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Highlights
• Temperature vegetation dryness indices were calculated from MODIS satellite imagery to 

estimate subsurface soil moisture at different depths using the triangle method.
• Observations were carried out over the vast areas of Georgia and South Carolina, USA, covered 

with diverse land uses that, included dense forests and agricultural areas.
• The triangle method may be useful in forestry management applications where the produc-

tivity potential of a region and the hydrologic role of forests in that region are of concern.

Abstract
We describe here a study based on analysis of vegetation indices and land surface temperatures, 
which provides relevant information for estimating soil moisture at regional scales. Through an 
analysis of MODIS satellite imagery and in situ moisture data, the triangle method was used to 
develop a conceptual land surface temperature−vegetation index model, and spatial temperature-
vegetation dryness index (TVDI) values to describe soil moisture relationships for a broad land-
scape. This study was situated mainly within two states of the southern United States (Georgia and 
South Carolina). The total study area was about 30 million hectares. The analyses were conducted 
using information gathered from the 2009 growing season (from the end of March to September). 
The results of the study showed that soil moisture content was inversely proportional to TVDI, 
and that TVDI based on the normalized difference vegetation index (NDVI) had a slightly higher 
correlation with soil moisture than TVDI based on the enhanced vegetation index (EVI).
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1 Introduction

Soil moisture serves as a vital factor supporting ecosystem service, and has a direct influence on 
vegetation growth and nutrient cycling. Its assessment plays an important role in efforts to monitor 
and analyze the environment (Oschner et al. 2013). Soil moisture is often considered along with soil 
nutrients and composition as a key factor in determining ecosystem productivity and site quality, 
forming the basis for site quality and productivity classifications. More recently, scientists have 
discussed the importance of soil moisture as a factor in climate change and broad-scale hydrologic 
cycles (Chen et al. 2011b). Land surface parameters, such as soil moisture, temperature, and land 
cover are important components of ecosystem processes on both local and global scales (Meng 
et al. 2009; Nelson et al. 2011; Kim et al. 2012; Lowe and Cieszewski 2014). The complexity of 
the soil environment, the diversity of land cover (particularly vegetation cover), and the impact 
of other factors such as terrain and topography, make soil moisture research especially challeng-
ing and very expensive to perform in the field (Byun et al. 2014; de Tomás et al. 2014). For these 
reasons there is an increasing interest within the scientific community in development of methods 
for soil moisture and water availability assessment using remotely sensed imagery (Lowe et al. 
2009; Petropoulos et al. 2015). The increasing availability of remotely sensed imagery, coupled 
with advances in availability of computing technology, contributes to advances in cost-efficient 
broad-scale monitoring of environmental phenomena (Łukowski and Usowicz 2014). Satellite 
technology also facilitates timely and cost effective assessments of vegetation, through indices 
such as the normalized difference vegetation index (NDVI) (Rouse et al. 1974), which have been 
widely used for assessment of drought conditions (Kogan 1995; Ji and Peters 2003; Bajgiran et 
al. 2008; Jain et al. 2009; Karnieli et al. 2010).

The primary advantage of basing analyses on vegetation indices is that over a short time 
frame they are not very sensitive to corresponding changes in soil moisture, because the presence 
of chlorophyll in vegetation does not change immediately at the onset of water stress. When water 
stress begins in trees, leaves remain green for some time and change only after a prolonged stressful 
period. On the contrary, land surface temperature is strongly affected by both soil moisture content 
and the vegetation canopy (or lack of thereof). Vegetation shading and vegetation transpiration are 
representative of evaporation processes and affect the moisture content of soils. In forest manage-
ment areas, regional soil moisture conditions may be correlated with regional annual tree growth 
and site productivity. This relationship can influence the outcomes of fiber supply assessments and 
associated forecasts, and supply-demand-price prediction studies. These forest management and 
planning issues have important associations with the sustainability of forests, while analyses of soil 
moisture and vegetation indices can improve our understanding of the hydrologic role of forests 
(Cho et al. 2016). If one wanted to stratify the forests based on potential site quality (Cieszewski et 
al. 2005; Iles 2009), soil moisture, forest age, and vegetation indices, these processes may facilitate 
an understanding of broad-scale productivity, growth potential, and hazards (fire and forest health). 
It may also then be possible to observe specific hydrologic phenomena such as spatial diversifica-
tion in water conditions caused by depression cones around coal mines (Miatkowski et al. 2013).

