52°41´N, 123°51´E). The elevations of this area varied 
from 230 to 1397 m. The mean annual precipitation is approximately 428 mm, mainly concentrating 
on July and August within each year. The mean annual temperature is approximately –2.4 °C, and 
length	of	snow	cover	is	as	long	as	five	months,	namely	from	October	to	March.	The	soil	in	this	area	
is dominated by dark-brown coniferous forest soil, with a few amounts of meadow soil and boggy 
soil. The forest area contains 325 compartments, which were divided into 6421 subcompartments (or 
management	units).	The	landscape	can	be	classified	into	five	forest	types:	1)	natural	Larix gmelinii 
forests (NLG); 2) natural Betula platyphylla forests (NBP); 3) coniferous mixed forests (CF); 4) 
broad-leaved mixed forests (BF); and 5) coniferous and broad-leaved mixed forests (CBF). In this 
classification,	the	five	forest	types	account	for	30.67%,	14.39%,	27.96%,	19.90%	and	2.73%	of	
the total area, respectively. In addition, approximately 4.36% area can be considered as non-forest 
land. Details about the forest dataset can be found from Dong et al. (2015). The age class distri-
bution of the study area is illustrated in Fig. 1. The potential management prescriptions for each 
management unit (Table 1), which mainly depended on the stand age, were devised to satisfy the 
requirements of the laws and regulations on forest management from the Heilongjiang Province 
in northeast China (State Development Planning Commission and State Forestry Bureau 2010).

Fig. 1. The age class distribution of forest landscape dataset, where NLG = natural Larix gmelinii dominated forests, 
NBP = natural Betula platyphylla dominated forests, CF = coniferous forests, BF = broad-leaved forests, and CBF = 
coniferous and broad-leaved mixed forests.
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2.2 Forest planning problem formulation

The forest plans that we investigated cover ten 1-yr planning periods. The objective function of the 
forest planning problem involves minimizing the squared deviation between the scheduled harvest 
volume in each time period and a static target harvest volume. This objective is analogous to the 
tactical plan and the objective function found in Bettinger et al. (2007, 2015).

∑ −
=

volume HMinimize (target _ ) (1)t
t

T
2

1

Here, T is the total number of planning periods, t is a planning period (one year), and 
target_volume	is	a	user-specified	desired	harvest	volume	to	be	scheduled	during	each	planning	
period. The target volume was assumed to be 50 000 m3 per period (year) consistent, which was 
retrieved from the policy of forest cutting quota of local government during the 12th Five-Years Plan 
(2011–2015). Ht is the scheduled harvest volume in time period t. Since the deviations between the 
scheduled and desired harvest volumes are squared, the units for the objective function were (m3)2 
in this research. To determine the scheduled harvest volume during each iteration of the heuristic 
search process, methods were employed that in effect are consistent with accounting rows used in 
linear programming problem formulations:
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Here, i is an arbitrary management unit, I is the total number of management units, p is a 
single management prescription, and P is the total number of management prescriptions. Further, 
xipt is an integer decision variable (i.e., xipt = 0, 1, 2, 3 and 4) indicates whether the stand i was 
assigned to be harvested with management prescription p during time period t, and vipt is the avail-
able harvest volume from unit i when managed under prescription p during time period t.

Three	main	sets	of	constraints	are	employed.	One	set	refers	to	resource	constraints	and	two	
sets refer to policy constraints. The resource constraints, also known as the singularity constraints, 
are used to prevent each management unit from being clearcut harvested more than once during 
the entire planning horizon:

Table 1. The potential management prescriptions for the forest planning problems.

No. Management  
prescription

Limit age (year) Description

Broad-leaved 
forest a

Coniferous  
forest b

0 No harvest < 20 < 30 Strictly prohibit any management prescriptions when stand 
age is less than the limiting ages

1 Mild selective  
cutting c

21–50 31–80 Only	can	adopt	one	of	the	three	intensities	of	selective	cut-
ting, as well as no harvest, when stand age ranges within the 
interval of the limiting ages 2 Moderate selective 

cutting d
3 Severe selective  

cutting e
4 Final harvest > 50 > 80 Can	adopt	final	harvest,	selective	cutting	and	no	harvest	

