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When a temporal trend in forest conditions is present, standard estimates from paneled forest 
inventories can be biased. Thus methods that use more recent remote sensing data to improve 
estimates are desired. Paneled inventory data from national forests in Oregon and Washington, 
U.S.A., were used to explore three nearest neighbor imputation methods to estimate mean 
annual change of four forest attributes (basal area/ha, stems/ha, volume/ha, biomass/ha). The 
randomForest imputation method outperformed the other imputation approaches in terms of 
root mean square error. The imputed mean annual change was used to project all panels to a 
common point in time by multiplying the mean annual change with the length of the growth 
period between measurements and adding the change estimate to the previously observed 
measurements of the four forest attributes. The resulting estimates of the mean of the forest 
attributes at the current point in time outperformed the estimates obtained from the national 
standard estimator. 

Keywords forest inventory and analysis, forest monitoring, national forest inventories, nearest 
neighbor imputation, Pacific Northwest, paneled inventory data
Addresses Oregon State University, Department of Forest Engineering, Resources and Man-
agement, 204 Peavy Hall, Corvallis, Oregon 97331, USA 
E-mail bianca.eskelson@oregonstate.edu
Received 22 December 2008 Revised 11 May 2009 Accepted 29 June 2009
Available at http://www.metla.fi/silvafennica/full/sf43/sf434649.pdf



650

Silva Fennica 43(4), 2009 research articles

1 Introduction
Keeping national inventories of forests updated 
to reflect current conditions poses substantial 
logistical and accuracy issues (Gillis and Leckie 
1996). In paneled inventory systems the plot net-
work is systematically divided into panels with 
rotating panels being measured on an annual basis 
(Reams et al. 2005); in a 10 year panel inventory, 
for example, one-tenth of all plots are measured 
each year and plots of each panel are remeasured 
every 10 years. In theory, a paneled inventory 
system can provide current information when 
only the most recent panel is used (Reams and 
Van Deusen 1999), but in practice, most forestry 
applications are at a spatial scale that require com-
bining field plots from multiple years to achieve 
sufficient information (McRoberts 2001, Tomppo 
et al. 2008). However, combining field plots from 
multiple years to estimate current conditions can 
cause a lag bias when forest conditions are chang-
ing over time.

In the United States (US), the national inventory 
of forests is collected with a panel system by the 
Forest Inventory and Analysis (FIA) program of 
the US Forest Service. The FIA default estimator 
is a moving average (MA) approach (Bechtold 
and Patterson 2005) which is known to result 
in biased estimates when trend is present (Van 
Deusen 2002). In the western US, the problem 
of lag bias is exacerbated by a relatively long 
remeasurement interval (10 years), shifts in forest 
management in response to altered economic and 
social conditions, changing climate, and a high 
but variable disturbance rate from wildfire, dis-
ease, and insects. Thus there is interest in using 
remote sensing information to reduce lag bias in 
estimates of current forest conditions. Combining 
remote sensing and other ancillary data with field 
plots has become common for improving forest 
inventory information (Tomppo et al. 2008).

Combining field and remote sensing data, near-
est neighbor (NN) imputation is often used for 
mapping (Finley and McRoberts 2008, Katila 
and Tomppo 2002, Ohmann and Gregory 2002), 
and these methods typically impute point-in-time 
plot attributes. In contrast, when using imputation 
to update paneled inventory data, it is possible to 
impute mean annual change (MAC) for a plot. 
For example, Arner et al. (2004) estimated mean 

annual net volume change using MA approaches 
and sampling with partial replacement approaches 
and McRoberts (2001) imputed the difference in 
basal area between two measurements to plots 
with missing measurements to update basal area 
for plots measured in previous years to the cur-
rent point in time. There are few studies in the 
western US that examine alternatives to the MA 
(e.g., Eskelson et al. 2009) and none that we are 
aware of that impute MAC rather than point-in-
time measurements.

