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Airborne laser scanning (ALS) data have become the most accurate remote sensing technology 
for forest inventories. When planning new inventories the costs of fieldwork could be reduced 
if datasets of old inventory areas are effectively reused in the new area. The aim of this study 
was to apply mixed estimation using a combination of existing and new field datasets in 
area-based approach. Additionally, combining datasets with mixed estimation was compared 
with constructing new local models with smaller datasets. The two forest study areas were in 
Juuka and Matalansalo, which are located about 120 km apart in eastern Finland. ALS-based 
regression models were constructed using datasets of Matalansalo (472 reference plots) and 
Juuka (10–212 reference plots). Models were developed for the basal area median tree diameter 
and height, mean tree height, stem number, basal area and volume. The work was based on 
a simulation approach which involved five methods for approximating the regression coef-
ficients. The first method merged the datasets using ordinary least squares (OLS) regression 
models, whereas the second and third methods combined datasets using mixed estimation on 
different weighting principles, and the final two estimated local models with predetermined 
and new independent variables. The results indicate that mixed estimation can improve the 
accuracy of derived stand variables compared with basic OLS models. Additionally, a sample 
of 40–50 plots was enough to build local models for basal area and volume and produce at 
least the equal accuracy of results than any other methods in this study.
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1 Introduction
The area-based method has been the main 
approach to using airborne laser scanning (ALS) 
for large forest inventories because of its cost 
efficiency and the accuracy of the forest data 
obtained (Eid et al. 2004). This has made it one 
of the principal operational methods used to col-
lect information on forest structure and resources 
in Norway (Næsset 2004a, 2004b, 2007, Olsson 
and Næsset 2004). Several studies have been 
published concerning the accuracy of the forest 
data produced by this technology and methodol-
ogy, and demonstrating many different kinds of 
regression models for predicting total forest char-
acteristics such as mean diameter, dominant tree 
height, number of stems, basal area and volume 
from laser point data (Næsset 2002, 2004a, Hol-
mgren 2004, Thomas et al. 2006, Maltamo et al. 
2006, Hollaus et al. 2006, Jensen et al. 2006). 
The results have indicated that the area-based 
method could produce at least as accurate results 
as traditional field measurements. 

Tree species-specific results can be estimated 
using laser scanner data and aerial photographs 
(Packalén and Maltamo 2006). However, reli-
ability and accuracy of the area-based method 
in certain types of forest can be challenging and 
difficult. Broadleaf forests, in particular, might 
produce overestimated results because the canopy 
differs in size and shape from that in coniferous 
forests and is more closed (Næsset 2004a, 2005). 
According to his studies, it is highly recom-
mended to treat deciduous stands as separate 
strata when applying the area-based method. In 
addition, there have been doubts about the trans-
ferability of ALS-based regression models, so 
that the models tend to be estimated locally for 
continuous geographical areas. 

There are many factors which can affect ALS-
based regression models and their estimation 
results. The flying parameters of the laser scan-
ner, for example, including altitude, point density, 
type of scanner and field of view (Holmgren et al. 
2003, Næsset 2004c, Holmgren 2004, Maltamo et 
al. 2006), can influence the properties of a single 
point and then the whole point cloud. Further-
more, a major difference in forest structure, e.g., 
growing stock, between inventory areas can cause 
significant over-estimation or under-estimation of 

forest characteristics. According to Thomas et al. 
(2006), the best laser quantile is different for low- 
and high-density laser data and for homogeneous 
and mixed stands. As a result, transferring ALS-
based regression models between forest areas 
could be a cumbersome process. According to 
Næsset et al. (2005), it is possible to combine 
reference data and laser scanner data from dif-
ferent inventories, but it is necessary to check the 
compatibility of the forest conditions and laser 
scanners. In Næsset (2007), ALS data of two 
inventory areas including the same scanner and 
flying parameters were combined, and the inven-
tory areas were taken into consideration using 
dummy variables in derived regression models. In 
his study, dominant height was the only dependent 
variable which was significantly different to the 
other forest characteristics.