when forest age is more than the limiting ages
a include natural Betula platyphylla dominated forests (NBP) and broad-leaved forests (BF)
b include natural Larix gmelinii dominated forests (NLG), coniferous forests (CF) and coniferous and broad-leaved mixed forests (CBF)
c the intensity of selective cutting was assumed as 10% of the total volume for a management unit
d the intensity of selective cutting was assumed as 20% of the total volume for a management unit
e the intensity of selective cutting was assumed as 30% of the total volume for a management unit
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One	set	of	policy	constraints	is	associated	with	the	selective	cutting	prescriptions	using	the	
ARM	constraints	and	the	other	set	is	associated	with	the	final	harvest	prescription	using	the	URM	
constraints.	Generally	speaking,	the	neighboring	units	are	strictly	prohibited	to	be	assigned	a	final	
harvest prescription in the same (or near) time period using URM constraints (Murray 1999). 
However, to further increase the complexity of this problem, the green-up constraints are also 
integrated into the planning formulations, as implemented in Boston and Bettinger (2002), and 
Zhu and Bettinger (2008).
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Here,	the	potential	management	prescription	only	involves	the	final	harvest	(i.e.,	p = 4); z is a 
management unit adjacent to unit i; Ui is the set of all adjacent units around unit i; m is a near-time 
period; Tm	represents	the	set	of	near-time	periods.	As	Boston	and	Bettinger	(2002)	defined,	the	set	
of near-time periods (Tm) for a 3-year green-up constraints can be written as: m1 = t–3, m2 = t–2, 
m3 = t–1, m4 = t, m5 = t + 1, m6 = t + 2 and m7 = t + 3 ( where all mz ≥ 0, otherwise not in Tm; and all 
mz ≤ T, otherwise not in Tm). xzpt is also an integer decision variable indicating whether management 
unit z	is	assigned	a	final	harvest	prescription	p during near-time period t.

The ARM constraints are employed to restrain the spatial and temporal distributions of 
selective prescriptions, in which some contiguous management units to be selectively harvested 
concurrently in the same (or near) time periods are allowed, but the combined area must less than a 
user-defined	maximum	size	(Murray	1999).	The	commonly	used	maximum	opening	size	constraints	
and maximum average opening size constraints are both integrated into the planning problem. 
As mentioned above, our ARM constraints also hold for a 3-yr green-up periods. Therefore, the 
maximum opening size constraints could be presented as:
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In this case, the management prescriptions are only one of the three intensities of selective 
cutting or no harvest (i.e., p = 1, 2 or 3), and k is a management unit from a subset of management 
units adjacent to unit i and the neighbors of management unit i, and so on, in the form of a recursive 
function (as in Murray 1999). Si is a set of management units adjacent to the neighbors of unit i, ai 
and az are the areas of management units i and z, respectively, and xkpt is an integer decision variable. 
The latter variable indicates that management unit k is assigned a selective cutting prescription p 
during near-time period t. The maximum opening size assumed (Umax) was 90 ha. The maximum 
average opening size, which is an important forest management practice mainly due to the legal 
and voluntary restrictions, is also included into the planning formulation.
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For this, xfpt	is	an	integer	decision	variable	defining	the	management	prescription	p assigned 
to management unit f during the planning period t, af is the area of management unit f, F is the total 
number of harvesting patches, and Uave is the maximum average opening size assumed, which was 
assumed in this work to be 30 ha.
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2.3 Simulated annealing algorithm

Simulated annealing is a typical heuristic search technique that has been described by others (e.g., 
Crowe and Nelson 2005; Borges et al. 2014a; Baskent and Jordan 2002; Bettinger et al. 2002) as 
potentially being of value to many types of forestry problems, such as those with economic and 
commodity production objectives or those that involve harvest adjacency or wildlife constraints. 
The crucial characteristic of simulated annealing algorithm is that when searching for an optimal 
solution, it can conditionally accept inferior solutions, which may allow the search process escape 
from local optima. This distinct mechanism prompts simulated annealing algorithm to explore 
other areas of the solution space, thus increasing the probability that it will be able to generate a 
high quality solution. Simulated annealing was chosen for this work because it has previously been 
confirmed	as	being	one	of	the	better	heuristics	for	spatial	planning	problems	(Boston	and	Bettinger	
1999; Bettinger et al. 2002; Liu et al. 2006). The general search process of simulated annealing for 
minimization problems can be described as (Metropolis et al. 1953; Borges et al. 2014a):

 ←
← ←

=

s
s
t T

 initial solution ()
*  ŝ s
0

0

max

 ≥t TDo while min
  ′ ← news   solution( ŝ )
  
  ′accept sIf then( )

   ′ <f s f sIf  then( ) ( *)
    ← ′s*   s
   Else
    ΔE = f (ŝ)− f (s*)

    If rnd() < e(−ΔE /t) then
     ŝ ← ′s
    Else
     ' do nothing
    End if
   End if
   count = count+1
  End if
  If count mod Tt =0 then
   t = t ⋅Tr
  End if
 Loop