The objectives of this study are to: 1) use pan-
eled data from the Pacific Northwest (PNW) to 
estimate mean annual change (MAC) of forest 
attributes using three nearest neighbor imputa-
tion methods; and 2) to estimate current forest 
attributes from paneled inventory data by updat-
ing the most recent measurement with imputed 
MAC. The results are compared with the esti-
mates obtained from the MA estimator and the 
data from the current panel.

2 Methods

2.1 Data

In this study, 618 primary sampling units (PSU) 
from six national forests that were collected as 
part of the Pacific Northwest Region’s Current 
Vegetation Survey (CVS) of the US Forest Serv-
ice were used. The particular national forests, 
sampled between 1993 and 1997 (occasion 1 
measurement) and remeasured in 2000, were 
the Colville (28), Mt. Hood (111), Ochoco (82), 
Rogue River (70), Wallowa-Whitman (199), and 
Winema (128) (Fig. 1).

Panel data is a special case of inventory data 
with measurements taken at different times. A 
panel system was imitated with the available data 
by randomly assigning 25% of the PSUs to panel 
4 (P4; 154 PSUs) and the remaining 75% of the 
PSUs (464 PSUs) to panel 1 (P1), panel 2 (P2), 
and panel 3 (P3) based on their year of occasion 
1 measurement (Table 1).

In the CVS inventory, circular PSUs (1 ha 
in size) are established on a regular grid with 
square spacing (5.47 km). Each circular PSU is 
subsampled by a satellite system of five second-
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ary sampling units (SSU). Each SSU consists of 
three fi xed-area circular, nested plots with radii 
of 3.6 m, 7.3 m, and 15.6 m in which trees with 
diameter at breast height (DBH in cm) smaller 

than 12.7 cm, with 12.7 cm ≤ DBH > 33 cm, and 
DBH greater or equal to 33 cm are measured, 
respectively. For a detailed description of the 
CVS inventory see Max et al. (1996). Live trees 
with DBH of 12.7 cm or larger were used in this 
study and height models developed in Barrett 
(2006) were employed to fi ll in missing heights 
(HT in m). Gross cubic-meter volume and total 
gross oven dry weight biomass were calculated 
with volume and biomass equations from the 
US Forest Service (USDA 2000). For each PSU, 
basal area in m2 per ha (BA), stems per ha (SPH), 
volume in m3 per ha (VOL), and biomass in tons 
per ha (BIOT) were calculated and summarized 
(Table 2). MAC for BA, SPH, VOL, and BIOT 
were calculated by dividing the difference of the 
observed values in 2000 and the observed value at 
the occasion 1 measurement by the growth period 

Fig. 1. Geographical distribution of the six national forests in Washington and Oregon.

Table 1. Number of primary sampling units (PSU) 
measured by year of the occasion 1 measurement 
and corresponding panel assignment. All PSUs 
(n = 618) were remeasured in 2000.

Occasion 1 measurement # of PSU Assigned panel

1993 7 1
1994 229 1
1995 223 2
1996 158 3
1997 1 3
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length (GPL) between the two measurements.
Thematic Mapper (TM) images from 2000 from 

the national land cover database 2001 (USDI / 
USDA 2009) were used as ancillary data. This 
data set includes normalized imagery bands 1 
to 5 and band 7 (TM1, TM2, TM3, TM4, TM5, 
TM7), three commonly used band ratios (band 4 
to band 3, band 5 to band 4, and band 5 to band 
7), the normalized difference vegetation index 
(NDVI), the Tasseled Cap (TC) transformations 
of the 6 axes (Kauth and Thomas 1976), and a 
model of percent canopy cover. Normalization 
methods and development of derived layers are 
described in Homer et al. (2004). Values for 
each plot were calculated by overlaying the TM 
attributes, which had a 30 m resolution, with the 
center points of the five SSUs and calculating a 
mean of the five values.

In addition to the satellite data, the follow-
ing climate and topography variables were used 
as ancillary data (Table 2): Natural logarithm 
of annual precipitation (mm) and mean annual 
temperature (°C) [Data source: DAYMET Daily 
Surface Weather Data and Climatological Sum-
maries (Thornton et al. 1997, Thornton and 
Running 1999)], Elevation (EL in m) and its trans-
formations EL2 and ln(EL) [Data source: CVS 
inventory], slope (%), and the transformations 
cosine(aspect) * slope and sine(aspect) * slope 
[Data source: 30 m digital elevation model using 
Arc Workstation GRID surface functions and 
commands (Environmental Systems Research 
Institute 1991)].