To facilitate the development of broad-scale soil moisture estimates, remotely sensed Mod-
erate Resolution Imaging Spectroradiometer (MODIS) data have been used (Wan et al. 2004; Li 
et al. 2008; Mallick et al. 2009; Patel et al. 2009; Rhee et al. 2010; Son et al. 2012) to estimate 
temperature-vegetation dryness index (TVDI), which can be derived from land surface tempera-
ture (LST), normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI) 
values. A number of earlier studies (Wang et al. 2004; Wan et al. 2004; Sun et al. 2008; Li et al. 
2008; Mallick et al. 2009; Wang et al. 2010; Chen et al. 2011a; Liu et al. 2016) have also advocated 
the use of TVDI for monitoring surface moisture conditions. TDVI has been recently applied to 
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studies of forests in Brazil (Cho et al. 2016), Argentina (Holzman et al. 2014), and China (Chen 
et al. 2015). The primary advantage of this approach is that TVDI combines the information cap-
tured by both vegetation indices and LST, which facilitates wider application of assessments of 
soil moisture conditions across diverse landscapes.

The theoretical range of TVDI values is 0 to 1; larger TVDI values define drier conditions, 
and smaller TVDI values defined wetter conditions. In order to estimate soil moisture content in 
a given specific area, TVDI values need to be calibrated to the local conditions based on local 
data, correlating TVDI values with measurements of soil moisture conditions recorded in the area 
of interest. The use of these types of models in association with local calibration is in some way 
similar to the use of the site index models in forest management and biometrics. In essence, general 
models are developed based on large sets of relevant regional data, and then the general models are 
subsequently localized to specific conditions based on small samples of local site measurements.

In this study, we describe a method for estimating soil moisture that is based on analysis 
of vegetation indices (NDVI and EVI) and LST. The analytical process is called the triangle 
method, introduced by Sandholt et al. (2002). The basic idea of the triangle method is that the 
surface temperatures and vegetation indices are correlated with soil moisture and vegetation cover 
density, which can be assessed through appropriate analysis. Sandholt et al. (2002) present the 
theoretical background for the estimation of TVDI, which is based on a scatter plot of remotely 
sensed vegetation index and land surface temperatures. In a simplified approach, the scatter plot 
should form a triangle (Fig. 1), in which areas close to the upper edge in the scatter plot represent 
drier land conditions than those close to the lower edge. In theory, the wet edge of the conceptual 
model should form a horizontal line, where land surface or forest canopy temperature is independ-
ent of the vegetation index. There are no water stress conditions present along this line where the 
soil moisture and evapotranspiration capacity are relatively high (Chen et al. 2015). However, 
the wet edge could also have a positive or negative slope depending on the relationship between 
the vegetation index and the surface temperature assumptions for the landscape and season under 

Fig. 1. Land surface temperature (LST) values plotted against a vegetation index (VI), 
forming a theoretical triangle model.
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study, and where data may be lacking for certain landscape conditions (Sandholt et al. 2002; Cho 
et al. 2016). Areas near the dry edge represent stressed conditions of limited water availability for 
plants, and minimal evaporation (when the vegetation index decreases) or minimal transpiration in 
case of dense vegetation canopy (where the vegetation index is close to 1). Scatter plots are often 
trapezoidal as well (Chen et al. 2015), where the triangle becomes truncated with larger vegeta-
tion index values. Through the triangle method, TVDI values for a landscape are derived. TVDI 
has been successfully applied in monitoring, and subsequent assessments, of regional droughts 
(Yang et al. 2008; Liu et al. 2016), and it can be effective in soil moisture status for different types 
of land uses (Chen et al. 2015). The triangle method has been applied to a variety of landscapes, 
such as western Africa (Sandholt et al. 2002), the central region of Spain (de Tomás et al. 2014), 
and northern China (Yang et al. 2008).

The objective of this study is to apply the triangle method of soil moisture assessment to an 
important timber-producing area of the world, using MODIS satellite imagery. The triangle method 
can be relevant to forest management planning efforts, and to growth and yield predictions, due to 
its relationship to water availability, which plays the most vital role in measuring forest produc-
tivity. In essence, assessments of soil moisture across broad areas of important timber-producing 
regions can inform society about growth and yield potential of that region; and therefore, it may 
improve our understanding of the hydrologic role of forests (Chen et al. 2015; Cho et al. 2016). 
Thus, this research addresses a relevant issue of concern for forestry and for management of forest 
ecosystems, and can help increase our understanding of forest ecosystems, their productivities, 
and the sustainable use and conservation of forest resources.