Jensen et al. (2006) concluded that some bio-
physical properties can be estimated accurately 
in large forest areas. They estimated and tested 
ALS-based regression models in five geographically 
separate forest areas with mixed-conifer stands but 
few deciduous species. Therefore, ALS models 
cannot be generalised to other forest areas without 
additional testing. Lefsky et al. (2005) suggested 
there might be a unique relationship between ALS 
measurements and stand structure in forests where 
the main tree species are coniferous trees because 
the canopy is more or less conical. An application 
of this above mentioned unique relationship to 
canopy height estimation was attempted by Hop-
kinson et al. (2006), who demonstrated that the 
standard deviation of first and last pulse returns 
is a robust variable for estimating canopy height 
for different vegetation types and heights and for 
different lidar survey configurations. Their study 
included 13 separate datasets representing five 
sites in Canada with measured average heights 
ranging from < 1 to 24 m. These datasets were 
collected using four different ALTM (airborne laser 
terrain mapper) sensors during 2000 and 2005 
(Hopkinson et al. 2006). However, their study 
involves only height estimation, which is prob-
ably the most accurate variable to predict using 
ALS data. Finally, Breidenbach et al. (2007) used 
mixed linear modelling to combine ALS datasets 
from Germany and the USA.

Under Finnish conditions, Uuttera et al. (2006) 
tested different remote sensing methods for two 
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separate forest areas to estimate stand-level forest 
characteristics. They concluded that using the area-
based method with regression models produced 
the most accurate results. These models were 
constructed in a separate forest area and models 
were not calibrated or re-estimated for the two 
test areas, which were located 150 and 300 km 
away from the model area. The regression models 
produced fairly accurate stand-level results, but 
the major concern was that these entailed a signifi-
cant bias for some stands. However, these stands 
were dominated by deciduous trees and this bias 
might be because of the difference between conif-
erous and deciduous trees. Moreover, structural 
differences between forest areas can influence a 
model’s accuracy. Uuttera et al. (2006) conjecture 
that ALS-based regression models are transferable 
between inventory areas but bias might be a major 
problem and this must be taken into consideration. 
Therefore, a calibration for local reference data 
might help produce more accurate and unbiased 
results. Another aspect is reducing fieldwork costs 
in a new inventory area by considering whether 
datasets of old inventory areas could be effectively 
reused in modelling and constructing new models 
in the new target forest area.

One possible method for combining different 
datasets in ALS-based forest inventories is to 
apply mixed estimation. This method has mainly 
been employed in economics, but there has been 
some research into its applicability to forestry 
(Korhonen 1993, Roesch 1999). Korhonen (1993), 
for instance, used mixed estimation to calibrate 
volume functions for Scots pine sample tree mate-
rial from two national forest inventories (NFI7 
and NFI8). In his study, the pine volume model 
was constructed in sampling simulations for the 
NFI8 data by taking information for the mixed 
estimation from the NFI7 data and comparing 
the result with an OLS model constructed without 
prior information. In this case, the main result 
was that mixed estimation produced better results 
when there were fewer sample trees, but the OLS 
estimator was better when there were several 
hundred sample trees. According to Korhonen 
(1993), the weight assigned to the prior infor-
mation could influence the final results. Roesch 
(1999) found mixed estimation to be favourable 
method to estimate basal area when compared to 
moving averages and imputation. 

The aim of this study was to apply mixed 
estimation using a combination of existing and 
new field datasets. Additionally, combining 
datasets with mixed estimation was compared 
with constructing new local models with smaller 
datasets. All the ALS-based regression models 
are constructed for plot-level total forest charac-
teristics, such as basal area median tree diameter 
and height, mean tree height, stem number, basal 
area and volume.

2 Materials and Methods

2.1 Study Areas

The two sites studied here, Matalansalo and 
Juuka, are located approximately 120 km apart 
in eastern Finland and represent typical managed 
forest of the southern part of the boreal forest 
zone. Matalansalo represents an old inventory 
area and Juuka a new target area for which we 
wished to estimate plot-level forest character-
istics. The two forest areas are fairly similar in 
structure. The tree species composition at Juuka 
consists of Scots pine 59%, Norway spruce 30% 
and deciduous trees, mainly birch, 11%. These 
proportions are fairly similar at Matalansalo (58% 
Scots pine, 34% Norway spruce, 8% deciduous). 
The proportions of the fertility classes are moist 
sites (Myrtillus type) 48%, dry sites (Vaccinum 
type) 47% and poor sites (Calluna type) 5% in the 
Juuka forest area and grass-herb sites 8%, moist 
sites (Myrtillus type) 49%, dry sites (Vaccinum 
type) 42% and poor sites (Calluna type) 1% at 
Matalansalo. The stand development classes of 
the plots were young 37%, middle-aged 39% and 
mature 24% at Juuka, whereas Matalansalo had 
27% young forests, 42% middle-aged and 31% 
mature. Topography range was 80–160 metres 
above mean sea level in Matalansalo, whereas in 
Juuka the range was 145–250 metres.