2.2 Nearest Neighbor Imputation

Nearest neighbor (NN) imputation methods are 
donor-based methods. Variables of interest are 
those forest attributes that are only measured on 
a subset of PSUs (e.g., MAC of BA, SPH, VOL, 
and BIOT). Ancillary variables are the attributes 
that are measured on all PSUs. In this study, satel-
lite, climate, and topography data as well as the 
most recent measurements of BA, SPH, VOL, and 
BIOT, which were taken at measurement occasion 
1 (between 1993 and 1997), constitute the avail-
able ancillary data. Reference data are the PSUs 
for which both variables of interest and ancillary 
variables are available (PSUs in P4). Target data 
are the PSUs for which only the ancillary vari-
ables are available (PSUs in P1, P2, and P3). The 
reference PSUs constitute the pool of potential 
PSUs which could be selected to impute the MAC 
data for the target PSUs.

The most similar neighbor (MSN) method 
(Moeur and Stage 1995), the gradient nearest 
neighbor (GNN) method (Ohmann and Gre-
gory 2002), and the randomForest (RF) method 
(Crookston and Finley 2008) have been shown to 
provide reasonable imputation results for forest 
attributes (Moeur and Stage 1995, Temesgen et 
al. 2003, LeMay and Temesgen 2005, Hudak 
et al. 2008) and for mapping forest composi-
tion and structure (Ohmann and Gregory 2002, 
Ohmann et al. 2007). MSN, GNN, and RF were 
conducted using the yaImpute R package ver-
sion 1.0–9 (Crookston and Finley 2008). The 

Table 2. Summary of variables at the primary sampling units (n = 618) in 2000.

Variable Minimum Mean Maximum Standard deviation

Basal area (m2/ha) 0.24 24.32 105.35 19.00
SPH (stems/ha) 1 305 1517 221
Volume (m3/ha) 0.66 224.82 1444.74 221.04
Biomass (tons/ha) 0.58 134.09 800.64 132.64
Canopy cover (%) 0 54 97 29
Slope (%) 0 23 83 17
Elevation (m) 274 1389 2377 321
ln(Annual precipitation) (mm) 577 683 817 48
(scaled * 100)
Annual temperature (°C) 60 579 1067 166
(scaled * 100)
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similarity between reference and target PSUs is 
defined using a weighted Euclidean distance for 
MSN and GNN:

D X X W X Xij i j i j
2 1= − − ′( ) ( ) ( )

where W is the weight matrix, Xi is a vector of 
standardized values of the ancillary variables for 
the ith target PSU; and Xj is a vector of standard-
ized values of ancillary variables for the jth refer-
ence PSU. The ancillary variables for both target 
and reference PSUs were standardized using the 
mean and variance of the ancillary variables of the 
reference PSUs resulting in standardized variables 
with zero mean and unit variance. For MSN, the 
weight used is W = GL2G´, where G is the matrix 
of standardized canonical coefficients for the 
ancillary variables and L2 is the diagonal matrix 
of squared canonical correlations between ancil-
lary attributes and variables of interest (Moeur 
and Stage 1995). 

For the gradient nearest neighbor method 
(GNN) the weights are assigned by employing a 
projected ordination of the ancillary data based 
on canonical correspondence analysis (CCA) 
(Ohmann and Gregory 2002).

The RF method is an extension of classification 
and regression tree (CART) methods (Breiman 
2001). The data and variables are randomly and 
iteratively sampled to generate a forest of clas-
sification and regression trees. If two PSUs tend 
to end up in the same terminal nodes in a forest 
of classification and regression trees, they are 
considered to be similar. The RF distance measure 
is one minus the proportion of trees where a target 
PSU is in the same terminal node as a reference 
PSU (Crookston and Finley 2008, Hudak et al. 
2008).