Within	the	flow	of	this	process,	s0 is an initial feasible solution, ŝ  is a current feasible solu-
tion, ′s is a new feasible solution, s* is the best feasible solution, Tmax is the initial temperature, 
Tmin is the freezing temperature, Tt is the number of iterations allowed at each temperature, and Tr 
is the cooling rate. As Pukkala and Heinonen (2006) noted, the performance of heuristics (including 
simulated annealing) will depend on the search parameters employed. These can affect the search 
process	significantly,	thus	the	values	of	parameters	of	heuristics	should	be	carefully	considered	
prior to applying them in a forest planning effort. Since the purpose of this study was to analyze 
the performance of three different enhanced techniques in solving complex planning problems, 
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rather than optimize the parameters of simulated annealing, the parameters were therefore set to be 
10 000 (Tmax), 10 (Tmin), 200 (Tt), and 0.998 (Tr). All parameters were static when used in the tested 
search strategies in the forthcoming case study. The values of the four parameters were evaluated 
in a quantitative manner using a trial-and-error test, in a manner similar to what others (Boston and 
Bettinger 1999) have attempted. In effect, this parameter set should result in 690 200 iterations per 
independent run, ignoring unsuccessful attempts to make changes to the current solution.

The	candidate	solution	of	simulated	annealing	during	each	 iteration	 is	created	by	firstly	
randomly selecting a management unit and then randomly selecting a management prescription 
within	the	unit.	Therefore,	the	strategies	of	generating	candidate	solution	may	have	significant	
effects on the search process and the quality of heuristic solutions. However, to our best knowl-
edge, few previously works in the literature have compared these strategies used for generating 
candidate solutions. In this paper, we will attempt to evaluate the usefulness of neighborhood search 
techniques, hybrid search techniques and reversion search techniques of simulated annealing in 
solving forest planning problems. In the following sections, we will give a detailed description of 
these alternative search strategies.

Strategy 1:	The	first	search	strategy	utilizes	the	standard	version	of	simulated	annealing	
(i.e., 1-opt moves) to incrementally improve the quality of a forest plan (Fig. 2-A). Exploring the 
neighborhood of a solution in this strategy can be described as: 1) randomly select a management 
unit; 2) randomly assign a management prescription or change the harvest period within the unit; 3) 
evaluate the feasibility of a potential move against the resource and policy constraints; 4) evaluate 
the acceptability of the potential move with respect to the objective function value. As implemented 
here, moves that improved the objective function value are always accepted, non-improving moves 
are accepted by comparing the result of the Boltzman formula (e(–∆E/t)) to a randomly generated 
number. If the randomly generated number is less than e(–∆E/t), then the inferior move can also be 
accepted.

Fig. 2. The schematic diagram of different neighborhood search strategies of simulated annealing, where A is 1-opt 
moves, B is the change version of 2-opt moves, and C is the exchange version of 2-opt moves. The number in each cell 
represents the assigned harvest period.



9

Silva Fennica vol. 50 no. 4 article id 1622 · Dong et al. · Evaluating the neighborhood, hybrid and reversion…

Strategy 2: The second search strategy employs the 2-opt moves that were described in 
Heinonen and Pukkala (2004) and Bachmatiuk et al. (2015), in which the assigned harvesting period 
and management prescription of two different units are changed (not exchanged) simultaneously 
(Fig. 2-B). In this paper, this search strategy will be called the change version of 2-opt moves con-
sistent. The reason for using this strategy is that the search process may get trapped in local optima 
when	the	planning	problems	include	strict	spatial	(i.e,	adjacency)	and	non-spatial	(i.e.,	even-flow	
of harvest volume) constraints. This strategy might produce a smaller change to the objective func-
tion value, and thus it can produce solutions that might not be obtainable using the 1-opt moves. 
Therefore, the change version of 2-opt moves have been widely used in a set of important forestry 
planning	problems,	indicating	that	it	can	improve	the	quality	of	heuristic	solutions	significantly	
when compared that with 1-opt moves (Heinonen and Pukkala 2004; Caro et al. 2003).