The field data and remote sensing material were 
acquired in 2004 for Matalansalo and in 2005 
for Juuka. The reference sample plot material 
was similar in both test areas. Circular field plots 
with a radius of nine metres were measured; the 
total number of reference plots was 472 at Mata-
lansalo and 212 at Juuka. However, the principle 
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for sampling the reference plots differed between 
the forest areas because they formed a systematic 
network inside a single stand at Matalansalo but 
were randomly distributed at Juuka. The position 
of the centre of each plot was determined using 
GPS (Global Positioning System). All trees with 
a diameter at breast height (DBH) of more than 
5 cm were measured and their species and storey 
class were recorded. The height of a sample tree 
was measured for each tree species and storey 
class in a plot, and the heights of tally trees 
were calculated using the species-specific height 
models of Veltheim (1987). Model tree heights 
were calibrated so that the measured and esti-

mated heights of each sample tree were equal. 
Finally, the same correction factor was applied 
consistently to all trees of the same species and 
storey class within one plot. Tree volumes were 
calculated using the volume models of Laasa-
senaho (1982). The plot-level forest characteris-
tics for the two inventory areas are presented in 
Tables 1 and 2.

2.2 Laser Scanner Data

The remote sensing data for the Matalansalo test 
area were acquired in August 2004 using an 
Optech ALTM 1233 laser scanner, which pro-
duced a point cloud georeferenced in terms of the 
x, y and z coordinates. The accuracy was 0.75 m 
for x and y and 0.25 m for z. The flying altitude 
was 1500 m above ground level and the field of 
view was 30 degrees. These flying parameters 
gave a swath width of approximately 800 m and a 
point density of 0.7 laser pulses per square metre. 
The scanning in the Juuka test area was performed 
in August 2005 using an Optech ALTM 3100C 
laser scanner at a flying altitude of 2000 m and 
a field of view of 30 degrees. The pulse repeti-
tion frequency was 50 kHz at Juuka and 33 kHz 
at Matalansalo. The swath width at Juuka was 
approximately 1070 m and the pulse density 0.56 
pulses per square metre. First and last pulse data 
were recorded in both areas.

A digital terrain model (DTM) was generated 
for each area from the laser point data, which 
required separation of the points into ground 
and vegetation hits. The classification was per-
formed on the Terrascan software (http://www.
terrasolid.fi) using a method based on Axelsson 
(2000). Classified ground points were calculated 
as averages for each raster cell. Raster values for 
cells containing no data were calculated using 
Delaunay triangulation and the bilinear interpola-
tion method. This led to the creation of a DTM 
raster with a cell size of 1 m for Matalansalo and 
2.5 m for Juuka.

Thus, the laser data were recorded using two 
different types of laser scanner and with dif-
ferent flying parameters. The manufacturer of 
the scanners were the same in both cases, but 
the model is different (the ALTM 3100C has a 
higher pulse frequency). According to previous 

Table 1. Plot-level forest characteristics in the Juuka 
test area. Min = Minimum value, Max = Maximum 
value, Mean = arithmetic mean value, Sd = Standard 
deviation. Dgm = diameter of basal area median 
tree, Hgm = height of basal area median tree, h_
mean = mean height of all trees in a plot, N = stem 
number, G = basal area, V = volume.

 Min Max Mean Sd

Dgm, cm 9.00 32.80 18.23 5.01
Hgm, m 6.23 25.33 14.87 3.87
h_mean, m 5.65 21.44 11.85 2.86
N, ha–1 393 4126 1508 672
G, m2 ha–1 4.40 55.18 23.76 8.82
V, m3 ha –1 15.75 506.40 173.12 90.22

Table 2. Plot-level forest characteristics in the Mata-
lansalo test area. Min = Minimum value, Max = 
Maximum value, Mean = arithmetic mean value, 
Sd = Standard deviation. Dgm = diameter of basal 
area median tree, Hgm = height of basal area median 
tree, h_mean = mean height of all trees in a plot, 
N = stem number, G = basal area, V = volume.