2 Material and methods

2.1 Study area

The study area encompassed mainly the states of Georgia and South Carolina in the southeastern 
United States (Fig. 2), while some portions of other neighboring states were also included in the 
analysis. This area is situated between 30°18´N to 35°15´N latitude and 78°30´W to 85°30´W 
longitude. The lengths of the east-west and north-south edges of the study area were approximately 
730 km and 500 km, respectively. The majority of the study area has a humid subtropical climate, 
with mild winter and hot, humid summer seasons. Annual precipitation in this region varies from 
1000 mm to 2000 mm. Most of the forest land (over 80 percent) in both Georgia and South Caro-
lina is owned by private landowners (individuals, forest industry, and other corporate owners).

Georgia contains about 15.4 million hectares (ha) of land, of which 10.0 million ha are for-
ested in areas that range from the southern edge of the Appalachian Mountains to the Coastal Plain 
along the Atlantic Ocean. Loblolly pine (Pinus taeda L.) and slash pine (Pinus elliottii Engelm.) 
are the most pervasive conifers. Sweetgum (Liquidambar styraciflua L.), yellow-poplar (Liri-
odendron tulipifera L.), white oak (Quercus alba L.), water oak (Quercus nigra L.), swamp tupelo 
(Nyssa sylvatica Marshall), and red maple (Acer rubrum L.) are the most pervasive deciduous tree 
species (Brandeis and Hartsell 2016). Other lands in Georgia consist mainly of agricultural and 
developed areas. South Carolina contains about 8.3 million ha of land, of which 5.3 million ha are 
forest lands. As with Georgia, the landforms in South Carolina range from the southern end of the 
Appalachian Mountains to the Coastal Plain, and other lands consist mainly of agricultural and 
developed areas. With the exception of slash pine, the types of forests found in South Carolina are 
very similar to the types of forests in Georgia (Brandeis et al. 2016). In both states, the amount of 
forested area has remained relatively stable in recent years, but there is continual flux (both gains 
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and losses) between forests and agriculture and developed uses. This region has had some severe 
droughts in the recent past; one drought period between 2004 and 2007 resulted in a severe water 
crisis (Missimer et al. 2014).

2.2 Satellite imagery

A MODIS sensor is installed on two spacecrafts (Terra and Aqua) operated by the U.S. National 
Aeronautical and Space Administration (NASA) (U.S. Geological Survey 2014). In our work, we 
used only the MODIS data collected from the Terra spacecraft, which operates on sun-synchronous 
orbit with an equatorial overpass time of 10:30. The MODIS sensor has a viewing swath width of 
2330 km and a temporal resolution of one to two days. Two types of MODIS data products were 
used in this study: MOD13A2 (Vegetation Index Product) and MOD11A2 (Land Surface Tem-
perature Product). MOD13A2 is a 16-day composite of vegetation indices; MOD11A2 is 8-day 
composite of land surface temperature and emissivity. Both of these data products have spatial 
resolution of 1 km. Prior to acquisition, the data products underwent atmospheric corrections for 
gases, aerosol scattering, and thin cirrus clouds. They both are considered to have passed through 
the third level of processing (level-3) in version 005 of the data. From the MOD11A2 science 
data sets, we used the LST_Day_1km layer, and a quality assurance layer (QC_day). MOD11A2 
products have better than 1 Kelvin degree accuracy (0.5 K in most cases) (National Aeronautics 
and Space Administration 2009). The quality assurance layer provides information that allows one 
to exclude from consideration certain pixels of unacceptable quality. From the MOD13A2 data, 
we used the 16 days NDVI and the 16 days EVI layers and a quality assurance layer (1_km_16 
days_VI_Quality). A more complete description of these can be found in Solano et al. (2010). Our 
analyses considered eleven 16-day periods from 22 March 2009 to 13 September 2009 (Table 1).

Fig. 2. The study area, located in the southeastern United States.
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Table 1. Beginning and ending times of data collection by 
MODIS satellite during each of the eleven 16-day periods con-
sidered in this study.