Strategy 3: The third search strategy will oscillate back and forth the search process between 
1-opt and the change version of 2-opt moves, namely the 2-opt moves in Strategy 2. This strategy 
can be considered as a self-hybrid heuristic search process. The Strategy 2 has previously been 
confirmed	effective	in	producing	higher-quality	solutions,	but	the	computational	time	could	be	
significantly	lengthened.	Heinonen	and	Pukkala	(2004),	for	an	example,	reported	that	the	com-
putational time of the Strategy 2 (described above) was usually as large as two (or more) times 
than that of 1-opt moves for the four commonly used heuristic algorithms (i.e., random ascent, 
Hero, simulated annealing and tabu search) when applied to forest spatial planning problems. The 
hypothesis of this strategy is that a moderate oscillation between 1-opt and 2-opt moves not only 
can	produce	higher	quality	solutions,	but	do	not	 increase	 the	computational	 time	significantly.	
However, the main consideration of this process was how to determine the integration points (as 
denoted by the iteration number) for oscillating the search process from 1-opt moves to 2-opt 
moves.	We	employ	a	fixed	breakpoint	method	which	was	introduced	by	Bettinger	et	al.	(2015),	in	
which an integration point can be calculated as:

= = −q r
R
Q R ,    r 1 ( 1) (7)r

where qr is the break point for r-th oscillation; r is the r-th oscillation; R is the total number of 
oscillations; Q is the total number of iteration of the search process which depend on the four 
parameters of simulated annealing. Therefore, the oscillation process may occur at some points 
depending on the state of iteration counter. As an example, if the total number of iterations for an 
independent run is 100, and the number of oscillation is 4, then after 25th, 50th, 75th iteration, 
oscillation	occurs.	In	the	following	oscillation	(or	reversion)	strategies,	the	fixed	break	point	method	
will be employed constantly, and a set of oscillation (or reversion) intervals (i.e., R = 2, 4, 6, 8, 10) 
are	also	evaluated	to	detect	whether	they	have	significant	effects	on	the	objective	function	value.

Strategy 4: The fourth search strategy, similar to Strategy 3, will also oscillate back and 
forth the search process between 1-opt and 2-opt moves, however the assigned harvest period and 
management prescriptions between two different units are exchanged (i.e., not simply changed; 
Fig.	2-C).	This	is	the	2-opt	search	strategy	first	described	in	the	forestry	literature	in	Bettinger	
et al. (1999) and later evaluated in Bettinger et al. (2002, 2007), showing that it is effective for 
improving	the	quality	of	solutions.	We	define	this	strategy	as	self-hybrid metaheuristic process. 
Obviously,	this	strategy	of	2-opt	moves	must	be	employed	based	on	a	high	quality,	feasible	initial	
solution and cannot be implemented in absence of 1-opt moves. Unlike the 2-opt moves in Strategy 
2,	the	exchange	management	prescriptions	fine-tunes	the	quality	of	the	solution	by	intensifying	the	
search in areas nearby the current solution, and logically might produce a smaller change in the 
objective	function	value.	The	search	process	will	firstly	employ	a	set	of	1-opt	moves	to	diversify	
the search, and then employ a set of 2-opt moves to intensify the search.
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Strategy 5:	The	fifth	strategy	uses	reversion	search	technique	within	the	search	process,	
as	described	in	Bettinger	et	al.	(2015).	The	search	process	first	employs	a	set	of	1-opt	moves	to	
diversity the search prior to using 2-opt moves that are described in Strategy 2, and then the current 
solution is replaced with the best solution stored in memory. After the appropriate 2-opt moves 
are made, the search process returns to 1-opt moves once again. This strategy can take full use 
the advantages of 2-opt moves and meanwhile intensify the search around high-quality solutions.

Strategy 6: The last strategy, similar to Strategy 5, but uses the 2-opt moves described 
in Strategy 4. To our knowledge, the direct use of this strategy has received little attention with 
respect to optimization problems. Two exceptions, Sinclair et al. (2014) employed it to solve an 
airline scheduling problems, and Bettinger et al. (2015) applied it to solve forest spatial harvest 
scheduling	problems,	both	of	 them	 indicating	 that	 this	 strategy	was	significant	 superior	 to	 the	
standard version of heuristics.

2.4 Statistical analysis

There are a number of ways to evaluate the performance of heuristics (see details from Bettinger et 
al. 2009), however a statistical analysis of the solutions is an important method. Since all candidate 
solutions of all the six alternative search strategies of simulated annealing were generated randomly, 
the candidate solutions for different search strategies were logical different. As Golden and Alt 
(1979) and Los and Lardinois (1982) described, each resulting solution of a heuristic algorithm 
can be considered as an independent sample from a large population, If the initiation point of the 
search process was chosen randomly. Therefore, the search process of each strategy was repeated 
60 times, and then the objective function values of these solutions were evaluated in two differ-
ent ways: 1) the statistical values (i.e., mean and standard deviation) of the 60 independent runs 
for each search strategy were compared quantitatively for the objective function values and the 
length of computational time as a self-validation process (Bettinger et al. 2009). As implemented 
here,	the	length	of	computational	time	was	defined	as	the	time	that	the	search	process	located	the	
maximum	objective	function	value	for	 the	first	 time,	2)	an	ANOVA	analysis	was	employed	to	
detect whether the differences of the objective function values among the six alternative search 
strategies	were	significant	or	not.