2.3 Estimation Procedures

BA, SPH, VOL, and BIOT were the variables of 
interest (Y). The observed mean value of Y in 2000 
(Y

_
OBS), based on the observed Y values from all 

618 PSUs, was used as the best available estimate 
of the true mean of Y:

Y Y nOBS i
i

n

=
=
∑ / ( )

1

2

where Yi is the observed Y value of the ith PSU 
in 2000 and n = 618.

The 618 PSUs were randomly split into P4 (154 
PSUs) and P1, P2, and P3 (remaining 464 PSUs) 
500 times. For each of the 500 realizations of 
randomly splitting the data, the following estima-
tors were used to estimate the mean value of the 
variables of interest for the year 2000.

Using the data from P4 only, the mean value 
of Y for the year 2000 (SAMPLE25 estimator) 
was estimated as:

ˆ / ( )
:

Y Y nSAMPLE i
i Yi P

25
4

4 3=
∈
∑

where Yi is the observed Y value of the ith PSU, 
and n4 is the number of PSUs in P4.

The MA estimator, the FIA default method, 
was also used to estimate the mean value of Y 
for the year 2000:
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where Y
_

t–3,i, Y
_

t–2,i, Y
_

t–1,i, and Y
_

t,i are the mean 
values of the variables of interest of P1, P2,

P3, and P4, respectively (e.g., Y
_

t–3,i = 
i Yi P: ∈

∑
1
Yi / n1,

where n1 is the number of PSUs in P1), with t–3, 
t–2, and t–1 being the years 1993/1994, 1995, and 
1996/1997, respectively. In the following, this 
MA(4) estimator will be referred to as MA.

Instead of filling in the missing values for P1, 
P2, and P3 with their previous measurements, 
as was done in the MA calculation, MSN, GNN, 
and RF were explored to impute the MAC of the 
variables of interest for the PSUs in P1, P2, and 
P3. The R package yaImpute (Crookston and 
Finley 2008) was used to impute MAC. The PSUs 
in P4 were the reference data in the imputation 
process. The imputed MAC was then used to 
update the variables of interest for each PSU in 
P1, P2, and P3 to the year 2000 by multiplying 
it with the GPL and adding it to the occasion 1 
measurement as follows:

Y Y MAC GPLimp i t x i imp i i, , , * ( )= +− 5

where Yimp,i is the imputed Y value for the ith PSU 
in 2000 and Yt–x,i is the observed Y value for the 
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ith PSU at time t–3 (1993/1994), t–2 (1995), and 
t–1 (1996/1997) for P1, P2, and P3, respectively. 
MACimp,i is the imputed MAC for the ith PSU 
with imp referring to the NN imputation method 
used. GPLi is the growth length period between 

the occasion 1 measurement and the remeasure-
ment in 2000.

The mean value of Y for the year 2000 was then 
estimated as follows:

ˆ
,

:
,

:
,Y Y Y YIMP imp i

i Yi P
imp i

i Yi P
imp i

i
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∈ ∈
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where IMP refers to the NN imputation method 
used and Yimp,i is the imputed Y value for the ith 
PSU as described in Eq. 5.

Two sets of ancillary variables were tested for 
the NN imputation methods: The first set included 
the available climate, topography, and satellite 
data (Data set A) and the second set consisted 
of the previous measurements of the variables 
of interest that were taken at measurement occa-
sion 1 from 1993 to 1997 (Data set B: BAocc1, 
SPHocc1, VOLocc1, BIOTocc1).

SAMPLE25, MA, and the three imputation 
methods were compared based on the estimated 
overall means of the variables of interest in 2000 
(see Eqs. 3, 4, and 6). The basis of evaluation 
was accuracy, as expressed by the root mean 
square error (RMSE), and bias calculated as the 
mean difference between the estimated and the 
observed (Eq. 2) mean values. RMSE and bias 
were approximated using a random sample of 
m = 500 realizations of splitting the data. Both 
RMSE and bias were expressed as percent of the 
observed mean for each variable of interest:

 

Bias %
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−( )
=
∑

Y Y

m
Y

j OBS

j

m

OBS

1 100 7

RMSE %

ˆ
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=
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Y Y

m

Y
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j

m

OBS

2

1 100 8

where Ŷ j  is the estimate of Y
_
 for the jth iteration 

of data splitting using either SAMPLE25, MA, 
or the NN imputation methods. Two-sided t-tests 
were performed to examine whether the esti-

mated bias (in original units) of the SAMPLE25, 
MA, and the NN imputation methods was sig-
nificantly different from zero, and the p-values 
were reported.