Period
Beginning date 
(time 00:00:00)

Ending date
(time 23:59:59)

1 22-Mar-2009 6-April-2009
2 7-April-2009 22-April-2009
3 23-April-2009 8-May-2009
4 9-May-2009 24-May-2009
5 25-May-2009 9-June-2009
6 10-June-2009 25-June-2009
7 26-June-2009 11-July-2009
8 12-July-2009 27-July-2009
9 28-July-2009 12-August-2009
10 13-August-2009 28-August-2009
11 29-August-2009 13-September-2009

Fig. 3. Locations and names of the in situ moisture measurement stations in the study area.
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2.3 In situ soil moisture data

Measurements of soil moisture were acquired from the International Soil Moisture Network (Dorigo 
et al. 2011a; Dorigo et al. 2011b), an international cooperative for development and maintenance of 
the global in situ soil moisture database. This database is an essential tool for the geoscientific com-
munity for calibrating and improving global satellite observations and land surface models. Station 
locations (Fig. 3) are representative of the climate of the region, and are not heavily influenced by 
unique local factors or microclimates (National Oceanic and Atmospheric Administration 2015). 
The analyzed data (Table 2) were collected by five stations belonging to the Soil Climate Analysis 
Network (SCAN) and two stations belonging to the U.S. Climate Reference Network (USCRN). 
However, one station from the USCRN only provided soil moisture data from September 13, 2009 
forward, so in this case it contributed only to the 5 last time periods of our analysis, from periods 
7 to 11 (Table 1). While the USCRN had two other measurement stations that were located within 
our study area, these stations did not collect soil moisture measurements during our period of study. 
A statistical summary of in situ data is presented in Table 3. While ground measurements from the 
International Soil Moisture Network were available at several soil depths, we only selected the 
first three soils depths (5 cm, 10 cm, and 20 cm) for our analysis. These had closer correspondence 
with the on-ground vegetation more reliably captured by the satellite imagery.

Table 2. Names of in situ moisture measurement stations, their networks, and geographic coordinates, for the analyzed 
data.

Station 
number

Station name Latitude, Longitude Network Vegetation type a

1 Little River 31°30´N, 83°30´W SCAN Agriculture
2 Pee Dee 34°18´N, 79°44´W SCAN Agriculture, young pine plantation, 

old deciduous forest
3 Wakulla 30°18´N, 84°25´W SCAN Middle-aged pine plantation
4 Watkinsville 33°53´N, 83°26´W SCAN Agriculture, developed areas
5 Youmans Farm 32°40´N, 81°12´W SCAN Agriculture, old pine forest
6 Blackville 33°21´N, 81°20´W USCRN Agriculture
7 McClellanville 33o09´N, 79°22´W USCRN Agriculture, deciduous forest

a Vegetation types in the immediate area (100 m) around each measurement point.

Table 3. Statistical summary of the in situ moisture data used for parameterization into moisture units (m3 m–3).

Soil 
depth

Parameter Little 
River

Pee Dee Wakulla Watkinsville Youmans 
Farm

Blackville McClellanville

cm - m3 m–3 m3 m–3  m3 m–3 m3 m–3 m3 m–3 m3 m–3 m3 m–3

5 Minimum 0.037 0.063 0.014 0.111 0.027 0.034 0.022
Maximum 0.338 0.296 0.140 0.405 0.327 0.213 0.110

Mean 0.103 0.189 0.066 0.204 0.123 0.103 0.052
Std. Dev. 0.038 0.055 0.029 0.069 0.058 0.055 0.017

10 Minimum 0.047 0.051 0.029 0.054 0.038 0.047 0.019
Maximum 0.369 0.251 0.144 0.327 0.304 0.171 0.111

Mean 0.102 0.162 0.077 0.121 0.142 0.089 0.063
Std. Dev. 0.035 0.046 0.025 0.052 0.058 0.038 0.022