3 Results

3.1 The effects of reversion rates

The best solutions (i.e., the minimum objective function values) that were generated using Strat-
egies 3 to 6 with different oscillation (or reversion) rates are illustrated in Table 2. The results 
showed that the values of the best solution for each search strategy have no pronounced tendency 
as the oscillation (or reversion) rates increased. An increase in the reversion rate actually allows 
the search processes to spend more time searching with a current solution prior to reverting back 
to the best solution stored in memory. We were hopeful that we would be able to notice a trend in 
the solution values given changes in the reversion rate (i.e., revert less often should either lead to 
better or worse solutions). The best forest plan was generated using Strategy 6 with a reversion 
interval of 10 iterations, and the value of this solution was 11.8, which indicated that the scheduled 
harvest volumes for each time period were extremely near to the target volumes, i.e., the mean 
deviation between the scheduled and targeted harvest volume was only 0.34 m3 per year (period), 
which	was	denoted	as	ΔV	=	0.34	m3/yr. For comparison purposes, all solutions that were generated 
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with other search strategies (i.e., Strategies 3–5) would be compared with this datum value. The 
objective function value of the best solution for Strategy 3 was 73.2 when the oscillation interval 
was 6 iterations, which was approximately 6 times as large in value as the best solution from 
Strategy 6. However, the best solution for Strategy 4 with an oscillation interval of 10 iterations 
(12.9) and Strategy 5 with a reversion interval of 4 iterations (13.1) were both consistent with that 
of the best solution from Strategy 6, which were only about 1.09 and 1.11 times than that of the 
best solution from Strategy 6.

The	ANOVA	indicated	that	the	oscillation	(or	reversion)	rates	usually	have	some	moder-
ate	influences	on	the	objective	function	values	(Fig.	3).	The	mean	objection	function	values	of	
Strategy 3 presented a slight downtrend with the increases of oscillation rates, but the differences 
among	them	were	not	significant.	The	reason	might	be	that	the	search	strategy	would	be	more	
similar to the change version of 2-opt moves (i.e., Strategy 2) when the oscillation rates increased 
significantly.	Strategy	4	with	an	oscillation	interval	of	2	iterations	produced	significantly	larger	
mean objective function values than that of other oscillation rates. In addition, Strategy 6 showed 
similar results with Strategy 4 when evaluated the effects of different reversion rates. However, 
the differences of the mean objective function values for Strategy 5 between the reversion interval 
of	2	and	8	iterations	were	difficult	to	distinguish,	but	both	of	them	were	significant	larger	than	that	
of the other three reversion rates.

The oscillation (reversion) rates usually had no appreciable impacts on the computational 
time for Strategies 3 and 4 in our case study, in which the mean computational time of the two 
search strategies was almost consistent with each other (66 seconds). However, the reversion rates 
had	some	indefinable	influences	on	the	computational	time	for	Strategy	5	and	6.	The	mean	compu-
tational	time	for	Strategy	5	with	a	reversion	interval	of	8	iterations	(183	seconds)	was	significant	
shorter than that when using a reversion interval of 2 or 6 iterations (225 and 222 seconds), but no 
significant	differences	were	observed	when	the	reversion	interval	of	4	or	10	iterations	(204	and	
218 seconds) were employed. For Strategy 6, the computational time for a reversion interval of 2 
iterations	(129	seconds)	was	significant	shorter	than	that	when	using	the	other	reversion	rates	(161,	
180 and 166 seconds), except for the reversion interval of 10 iterations (156 seconds). It appears 
that	the	reversion	process	may	influence	the	computation	of	the	acceptance	probabilities	using	the	
Boltzman formula. The difference in the proposed and current solutions (revert occasionally to the 
best solution in memory) may produce probabilities of acceptance that are too small allow inferior 
solutions to replace current solutions. This may then impact how quickly the process anneals, and 
thus concludes its search for the best solution.

Table 2. Quality ((m3)2) of	the	best	solutions	(i.e.,	minimum	solution	values)	generated	with	five	different	exchange	
rates (Methods 3 and 4) and reversion rates (Methods 5 and 6) for the forest spatial planning problem, where R2-R10 
represent	the	five	oscillation	(or	reversion)	rates	(i.e.,	R = 2, 4, 6, 8, 10).