The MAC estimates based on MSN, GNN, and 
RF imputation were compared to the observed 
MAC also using the approximated RMSE and 
bias from m = 500 iterations of randomly splitting 
the data. Two-sided t-tests were performed to 
examine whether the estimated bias (in original 
units) of the three NN imputation methods using 
data sets A and B for imputing MAC was sig-
nificantly different from zero, and the p-values 
were reported.

3 Results

MSN imputation provided similar results for 
MAC estimates for both sets of ancillary vari-
ables with the variance contributing most to the 
RMSE. When BAocc1, SPHocc1, VOLocc1, and 
BIOTocc1 were used as ancillary variables, the 
p-values of the two-sided t-test testing the unbi-
asedness of the estimator ranged from 0.7041 to 
0.9453 and the p-values for the estimates based 
on climate, topography, and satellite data ranged 
from 0.1556 to 0.4581 indicating that MSN impu-
tation provided unbiased MAC estimates with 
both ancillary data sets (Table 3). GNN estimates 
of MAC were significantly biased (p < 0.0001) 
and the large bias (> 66%) contributed most to 
the RMSE. Using climate, topography, and satel-
lite data as ancillary variables resulted in smaller 
bias and hence, smaller RMSE values than using 
BAocc1, SPHocc1, VOLocc1, and BIOTocc1 as 
ancillary variables (Table 3). In terms of RMSE, 
RF using climate, topography, and satellite data as 
ancillary variables provided the best estimates of 
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MAC. However, these were biased for BA, VOL, 
BIOT (p < 0.0007) and suggestive, but inconclu-
sively unbiased for SPH (p = 0.0770). RF using 
BAocc1, SPHocc1, VOLocc1, and BIOTocc1 as 
ancillary data provided unbiased MAC estimates 
(p > 0.1) for all four variables of interest and 
smaller RMSE values than those achieved by 
either MSN or GNN imputation (Table 3).

For estimating current BA and SPH the RMSE 
values of MA were about half the size of those 
observed for SAMPLE25. For estimating current 
VOL and BIOT the RMSE values for MA were 
about a third of those observed for SAMPLE25. 
SAMPLE25 results were unbiased (p > 0.5). MA 
results were precise but biased (p < 0.0001) and 
the bias contributed most to the RMSE. The 
opposite was true for the unbiased SAMPLE25 
estimates, where the variance contributed most to 
the RMSE (Table 4).

MSN resulted in biased estimates of current 
BA, SPH, VOL, and BIOT (p < 0.0047) when 
BAocc1, SPHocc1, VOLocc1, and BIOTocc1 
were used as ancillary variables. When climate, 
topography, and satellite data were used as ancil-
lary variables, estimates were biased for BA 
(p = 0.0021), unbiased for SPH and VOL (p > 0.1), 
and suggestive, but inconclusively unbiased for 
BIOT (p = 0.0460). For both sets of ancillary vari-
ables, the MSN estimates were similar in terms 

of RMSE and outperformed the MA estimates in 
terms of both bias and RMSE (Table 4).

For the GNN estimates of current forest 
attributes, bias contributed most to RMSE. When 
BAocc1, SPHocc1, VOLocc1, and BIOTocc1 
were used as ancillary variables, the bias and 
hence the RMSE was larger than for the ancillary 
variable set including climate, topography, and 
satellite data. For both sets of ancillary variables, 
bias and RMSE were larger than for any of the 
other estimators (Table 4).