 Min Max Mean Sd

Dgm, cm 7.60 43.60 19.83 6.46
Hgm, m 6.00 30.55 17.03 5.13
h_mean, m 5.69 24.34 12.78 3.42
N, ha–1 275 4048 1507 692
G, m2 ha–1 4.45 48.96 24.68 8.05
V, m3 ha –1 16.05 601.68 203.37 103.51
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research, point density is not a critical issue for 
applying the area-based method and its results 
(Holmgren 2004, Maltamo et al. 2006, Gobakken 
and Næsset 2007). However, Næsset et al. (2005) 
mention that each individual instrument has a 
unique specification even when belonging to the 
same production series, and as such they can 
produce different canopy heights and degrees of 
canopy penetration. Another major difference of 
these laser scanners is the technique for record-
ing the first and last pulse data. The ALTM 1233 
typically records these two pulse types because 
it contains two separate electronic circuits. You 
normally get two echoes for every pulse but it is 
not always possible to distinguish between them 
at fairly low height ranges (Næsset, personal 
communication 2007, Hopkinson et al. 2006). 
The ALTM 3100C can record four pulse types: 
only echo, first only echo, last only echo and 
intermediate echo. In our processing stage, the 
laser data of the ALTM 3100C were classified 
into first and last pulse data. The first pulse data 
consist of the only echoes and first only echoes 
and the last pulse data of the only echoes and 
last only echoes. The intermediate echoes were 
eliminated entirely. All these technical laser scan-
ner issues can affect the results of this research, 
but the laser scanner data can be assumed to be 
similar in quality throughout.

Various laser height metrics were calculated for 
both inventory areas and for each reference plot. 
Laser point heights less than 2 m were classified 
as ground points and all the other points as veg-
etation hits (Næsset 2002, 2004a). Laser canopy 
height percentiles such as 5, 10, 20, 30…, 90, 95 
and 100% were calculated from the vegetation 
hits (Næsset 2004a), and proportional densities 
were calculated for these height quantiles. Stand-
ard deviation, mean values, coefficients of vari-
ation and the proportions of vegetation hits were 
also computed from the laser point data. This was 
done separately for the first and last pulse data.

2.3 Methods

Mixed estimation can be employed whenever 
there are two datasets available: a sample from 
the current target population and an auxiliary 
dataset, which should be fairly similar to it (Lappi 

et al. 2006). When combining the datasets, less 
weight should be given to the observations from 
the auxiliary dataset than to those from the target 
population (Lappi et al. 2006). In general, mixed 
estimation produces smaller a mean square error 
than the ordinary least squares (OLS) method, 
but can also produce biased results (Lappi et al. 
2006).

Let y1 and y2 be the vectors of the dependent 
variables for the target and auxiliary populations, 
respectively, and X1 and X2 the model matrices 
from the target and auxiliary datasets. In mixed 
estimation, the regression coefficient β̂  is esti-
mated using Eq. 1 instead of the OLS Eq. 2.

ˆ ( )β l l= ′ + ′( ) ′ + ′( )−
X X X X X y X y1 1 2 2

1

1 1 2 2 1

ˆ ( )β = ′( ) ′( )−
X X X y1 1

1

1 1 2

Mixed estimation is a weighted least squares 
method, with the weights of the target popula-
tion equal to one and the observations of the 
auxiliary dataset amounting to l, which describes 
the weight of auxiliary data (Lappi et al. 2006). 
According to Theil and Goldberger (1961), l 
should be estimated using the models’ residuals 
ratio. This ratio is the model residual error for 
the target population divided by the auxiliary 
data model residual error. In this study, such 
weighting might place too much weight on the 
auxiliary data. Therefore, this hypothesis will be 
examined during the study. It is expected that it 
would be better to use weights which provide the 
same number of plots for both inventory areas 
otherwise the reference plots at Juuka, which cor-
respond to the target area, will obtain more weight 
than the auxiliary data at Matalansalo.