Method Oscillation	/	reversion	rate	
2 4 6 8 10

3 87.6 135.7 73.2 143.2 89.7
4 62.0 23.3 66.9 20.9 12.9
5 60.0 13.1 50.8 51.7 88.5
6 20.9 29.2 16.0 36.2 11.8
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3.2 The evaluation of different search strategies

The oscillation (or reversion) rates usually had some moderate effects on the objective function 
values (Fig. 3) as mentioned above, but the functional mechanisms remained unclear, because 
of the stochastic behavior of simulated annealing. Therefore, we had no choice but to select the 
optimal oscillation (or reversion) rate for each search strategy just based on the average objective 
function	values	without	considering	 the	significance	of	 the	differences.	From	the	point	of	 this	
view, the optimal oscillation (or reversion) rates were 10, 8, 10 and 6 iterations for Strategies 3 to 
6, respectively. The quality of the 60 independent solutions for each search strategy was presented 
in Table 3, which provided us some insights into the quality of solutions among different search 
strategies. Strategy 6 generated the minimum mean solution values (327.3), which indicated that 
the	ΔV	was	only	1.81	m3/yr. The second and third minimum mean solution values were generated 
by Strategies 5 and 4, and the values were as large as 3.64 and 12.64 times than that of Strategy 
6. As expected, the standard version of simulated annealing (Strategy 1) generated the maximum 
(worst)	mean	solution	values,	which	were	as	large	as	111.65	times	that	of	Strategy	6.	The	ANOVA	
analysis	indicated	that	there	were	no	significant	differences	among	Strategies	4	to	6	with	respect	to	
the	mean	objective	function	values,	but	in	fact	they	were	significant	superior	to	other	search	strate-
gies	(i.e.,	Strategies	1–3).	Strategies	2	and	3	also	produced	significantly	different	mean	objective	
function	values	that	that	of	Strategy	1,	however	no	significant	differences	were	observed	between	
Strategies 2 and 3. The variations of the sixty solution values from Strategies 1 to 4 were much larger 
(more dispersed objective function values) than that of the other two search strategies, indicating 
a higher stability of the solutions generated using reversion search techniques (Strategies 5 and 6).

The	computational	time	required	significantly	increased,	no	matter	which	kind	of	2-opt	moves	
were implemented. Strategy 5 usually required the longest mean computational time to generate 
acceptable solutions (218.3 seconds), which was about 5.31 times than that of the standard ver-
sion of simulated annealing (41.1 seconds). The next longest computational time was Strategies 
6 and 2 respectively, which required approximately 4.38 and 3.95 times than that of Strategy 1. 
The	computational	time	required	for	Strategies	1,	3	and	4	were	significant	shorter	than	that	of	the	
other	three	search	strategies.	The	computational	time	required	for	Strategy	2	was	also	significant	
shorter	than	that	of	Strategy	5,	however	there	were	no	significant	differences	between	Strategy	2	
and	Strategy	6.	The	differences	between	Strategies	5	and	6	were	also	insignificant.

Table 3. The statistical characteristics of objective function values and computational time of 60 independent solutions 
for the six alternative search strategies when implemented with simulated annealing algorithm. 

Search 
strategy

Objective	function	values	(m3)2 Computational time (seconds)
Minimum Maximum Mean Standard  

deviation
ANOVA	 
groups a

Mean Standard  
deviation

ANOVA	
groups b

1 410.1 113 712.0 36 541.7 26 011.1 A 41.1 47.1 a
2 29.4 78 059.7 25 559.3 22 544.5 B 162.2 208.6 b
3 89.7 113 668.0 29 679.4 23 443.0 B 57.4 82.3 a
4 20.9 77 266.0 4138.2 9864.1 C 69.1 77.8 a
5 88.5 5867.5 1190.5 1413.1 C 218.3 89.8 c
6 16.0 1346.9 327.3 291.2 C 180.1 75.7 bc

a	The	same	letter	indicate	that	there	are	no	significant	differences	in	objective	function	values	at	α = 0.05 between dif-
ferent search strategies when implemented with simulated annealing algorithm.
b	The	same	letter	indicate	that	there	are	no	significant	differences	in	computational	time	at	α = 0.05 between different 
search strategies when implemented with simulated annealing algorithm.
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Fig. 4. The percentage of the sixty objective function values for each search strategy that varied within 10 times (i.e., 
≤	118.0	(m3)2) of the best solution value generated by Strategy 6 with a reversion interval of 10 iterations.