RF estimates of the current variables of interest 
were biased (p < 0.0016) when BAocc1, SPHocc1, 
VOLocc1, and BIOTocc1 were used as ancillary 
variables. When climate, topography, and satel-
lite data were used as ancillary variables, RF 
provided suggestive, but inconclusively unbiased 
(p = 0.0421) and unbiased (p = 0.9975) estimates 
of current BA and SPH, respectively, and biased 
estimates of VOL and BIOT (p < 0.0001). RMSE 
values were smallest when climate, topography, 
and satellite data were used as ancillary variables. 
For both sets of ancillary variables, RF imputation 
outperformed the MA estimates both in terms of 
bias and RMSE (Table 4).

RF using climate, topography, and satellite data 
as ancillary variables provided the best results 
overall in terms of bias and RMSE for estimating 
current BA, SPH, VOL, and BIOT, followed by 

Table 3. Bias with p-value in parentheses and RMSE of mean annual change (MAC) of BA (basal area/ha), SPH 
(stems/ha), VOL (volume/ha), and BIOT (biomass/ha). Data set A comprises climate, topography, and satel-
lite data. Data set B comprises occasion 1 measurements of the variables of interest.

Method Data MAC in BA MAC in SPH MAC in VOL MAC in BIOT

  Bias% RMSE% Bias% RMSE% Bias% RMSE% Bias% RMSE%

MSN A 1.40 22.09 –1.89 42.26 0.82 24.81 0.93 23.34
  (0.1556)  (0.3180)  (0.4581)  (0.3717) 
GNN A 68.60 79.72 155.10 171.37 72.70 84.90 66.89 79.47
  (< 0.0001)  (< 0.0001)  (< 0.0001)  (< 0.0001) 
RF A –2.86 16.13 –2.82 35.67 –5.67 19.42 –5.80 17.85
  (0.0007)  (0.0770)  (< 0.0001)  (< 0.0001) 

MSN B –0.16 22.02 –1.16 42.69 0.52 24.86 0.30 23.59
  (0.8364)  (0.9453)  (0.7041)  (0.7485) 
GNN B 98.34 136.74 297.26 475.71 88.54 121.62 95.48 131.76
  (< 0.0001)  (< 0.0001)  (< 0.0001)  (< 0.0001) 
RF B –0.33 20.67 –2.5 38.58 0.28 23.92 –0.65 22.36
  (0.7205)  (0.1480)  (0.7930)  (0.5168) 
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MSN and RF using BAocc1, SPHocc1, VOLocc1, 
and BIOTocc1 as ancillary variables in terms of 
RMSE (Table 4).

In a previous study, RF imputation using 
BAocc1, SPHocc1, VOLocc1, and BIOTocc1 as 
ancillary data for directly imputing current BA, 
SPH, VOL, and BIOT provided the most accu-
rate estimates compared to the SAMPLE25 and 
MA estimators and MSN and GNN imputation. 
The results of this PSU-level RF imputation are 
provided in Table 4. See Eskelson et al. (2009) 
for details. The RF imputation in this study out-
performs the PSU-level RF imputation from the 
previous study in terms of RMSE for BA, SPH, 
VOL, and BIOT and in terms of bias for BA and 
SPH for both sets of ancillary data. For both sets 
of ancillary data MSN imputation in this study 
outperforms the PSU-level RF imputation from 
the previous study in terms of both RMSE and 
bias for SPH (Table 4).

4 Discussion

After the start of the second inventory cycle, 
MAC can be estimated using remeasured plots 
(Arner et al. 2004). Considering the year 2000 as 
the start of the second inventory cycle, MAC was 
estimated in this study. The results of the three NN 
imputation methods that were explored to impute 
MAC of forest attributes showed the same pattern 
that was observed in an earlier study where the 
same three NN imputation methods were used to 
impute BA, SPH, VOL, and BIOT (see Eskelson 
et al. 2009). RF imputation provided the best 
results in terms of RMSE followed by MSN. 
The results of this study suggest that GNN PSU-
level imputation is not adequate to impute MAC 
of forest attributes. This might be due to the fact 
that the CCA in the GNN procedure requires the 
use of environmental factors for the ordination 
(Ohmann and Gregory 2002) which might not be 
picked up in the ancillary data that was used for 
the imputation in this study.