Weights for the auxiliary observations in the 
mixed estimation were defined using the propor-
tions of reference plots from the target population: 
0.5, 0.6, 0.7, 0.8 and 0.9. The actual l value for 
mixed estimation is solved from these propor-
tions. A proportion of 0.6 and a chosen sample 
size from Juuka of 30 plots denote that the pro-
portion of the Juuka target data is 60% and the 
proportion of Matalansalo reference plots is 40%, 
corresponding to 20 sample plots. Therefore, the 
actual l value in mixed estimation and the weight 
of auxiliary data would be 20/472. This weight-
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ing principle was applied to all proportions and 
is derived from the fact that the differences in 
plot-level forest characteristics seemed to be fairly 
clear and the regression models constructed from 
Matalansalo data produced some overestimations 
in the case of the Juuka forest area.

The first stage in this study was to develop 
linear regression models for the six dependent 
forest characteristics: basal area median tree diam-
eter (Dgm) and height (Hgm), mean tree height 
(h_mean), stem number (N), basal area (G) and 
volume (V). These abbreviations are not perhaps 
generally accepted but used only as acronyms in 
the result tables of this study. The most difficult 
task was defining forms of regression models 
and finding explanatory variables which would 
be significant at the 5% level for both inventory 
areas. The structure of the regression models 
needed to be fairly simple and the number of 
explanatory variables need to be minor because of 
the major multicollinearity of ALS-based height 
quantiles and percentiles. All regression models 
and calculations for this study were constructed 
using R statistical software (R Development Core 
Team 2009). Forms of the final regression models 
were tested carefully using different combina-
tions and transformations of independent and 
dependent variables such as square root, natu-
ral logarithm, square and inverse. R-program’s 
regsubset-package and StepAIC-procedure was 
utilised on a selection of independent variables 
for each dependent variable.

This research work was implemented using a 
simulation approach. In mixed estimation, the ref-
erence data of Matalansalo were always included 
as auxiliary data, whereas the number of target 
population plots in Juuka and the weight of auxiliary 
data changed during the simulation. Simulation 
started with a sample of 10 target area plots from 
the Juuka test site, and plots were added one by 
one until they had all been included. Each sample 
size iterated 100 times and plots were selected 
randomly for each sample. Five different methods 
were used to approximate the regression coeffi-
cients in the simulation procedure. The first method 
is described in the results as a normal estima-
tion, which implies that the plot sample from the 
Juuka test area was added to the Matalansalo plots 
and models’ coefficients were solved using OLS 
regression. The second and the third approximating 

options involved the use of mixed estimation. One 
selected the weights for the auxiliary data using 
the residual ratio. The other method was a more 
heuristic approach. This denotes that the weights in 
mixed estimation treat the inventory areas as equal 
or assign more weight to the target population. The 
fourth method was constructed from a local OLS 
model, and estimated the regression coefficients 
using the selected sample of plots from the Juuka 
test area and the original, predetermined explana-
tory variables (Table 3). In the fifth method, only 
the sample plots from the Juuka forest area were 
used as reference data and new independent vari-
ables were selected using an automatic variable 
selection method.

The automatic variable selection method was 
implemented using R-program’s regsubset-pack-
age. This package is included in the leaps library 
and a more detailed description is explained in 
Miller (2002). In the automatic variable selection 
method, the level of significance for each explana-
tory variable was 5% and the maximum number 
of independent variables was three. The automatic 
variable selection method occasionally produced 
regression models which were not significant, 
especially in the early stages of the simulation 
and when the number of reference plots was 
small. Therefore, it was necessary to ensure that 
all independent variables were significant, but in 
some cases at least one independent variable had 
to be left in the regression model.

The accuracies of the derived plot-level forest 
characteristics are presented here in terms of the 
relative root mean square error (RMSE) and rela-
tive bias (bias).

RMSE =

−










∧

=
∑ X X

n

i i
i

n
2

1
3( )

bias =

−










∧

=
∑ X X

n

i i
i

n

1
4( )

where n is the number of sample plots, Xi is the 
observed value and Xi

∧
 the predicted value for 

plot i. The relative RMSE and bias for each forest 
characteristic were calculated as percentages by 
dividing the absolute RMSE and bias by the true 
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mean characteristics. These accuracy figures are 
calculated for the Juuka test area as a whole, 
which contains 212 reference plots, and the final 
results are an average of 100 simulations for each 
plot sample size.