Fig. 5. The spatial and temporal assignment of management prescriptions of a small subarea for the best solution that 
generated by Strategy 6 with a reversion interval of 10 iterations, where MU is management unit.
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Fig. 4 illustrated how many, of the sixty independent solutions generated by each search 
techniques of simulated annealing, were ranged within 10 times of the best values (11.8) generated 
by Strategy 6 with a reversion interval of 10 iterations. Using this metric, Strategy 6 provided a 
probability	of	25%	to	generate	high	quality	solutions,	which	confirmed	that	it	was	the	most	suitable	
strategy to solve forest spatial harvest scheduling problems. However, the second most suitable 
strategies (Strategies 2 and 5) could only provide a probability of approximately 8% to generate 
high quality solutions. The worst strategy, the standard version of simulated annealing (Strategy 1), 
was	confirmed	that	it	may	be	not	convenient	for	forest	spatial	harvest	scheduling	problems	given	
the	benefits	that	the	enhancements	provided.

The spatial and temporal assignment of management prescriptions of a small subarea of 
the best solution that were generated by Strategy 6 with a reversion interval of 10 iterations was 
presented in Fig. 5, where the spatial constraints were rather evident and clearly discernible with 
the naked eye. The scheduled harvest volumes for each period of the presented plan were exactly 
nearly what were desired. The best forest plan showed that only 10.89% of the management units 
were scheduled for cutting with one of the four potential management prescriptions during the 
entire	time	horizon.	The	mild,	moderate	and	severe	selective	cutting	and	final	harvest	prescrip-
tions produced approximately 9.96%, 19.01%, 27.43% and 43.6% of the total harvest volume, 
and accounted for scheduled activity within 3.43%, 3.18%, 3.11% and 1.17% of the total number 
of management units.

4 Discussion and conclusions

Forest management planning processes are one of the most complex tasks for forest managers and 
decision-makers, especially when the adjacency constraints of harvest are considered. Therefore, 
the optimization processes of these planning problems are highly dependent on mathematical pro-
gramming technology. Simulated annealing, as a heuristic search process, has been widely used 
to address this type of problems and efforts on improving its performance are also always worthy 
from	scientific	perspective.	In	this	paper,	we	compared	the	performances	of	six	alternative	search	
strategies in spatial harvest scheduling problem when implemented with a simulated annealing 
algorithm. In addition to the conventional strategy (Strategy 1) to generate candidate solutions, we 
examined	five	enhanced	search	strategies	for	generating	candidate	solutions,	in	which	one	referred	
to the neighborhood search technique (Strategy 2), two referred to self-hybrid search techniques 
(Strategy 3 and 4) and two referred to reversion techniques (Strategy 5 and 6). The six alternative 
search strategies of simulated annealing were evaluated on a large and complex forest planning 
problem. The obtained results showed that the reversion technique (Strategy 6) provided higher-
quality	 solutions	 than	other	 techniques	 (Table	3),	which	confirmed	our	 expectations	perfectly.	
Although the performances of the rest search strategies were not as good as Strategy 6, they should 
not be neglected since they also have the potential to produce high-quality solutions. Therefore, we 
can conclude that heuristic algorithms, including simulated annealing, must need some necessary 
refinements	to	produce	higher	quality	solutions	in	practice.

The performance of heuristic algorithm is also highly dependent on the parameters used. 
However, in order to implement a controlled experiment and to avoid confounding effects of any 
combination of parameters, the values of the four pivotal simulated annealing parameters were 
held constant for each search strategy of simulated annealing employed in our research. Based 
on the work of Boston and Bettinger (1999) and Pukkala and Heinonen (2006) we can conclude 
that the quality of solutions might be improved sequentially if an optimal combination of these 
parameters were used. Conducting a sensitivity analysis of parameter values for each search strat-
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egy	of	simulated	annealing	was	always	worthy	from	the	perspectives	of	scientific,	however	it	may	
be	difficult	and	time-consuming	to	implement	the	sensitivity	analysis	of	the	four	parameters	for	
the tested six search strategies in this paper, thus we have to leave this area of investigation for 
future research efforts. In addition, the strategy used for selecting management units and treatment 
schedules	to	generate	candidate	solutions	also	have	significant	effects	on	the	quality	of	solutions	
generated.	In	our	study,	we	firstly	used	a	uniform	probability	to	select	the	management	unit,	and	
then another two uniform probability distributions were applied to select the time period when 
the management prescription should occur and the management activity to be applied within the 
selected management unit. However, Borges et al. (2014a, 2014b) recently reported that solutions 
could	be	significantly	improved	when	introducing	bias	into	the	probabilities	for	management	unit	
and treatment prescription selection process when compared to unbiased probabilities (i.e., the 
standard version of heuristic). However, the biased probabilities for selecting choices should be 
dynamic rather than static. Therefore, there might exist some potential to produce higher quality 
solutions from s-metaheuristics by introducing biased probabilities during a s-metaheuristic search 
process (with the exception of traditionally deterministic processes such as tabu search).