20 Minimum 0.056 0.048 0.010 0.067 0.030 0.210 0.012
Maximum 0.229 0.209 0.103 0.331 0.288 0.290 0.133

Mean 0.116 0.137 0.060 0.128 0.137 0.240 0.076
Std. Dev. 0.036 0.039 0.022 0.054 0.061 0.025 0.028
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Choosing the best depth of soil moisture field measurements for validation of satellite 
observations is not a trivial task. Most of regional observations in optical and infrared bands use 
subsurface soil moisture measurements of 0 to 20 cm (Wang et al. 2007; Zhang et al. 2015; Liu 
et al. 2016). In case of satellite radiometric measurements, effective penetration depths of C and 
L type microwaves in soils are commonly in the range of 0–5 cm (Mohanty et al. 2017). At the 
same time, the greatest availability of soil moisture field measurements, such as gravimetric, TDR 
(Time Domain Reflectometry) ones, as well as measurements from meteorological stations, come 
from soil surface or its shallow depths. There also exist some computational techniques, as the 
exponential filter filter approachone, allowing for calculating soil moisture at greater depths using 
its surface values (Albergel et al. 2008; Kędzior and Zawadzki 2016).

 In this study we used all existing soil moisture data in the public domain available at the 
time of the study for the study timeframe.

Soil moisture data were obtained using hydraprobe analog sensors (2.5 Volt), which are 
coaxial impedance dielectric reflectometry sensors. Measurement stations provided the soil 
moisture data on an hourly basis. However, MODIS data for the research area were acquired only 
once between 9 and 11 AM UTC time. Therefore, we estimated the value of each soil moisture 
data point as an average of measurements taken at 9, 10 and 11 AM, UTC time. The estimated 
soil moisture data from these measurements, taken at these times, were developed for eleven time 
periods, for each of the seven measurement stations. The total number of measurements considered 
at the three soil depths was 693 (3 hours × 3 soil depths × 7 stations × 11 time periods). When 
combined, that should produce 231 periodic (9 AM to 11 AM) averages. However, some data 
were missing. For example, there were 9 points that did not have ground measurements available, 
and two points (McClellanville and Blackville) where data were only available for five periods of 
time. Furthermore, data for one site (Little River) did not have measurements for the 20 cm soil 
depth during the last 3 periods. There were also 11 points in time associated with each soil depth 
that did not have valid MODIS pixel values, either due to the presence of clouds or due to other 
imaging problems. Thus, while a total of 693 observation points were intended for the analysis, in 
actuality 522 measurements were used, resulting in 174 periodic averages.

2.4 Data processing

Due to differences in temporal resolution, two MOD11A2 composites and one MOD13A2 com-
posite were used in each 16-day period. Namely, two MOD11A2 8-day composites were averaged 
to match one MOD13A2 16-day composite. Data processing consisted of masking, mosaicking, 
reprojecting and scaling the remotely sensed imagery, which is a standard in this type of analysis, 
and it ensures increased level of comparability between the produced results and outcomes of other 
similar studies. Pixels with poor quality vegetation index, as defined in the MOD13A2 (1_km_16 
days_VI_Quality) vegetation index quality specifications were masked out (excluded) from further 
processing (Land Processes Distributed Active Archive Center 2014). This processing step was 
performed using the Land Data Operational Product Evaluation (LDOPE) software provided by 
the MODIS land quality assessment group (Roy et al. 2002). Mosaicking was performed using 
the MODIS Reprojection Tool (MRT), and the resulting products are HDF-EOS files projected 
to tile-based sinusoidal projection (Earth Resources Observations and Science Center 2011). The 
projection was subsequently changed from sinusoidal to Universal Transverse Mercator. Reprojec-
tion was based on a nearest neighbor (NN) method, a necessity for resampling without changing 
layer values, because the mask consisted of two values (1 and 0). Finally, images were rescaled to 
LST in Kelvin degrees or to vegetation indices values.
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2.5 The triangle method

The triangle method is applicable to analysis of broad landscapes, because the land surface tempera-
ture vegetation index triangle space emerges only for large areas. This is so because the variability 
in surface moisture and vegetation cover conditions are too great to be meaningfully visualized 
across small areas (Sun et al. 2012). The primary challenge in this study was to estimate param-
eters of equations defining the wet and dry edge conditions within the land surface temperature 
vegetation index triangle space. This is an important issue because the distance of particular land 
area (pixel) to a wet or dry edge is illustrative of the soil moisture condition represented by that 
area on the ground. Pixels close to a wet edge are wetter and those that are close to a dry edge, are 
comparatively drier. Calculations of wet and dry edge coefficients were developed using linear 
regression methods.