3 Results

The ALS-based regression models were originally 
constructed for the Matalansalo test area and so 
it was necessary to check that these models and 
their independent variables were also significant 
at the 5% level in the Juuka test area (Table 3). 
These regression models were used throughout 
the simulations and new regression coefficients 
were solved in each iteration. Therefore, there 
was no need to present the exact regression coeffi-
cients because our main focus was to demonstrate 
how these results could change when transferring 
these models to other inventory areas. Moreover, 
the structure of the models remains constant in 
normal estimation, mixed estimation and estimat-
ing local model parameters. In the automatic vari-
able selection method, new independent variables 
were selected during these simulations. All these 
ALS-based regression models are fairly simple in 
structure and the number of independent variables 
is from one to four.

The results are presented here as separate graphs 
for the various forest characteristics, with each 
graph containing regression coefficients estimated 
in the five different ways (Figs. 1–5). An abbre-
viation normal in the graphs denotes that the plot 
sample from the Juuka forest area was added to the 
reference plots for Matalansalo. This is the normal 
procedure for merging datasets and constructing 
regression models. Mixed estimation 0.5 denotes 
calibration of the original ALS-based regression 
models using the mixed estimation methodology. 
In other words, the two inventory areas are taken 
as equal in spite of the differences in the number 
of sample plots in the data. Mixed estimation 0.9 
refers to mixed estimation in which the proportion 
of the target data is 0.9 relative to the auxiliary 
dataset and l is solved according this assumption. 
Corresponding proportions of 0.6, 0.7 and 0.8 of 
the target data were also used in mixed estimation 
during the simulation process. The major find-

ing was that the result curves obtained by mixed 
estimation approached each other and the local 
model results. Therefore, the major results were 
achieved using proportions of 0.5 and 0.9 in the 
mixed estimation procedure. A model’s residual 
ratio weighting was also investigated in connection 
with the mixed estimation method. The final result 
was that this weighting was not powerful enough 
and produced somewhat worse results than the 
other weighting method. The abbreviation local 
model in the graphs denotes that the regression 
model parameters were estimated using prede-
termined explanatory variables (Table 3) and the 
sample plots of the Juuka forest area. The fifth 
method, automatic variable selection, is described 
in the curve labelled local variable selection. This 
implies that the new independent variables were 
selected and new regression coefficients estimated 
based on the reference plot sample from the Juuka 
test area.

Mixed estimation resulted in slightly more accurate 
results than normal OLS estimation. The results also 

Table 3. Explanatory variables selected from the laser 
point data to predict the plot-level forest character-
istics. The explanatory variables are abbreviated as 
follows: f or l denotes first or last pulse data, the 
prefix h describes a particular height quantile in the 
laser point data, hmean is a mean value of the laser 
pulses and veg denotes the proportion of vegeta-
tion hits which describe the laser pulses reflected 
from the canopy compared to the total number of 
the laser pulses.

 ln(Dgm) ln(Hgm) ln(h_mean) ln(N) ln(G) ln(V)

fveg x     
fveg

2 x   x  

fh20  x     

fh60  x     
ln(fh80)  x    
lhmean

2    x  
lveg

2    x  
ln(fveg)     x x
ln(fhmean)     x x
lveg     x 

1veg       x
lhmean   x   
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Fig. 1. Results for basal area median tree diameter obtained using the five esti-
mation methods.
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Fig. 2. Results for basal area median tree height obtained using the five estima-
tion methods.
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Fig. 3. Results for mean tree height obtained using the five estimation methods.



101

Suvanto and Maltamo Using Mixed Estimation for Combining Airborne Laser Scanning Data in Two Different Forest Areas

Fig. 4. Results for stem number obtained using the five estimation methods. 
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Fig. 5. Results for basal area obtained using the five estimation methods.
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Fig. 6. Results for total volume obtained using the five estimation methods.
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suggest that local regression models can produce 
more accurate results than mixed estimation even 
when the number of sample plots is fairly small. 
Mixed estimation produced better results for basal 
area and volume when the number of reference plots 
was 20–30 and for the other forest characteristics 
when the number was approximately 40–50. The 
major difference between mixed estimation and 
local models or the automatic variable selection 
method was in estimating the number of stems. 
There have to be at least 80 reference plots before 
local models produce results that are at least as 
good as those obtained by mixed estimation. It 
is also worth noting that mixed estimation with 
a proportion of 0.5 produced better results than 
mixed estimation with a proportion of 0.9 at the 
beginning of the simulation. This was seen for 
Dgm, Hgm and N.