The techniques of oscillating between 1-opt and 2-opt moves can be considered as self-
hybrid technique, which has been described by Boston and Bettinger (2001) and Li et al. (2010). 
Therefore, the decision criteria for deciding when to switch from one search strategy to another 
might	have	significant	effects	on	the	quality	of	solutions	generated	and	on	the	optimization	time.	
Obviously,	simply	using	a	fixed	transition	point	has	been	suggested	as	a	poorer	choice	(Li	et	al.	
2010) because: 1) the best positions of the transition points are constantly changing with the total 
number of iterations of heuristics, 2) the transition points usually were pre-determined by the 
researchers without considering the search pattern of heuristic algorithm, 3) the different strategies 
for generating candidate solutions may also have their own internal behavior which determines 
the searching path pattern (as showed in Pukkala and Heinonen 2008). Based on some profound 
insights of the search patterns of widely used heuristics, Bettinger et al. (1997) divided their search 
processes into three phases: a hill-climbing phase, an adjustment phase and a steady-state phase. 
Their work provides us insightful perspectives to continually optimize the hybrid techniques of 
heuristics in solving forest planning problems, and might also suggest the use of different oscillation 
patterns between 1-opt and n-opt moves within these phases of a s-metaheuristic search process.

Since	heuristics	only	can	provide	acceptable	 solutions	 to	difficult	problems,	 rather	 than	
guarantee that the optimal solution will be located, thus the performance of heuristics should 
be	evaluated	carefully	before	applying	them	into	forest	management	practices.	Nowadays,	five	
alternative methods have been widely used in the related literature (Zhu and Bettinger 2008): 1) 
evaluate the variation of various solution values; 2) compare against an exact LP solution (if pos-
sible); 3) compare against a relaxed LP solution; 4) compare against estimated global optimum 
solution;	and	5)	compare	against	other	heuristics.	Obviously,	setting	a	baseline	(i.e.,	the	optimum	
objective function value) from mathematical programming (Method 2) is always the best way to 
evaluate the heuristic advantage and quality of the solution. However, it is certainly challenging 
to implement for a large, complex planning problem as presented in our study. Therefore, we only 
employed a relatively simple method (e.g., Method 1) to evaluate the performances of six alterna-
tive search strategies of simulated annealing. The slightly variation of 60 independent runs for each 
strategy	pointed	out	the	adequate	solution	stability	of	simulated	annealing.	Some	modifications	
have recently been made to improve the handling ability of mathematical programming techniques 
in solving complex forest planning problems (e.g., Goycoolea et al 2009; Tóth et al 2013), which 
have provided some insights into evaluating the performance of heuristics.

Although the results in our research were only limited to one case and a small set of search 
parameters,	 it	was	 compelling	enough	 to	 illustrate	 the	 efficiency	of	different	 search	 strategies	
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used for generating candidate solutions. However, application to a larger number of datasets 
will be important for analyzing the performance of different strategies for generating candidate 
solutions, because of the stochastic nature of simulated annealing algorithm. Some research has 
found that the size of a planning problem can also impose some explicit effects on the quality of 
solutions. For example, Bachmatiuk et al. (2015) found that changing the treatment schedule of 
more than one stand simultaneously did not improve the performance of simulated annealing if 
the combinatorial problems are very large, however if the size of the problem was reduced, then 
these types of 2-opt (or more) moves (changes, not exchanges) may perform better. Crowe and 
Nelson (2005) also found that the problem size does moderately affect the ability of simulated 
annealing	to	find	near-optimal	solutions,	but	the	relationship	between	the	size	of	problems	and	
the quality of solutions was not great. In addition, since the target volumes and assigned cutting 
areas in this analysis were both relative small with respect to the large area (i.e., approximately 
10%	of	the	total	number	of	management	units),	the	planning	problems	might	be	not	very	difficult	
to	solve.	Obviously,	increasing	the	levels	of	target	volume	might	have	significant	effects	on	the	
performance of different search strategies, especially when the planning problems involve with the 
harvest adjacency and green-up constraints, however we have to leave this area of investigation 
for future research efforts.

As we suggested above, some natural extensions of this work would be more fully examine 
the effects of the tested search strategies on a larger number of datasets; other extensions would 
include extending this work to other s-metaheuristic processes, other forest planning problems 
(e.g., decreasing the fragmentation of over-mature forests in landscapes level), or other search 
enhancement techniques.
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