Table 4. Bias with p-value in parentheses and RMSE of mean BA (basal area/ha), SPH (stems/ha), VOL (volume/
ha), and BIOT (biomass/ha) in year 2000. Data set A comprises climate, topography, and satellite data. Data 
set B comprises occasion 1 measurements of the variables of interest.

Method Data BA SPH VOL BIOT

  Bias% RMSE% Bias% RMSE% Bias% RMSE% Bias% RMSE%

SAMPLE25  –0.02 5.29 0.13 5.05 –0.08 6.59 –0.06 6.67
  (0.9344)  (0.5769)  (0.7909)  (0.8423) 
MA  –2.54 2.60 –2.63 2.68 –1.92 2.06 –1.98 2.12
  (< 0.0001)  (< 0.0001)  (< 0.0001)  (< 0.0001) 

MSN A 0.22 1.59 0.07 2.03 0.11 1.89 0.17 1.86
  (0.0021)  (0.4254)  (0.1809)  (0.0460) 
GNN A 5.40 6.19 7.83 8.63 6.01 6.97 5.82 6.84
  (< 0.0001)  (< 0.0001)  (< 0.0001)  (< 0.0001) 
RF A –0.10 1.12 0.00 1.72 –0.41 1.42 –0.40 1.35
  (0.0421)  (0.9975)  (< 0.0001)  (< 0.0001) 

MSN B 0.26 1.54 0.31 2.07 0.23 1.83 0.26 1.81
  (0.0002)  (0.0008)  (0.0047)  (0.0012) 
GNN B 7.66 10.38 15.02 23.77 7.16 9.76 8.16 11.10
  (< 0.0001)  (< 0.0001)  (< 0.0001)  (< 0.0001) 
RF B 0.29 1.47 0.27 1.88 0.29 1.77 0.25 1.72
  (< 0.0001)  (0.0015)  (0.0003)  (0.0012) 

PSU-level RF B –0.30 1.58 –0.85 2.78 –0.06 1.90 –0.09 1.79
  (< 0.0001)  (< 0.0001)  (0.4381)  (0.2476) 
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The performance of using MAC of forest 
attributes of one inventory cycle to predict MAC 
for the next inventory cycle could not be tested 
in this study since only one remeasurement of the 
PSUs was available for the CVS data. This is an 
area of research that should be pursued as soon 
as multiple remeasurements of the FIA annual 
inventory are available in the western US.

When BA, SPH, VOL, and BIOT were updated to 
the year 2000 using MAC estimates obtained from 
MSN and RF imputation, the estimates of the mean 
BA, SPH, VOL, and BIOT in 2000 outperformed 
those of the SAMPLE25 and MA estimators in terms 
of accuracy. These results indicate that updating 
the variables of interest for unmeasured PSUs to 
the current point in time using estimated MAC 
from MSN or RF imputation should be preferred 
over using the SAMPLE25 or MA estimators for 
estimating the current forest attributes.

The estimates of mean BA, SPH, VOL, and 
BIOT in 2000 using MAC estimates obtained 
from RF imputation also outperformed the esti-
mates from PSU-level RF imputation that was 
used to directly impute BA, SPH, VOL, and 
BIOT in 2000 (see Eskelson et al. 2009). This is 
due to the fact that the approach employing the 
imputed MAC estimates makes use of the previ-
ously observed measurements directly, whereas 
the PSU-level RF imputation only makes use of 
the previous measurements indirectly by using 
them as ancillary data. Adding a multiple of 
estimated MAC to the previously observed meas-
urement will result in current estimates that will 
be close to the actual values even if the estimated 
MAC values were not perfect. If current BA, SPH, 
VOL, and BIOT are imputed directly as was done 
in Eskelson et al. (2009), the imputed values can 
be either close to the actual values or they can 
be completely different. The results of this study 
suggest that the approach using imputed MAC 
values should be preferred over directly imputing 
current BA, SPH, VOL, and BIOT.
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