In order to calculate parameters of the dry and wet edges, the NDVI and EVI were parti-
tioned into small subdomains with an interval of 0.02. From these subdomains we chose the highest 
value of LST for dry edge and the lowest value of LST for the wet edge. According to Chen et al. 
(2011b) only pixels with a NDVI value higher than 0.2–0.3 were chosen as calculating dry edge 
parameters, because dry edge of the triangle has approximately regular shapes in this range. The 
TVDI can be calculated on the basis of defined edges (Liu et al. 2016; Cho et al. 2016) as:

TVDI
LST LST

LST LST
VI

VI VI
=

−
−











min ( )

max ( ) min ( )
( )1

, where:
LST = the daytime land surface temperature of a pixel
VI = vegetation index value of a pixel (either NDVI or EVI)
LSTmin(VI), LSTmax(VI) = minimum and maximum land surface temperatures for a given vegetation 
index calculated from functions related to the wet and dry edges:

LST a b VIVImax max max( ) ( )= + 2

LST a b VIVImin min min( ) ( )= + 3

, where:
amax, bmax = estimable regression parameters (intercept and slope) for the dry edge
amin, bmin = estimable regression parameters (intercept and slope) for the wet edge
(a listing of the program in the MATLAB environment for the dry and wet edges calculation is 
available upon request from K. Przeździecki).

The slopes (bmin, bmax) and intercepts (amin, amax) of the wet and dry edges are the most crucial 
parameters for the estimation. Parameters of the wet edge describe the condition of soil moisture 
saturation. Parameters of the dry edge describe the condition where there is no water accessible 
to vegetation. The in situ ground measurement data are presented as volumetric water contents. 
We estimated three linear regression models, one for each soil depth, to define the relationships 
between TVDI and soil moisture. The TVDI estimate for the pixels representing the in situ soil 
moisture measurement stations were used to develop the regression models:

MC a b TVDI ei i i i= + ( ) + ( )4
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, where:
ai, bi = the estimable model parameters for soil depth i
ei = the normally distributed error with mean equal zero for soil depth i
i = a soil depth
MCi = the calibrated local data moisture content (m3 m–3) for soil depth i
TVDI = Temperature-Vegetation Dryness Index, based on either NDVI or EVI

Finally, we calculated the coefficients of determination (R2) for all the three regression models 
using values from all of the measurement periods. We also established relationships between (a) 
TVDI(NDVI) and soil moisture, and (b) TVDI(EVI) and soil moisture, on which basis we could 
compile maps of soil moisture conditions in moisture units (m3 m–3) for the three soil depths.

3 Results

Parameters developed to describe dry edges (LSTmax) and wet edges (LSTmin) (Table 4) of the land 
surface temperature models suggested that the resulting triangle models for vegetation index / land 
surface temperature were triangular in shape, but not necessarily right triangular as suggested by 
the theoretical model. For example, the wet edge slope (bmin) of the triangle models using NDVI 
as the vegetation index was positive (upward sloping) during measurement periods 1–5 and 8–11. 
However, during periods 6 and 7 the slope of the wet edge was almost horizontal or negative 
(downward sloping). When EVI was used as the vegetation index, a similar pattern was observed 
(Table 4); although, the slope of the wet edge remained positive and was much more upward-sloping 
during measurement periods 8–11. As expected, the slope of the dry edge (bmax) was negative for 
both vegetation indices, and was often steeper sloping when NDVI was used than when EVI was 
used as the vegetation index. The fact that the empirical models are shaped as truncated triangles 
(Fig. 4), but not necessarily right triangles, is consistent with other published research (Sandholt et 

Table 4. Parameters for dry and wet edges of the calculated “triangles” for each of the analyzed eleven 16-day periods.

Period TVDI(NDVI) TVDI(EVI)
Wet edge Dry edge Wet edge Dry edge

amin bmin amax bmax amin bmin amax bmax

1 264.0 33.0 315.2 –19.2 279.0 19.1 310.0 –19.0
2 273.0 20.5 318.0 –23.0 283.1 13.8 311.2 –22.5
3 272.8 24.6 338.0 –40.0 284.0 16.3 325.0 –34.0
4 278.0 10.0 337.2 –38.0 282.0 8.0 324.8 –32.0
5 267.0 26.0 340.6 –39.0 280.6 16.0 324.0 –28.0
6 289.8 3.0 330.8 –25.5 291.4 1.9 333.0 –38.0
7 297.0 –7.4 351.2 –49.0 286.2 6.0 340.0 –49.0
8 268.2 22.6 341.2 –40.0 267.4 30.8 326.0 –29.5
9 253.8 42.0 343.0 –42.5 260.0 42.0 323.4 –26.8
10 237.0 59.0 340.0 –41.0 246.0 62.0 320.0 –22.4
11 247.0 44.0 346.0 –47.0 249.1 60.5 313.0 –12.0
Average 268.0 25.2 336.5 –36.7 273.5 25.1 322.8 –28.5