The bias is generally smaller in local models 
than in mixed estimation because of the mixed 
estimation methodology. Mixed estimation pro-
duced more accurate results than local models 
for small sample sizes. A sample size of 40 or 
50 plots for basal area and volume was enough 
to achieve estimates equal to the local model 
parameters. Using the proportion of 0.9 from 
target data in mixed estimation produced almost 
the same results as the local model, a major dif-
ference being seen only in basal area.

4  Discussion

The results of this study indicated that in ALS-
based forest inventory, mixed estimation with a 
combination of datasets from two inventory areas 
improved the accuracy of derived plot-level char-
acteristics compared with OLS-based regression 
models. Additionally, although there were some 
differences between the various forest characteris-
tics, for instance, plot-level volume, 50 plots was 
in this study enough to construct local models and 
achieve as accurate results. To summarize, the 
number of sample plots to be measured could be 
lower than in present inventories. The same has 
been found also in the studies by Junttila et al. 
(2008) and Maltamo et al. (2009). 

In this study the structure of the constructed 
regression models was fairly simple. For instance, 

the number of explanatory variables was low. 
More sophisticated regression models will give 
better results, but the transferability and com-
bination of models between two different forest 
areas would be cumbersome and the significance 
of the independent variables and even the whole 
regression model could not be guaranteed. There 
is also an interesting issue about explanatory 
variables because these models do not include 
any independent variables which describe the 
proportional density of laser height percentiles. 
By contrast, the proportion of vegetation hits and 
the mean height of laser pulses are explanatory 
variables which describe forest size and structure 
in general and are, therefore, suitable for ALS-
based regression models.

Using new local models, the automatic variable 
selection method produced huge errors for all 
forest characteristics at the beginning of the simu-
lation procedure because the size of the sample 
was too small for the selection of new, distin-
guishable independent variables. This principle 
might in some cases cause serious extrapola-
tion of local regression models. This issue was 
emphasised because the reference plots were 
selected randomly, meaning the sample could 
have included forests in which the growing stock 
was fairly small, for instance. The automatic vari-
able selection method yielded the best results for 
plot-level volume, for which they were similar to 
those obtained by the other methods when the size 
of the sample was about 40–50 reference plots. 
For the other forest characteristics, however, it 
requires at least 80 or even 100 reference plots 
to obtain at least the same results as the prede-
termined local models. It is worth emphasising 
that the automatic variable selection method was 
an automatic algorithm and was based totally 
on simulation. Therefore, results should not be 
too optimistic with the achieved results perhaps 
improving still if these models were constructed 
manually.

For some dependent variables, the ALS-based 
regression models, which were constructed in 
the Matalansalo forest area, produced systemati-
cally underestimated results in the Juuka test area 
because of the structural differences between these 
two forests. Hgms are greater in the Matalansalo 
area than at the Juuka test site, for instance (Tables 
1 and 2), i.e., a tree at Matalansalo will usually be 
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taller than one of the same DBH at Juuka because 
of the allometric differences between trees in dif-
ferent forest areas. This issue is also influenced 
by biological factors such as temperature. To 
clarify the systematic differences between the 
two forest areas, mean height and Hgm (weighted 
height characteristics) were chosen as dependent 
variables. The results of both height variables 
were similar for RMSE, but highlighted minor 
differences in the case of bias in normal estima-
tion, which was somewhat higher for Hgm than 
for mean height. The difference in growing stock 
between the areas will definitely influence the 
ALS-based regression models, implying that the 
same independent variables cannot accurately 
predict forest characteristics in different inven-
tory areas. From this point of view, our results 
are reasonable because the mixed estimation is 
not powerful enough to modify and calibrate the 
regression coefficients relative to local models and 
new independent variables. However, it should be 
remembered that at least part of the results might 
be because we used different laser scanners in two 
considered inventory areas.