amax, bmax = linear regression parameters for the dry edge
amin, bmin = linear regression parameters for the wet edge
TVDI – Temperature Vegetation Dryness Index
NDVI – Normalized Difference Vegetation Index
EVI – Enhanced Vegetation Index
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Fig. 4. Triangular relationships developed for the study area through the use of land 
surface temperature (LST) and Temperature Vegetation Dryness Index (TVDI) based 
on the Normalized Difference Vegetation Dryness index (NDVI).
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al. 2002). The temporal evolution of parameters was similar for both (a) TVDI based on NDVI and 
(b) TVDI based on EVI, which is consistent with other similar studies in the literature (Yang et al. 
2008; Chen et al. 2011b; Zawadzki et al. 2016). However, during periods of reduced soil moisture 
availability, such as measurement period 6 in Fig. 4, the wet and dry edges have contracted, indi-
cating stressed conditions and limited water availability for plants in much of the studied region.

As expected, TVDI values in our study increased with decreasing soil moisture (Fig. 5). All 
of the relationships were linear and had weak to moderate coefficients of determination (R2) for 
the six TDVI and soil moisture relationships (two vegetation indices, three soil depths). In most 
cases the correlation between TDVI and soil moisture for the three soil depths varied from weak to 
moderate and was statistically significant at α = 0.01 level, except for the correlation between soil 
moisture at the depth of 20 cm and TVDI calculated from EVI, which was statistically significant 
at α = 0.02. The detailed p-values are given in Fig. 5. Other researchers investigating the param-
eterization of TVDI values have obtained similar results even with much larger sets of measure-
ment points (Chen et al. 2011b). The results did not reveal any significant discrepancy among the 
three different soil depths.

Fig. 5. Scatterplots with regression lines for in situ soil moisture content at three depths a) 5 cm; b) 10 cm; and c) 
20 cm predicted from Temperature Vegetation Dryness Index (TVDI) values. P-values for each regression model are 
also shown.
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Maps produced (Fig. 6) from these analyses illustrate relative values of soil surface moisture 
across the broad landscape. These estimates are time-dependent, and soil moisture at the three stud-
ied depths are correlated, which is expected because the three soils depths are spatially relatively 
close to each other and there is a fair amount of interaction between them. One can see that the 
soil moisture levels in Fig. 6 decline with increasing soil depth, suggesting a negative relationship 
between soil depth and soil moisture level during this measurement period. In addition, from a 
broad perspective the estimates of soil moisture seem reasonable since areas near major rivers have 
higher estimated soil moisture than areas further away (upland) and areas containing significant 
human developments (cities).

Fig. 6. Map of soil moisture values calculated from the MODIS based on Temperature Vegetation Dryness Index cal-
culated using Normalized Difference Vegetation Index TVDI(NDVI) (left) and Temperature Vegetation Dryness Index 
calculated using Enhanced Vegetation Dryness Index TVDI(EVI) (right) for three depth measurements during the 
second study measurement period (April 7–22, 2009): a) 5 cm; b) 10 cm; and c) 20 cm.
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4 Discussion

Vegetation productivity potential can have a major impact on local economies and the standard 
of living of the people residing in the region. The work we presented here on the triangle method 
for estimating water conditions may thus be used in various situations where the issues related to 
vegetation water stress over large areas are relevant. Research on soil moisture estimation using 
remotely-sensed satellite imagery is very important, both from a scientific point of view as a key 
factor in modeling processes occurring on the surface of the earth (Wang and Qu 2009), and from 
an economic point of view given the high correlation of soil moisture to agriculture or forest 
productivity (Verstraeten et al. 2006). It seems also evident that remote sensing based broad-scale 
analyses of soil moisture content may offer major financial savings over more time-consuming 
and costly conventional ground measurements, which would be especially expensive to collect 
outside of the permanent soil moisture stations currently in operation. There is also the possibility 
of applying the triangle method to imagery collected with other sensors, such as Landsat 5 Thematic 
Mapper (prior to its decommissioning), Landsat 7 Enhanced Thematic Mapper + and the more 
recent Landsat 8 Operational Land Imager and Thermal Infrared Sensor. However, while each of 
these sensors provide higher spatial resolution than MODIS imagery, for broad areas they pose 
more complex data management challenge in both: the spatial estimation of soil moisture, and 
the development of appropriate site-specific TVDI values around each soil measurement station.