The number of stems was the only exception 
among the chosen forest characteristics. This was 
difficult to approximate using mixed estimation 
or even local models. The final results of N were 
fairly similar with all estimation methods. The 
automatic variable selection method produced 
somewhat better results when the number of refer-
ence plots was over 120. One significant issue was 
that the best estimates of N were achieved when 
the number of reference plots was smaller than the 
total number of Juuka reference plots. Moreover, 
number of stems is the only forest characteristic 
for which the normal OLS estimation method pro-
duces fairly similar results for relative RMSE to 
mixed estimation or any other estimation method 
considered here. This might be because the refer-
ence range and average N are almost equal in the 
Juuka and Matalansalo test areas.

The results of this study differed from the study 
of Korhonen (1993), which applied mixed esti-
mation to tree-level volume. The major differ-
ence between these two studies was the number 
of observations needed for OLS estimation to 
achieve better results than the mixed estimation. 
According to Korhonen, the OLS estimator was 
better when using several hundreds of sample 

trees but otherwise mixed estimation produced 
more accurate results. Perhaps the difference is 
dependent on the scale because the variation in 
the modelling datasets is higher at the tree-level 
than plot-level.

In general, using mixed estimation models 
demands a unique relationship which could be 
defined as “natural law”. For instance, tree height 
is usually modelled using tree diameter and this 
is a fairly stable relationship. Model coefficients 
certainly change in different forest areas but inde-
pendent variables remain the same. When estimat-
ing tree height using single and fixed models is 
reasonable, and mixed estimation is one method 
for generalising this kind of information. In ALS-
based forest inventories, the diversity is higher 
and, therefore, the dependent and independent 
variables are better chosen locally. In this study, 
the uncertainty and the heterogeneous of these 
two datasets will also increase because of the 
influence of the two different laser scanning sys-
tems, for instance.

According to this study and these forest areas, 
using 50 field plots to construct the local volume 
model from ALS measurements was enough. 
Therefore, it would be useful in the future to 
apply these results in practice because a smaller 
sample size for a given target inventory area 
would increase the cost efficiency of the field-
work. This would improve fieldwork planning 
and the design of the sampling approach. The 
plot-level reference data should be appropriate 
and sufficiently extensive to provide samples of 
the different forest types and structures in the 
target inventory area. According to Lefsky et al. 
(2005), a modified sampling design including 
a range of structures and ages for the reference 
plots is needed, but a complete sequence for every 
forest type is unnecessary. This question of sam-
pling design becomes more complicated when 
tree species-specific results are needed because 
the number of reference plots will probably need 
to be higher to take account of variations in tree 
species composition.

It would be interesting in the future to gather 
reference field plots and laser scanner data from 
more than two inventory areas representing geo-
graphically different locations, e.g., in different 
countries (Breidenbach et al. 2007). The method 
for combining ALS inventory areas might then 
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be different. In this study, the field reference data 
sampling principles between the two forest areas 
were not the same and, therefore, it was not pos-
sible to invoke, e.g., the mixed model prediction 
theory (see Breidenbach et al. 2007). ALS-based 
measurements for forest inventory purposes can 
also utilise unique relationships in volume, for 
instance. In the area-based method, using a pro-
portion of vegetation hits and the mean height of 
laser pulses for plot or stand might describe the 
forest total volume. Using this kind of simple rela-
tionship between different countries and smaller 
sub-areas might produce accurate estimates about 
the growing stock.

Finally, it would be relevant in future studies 
to note the differences between laser scanning 
instruments and consider the influence of these 
devices on the final forest inventory results. Tech-
nical issues related to these devices, particularly 
the footprint diameter of the laser pulse, pulse 
repetition frequency and the capability of the laser 
scanner to record and transmit pulse reflections 
and pulse power, might also crucially affect the 
results of ALS-based regression models (Hop-
kinson 2007). In this study, the effect of different 
laser scanning instruments could have influenced 
the final results of forest characteristics. How-
ever, we had no chance to investigate this issue, 
and for that reason we would need to scan the 
same forest area several times using different 
flying parameters of the laser scanner such as 
flying altitude and pulse repetition frequency. 
One interesting approach would be to compare 
different laser scanning instruments by different 
manufacturers.
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