As we have shown, the triangle method provides a way of describing the distribution of 
forested areas by soil moisture content and vegetation indices, and to portray these relationships 
graphically within a study area. Soil moisture spatial patterns, in general, have a strong temporal 
stability (Vachaud et al. 1985) even for large areas that range in size from 100 to 1000 km2. Thus 
the soil moisture temporal pattern observed at one location closely follows the temporal pattern of 
the spatial average for the given area (Martínez-Fernández and Ceballos 2003; Cosh et al. 2008; 
Wagner et al. 2008; Brocca et al. 2010), which enabled us to validate the triangle method results 
using ground soil moisture measurements. Given the resources necessary to monitor soil moisture 
across a broad region, we were only able to utilize seven measurement stations. Thus one advance 
would be to have a denser network of spatially distributed measurement stations, from which to 
collect the data for fitting the models, calibrating them for local conditions, and validating them.

The goodness of fit for the models developed is expressed by the coefficient of determina-
tion (R2) of each model fitting, which indicates the proportion of the variance in the dependent 
variable that was explained, during the model fitting by the independent variable. The relationships 
between TVDI and soil moisture are weak to moderate, but still reasonable and informative of soil 
moisture levels under different vegetation or land use conditions. As suggested above, additional 
resources could increase the accuracy of the model and allow for a more comprehensive valida-
tion analysis. The data from permanent soil measurement stations were sparse, but systematic and 
obtained through a single consistent statistical design. In consequence of the data scarcity, all of 
the available measurements were used in the development of the predictive models. Any further 
reduction of the data by reserving some measurements for analytical validation of the soil moisture 
estimates, without additional significant development of ground measuring network, would have 
been counterproductive.

Other potential sources of error include: (i) the assumption of a small spatial sample sourced 
from the individual measurement station locations; (ii) the assumption that satellite data and soil 
moisture measurement data represent meaningfully the 16-day composite; and (iii) the fact that 
various vegetation conditions could have slightly different responses to drought conditions. Nev-
ertheless, the presented here results are consistent with the findings of Meng et al. (2008), that the 
16-day composites of MODIS data are useful in applications of the triangle method and drought 
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studies. This could be attributed to the fact that the 16-day composites have much better quality 
than daily MODIS images, and that TVDI, based on vegetation indices, represents an average avail-
ability of water accessible to forest plants in the root zone, which is usually much more inertial, and 
therefore stable, than the surface soil moisture. On the other hand, the impact of two assumptions 
on the outcomes of the analyses could be evaluated with a more extensive research program, and 
used to elicit the sensitivity of the models to uncertainties one might assume in the representative 
data. Further, a more spatially-explicit sensitivity analysis might be designed to examine the impact 
of fine-scale vegetation conditions on broad-scale soil moisture estimates. These additional studies 
all seem to be open areas of research today.

5 Conclusions

This research examined the opportunity for using remotely sensed data to estimate soil moisture 
across broad landscapes. We estimated TVDI using NDVI and EVI that were derived from MODIS 
satellite imagery and using in situ soil moisture measurements. The analysis was conducted across 
a broad area from Georgia and South Carolina in the southern United States. Our study found a 
reasonable relationship between soil moisture content and temperature-vegetation indices. While 
the triangular relationships did not produce the right triangle models, sometimes associated with the 
triangle method, they were in agreement with other applied models developed in various parts of 
the world. The results suggest that vegetation indices derived from remotely sensed imagery may 
be useful in forest management and planning for assessing current and past soil moisture levels, 
which may be useful in evaluating potential forest productivity conditions, and may be helpful for 
assessing the hydrologic condition of the landscape, which is important in all landscape planning, 
forest management, and conservation endeavors.
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