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The development of airborne laser scanning (ALS) during last ten years has provided new 
possibilities for accurate description of the living tree stock. The forest inventory applica-
tions of ALS data include both tree and area-based plot level approaches. The main goal of 
such applications has usually been to estimate accurate information on timber quantities. 
Prediction of timber quality has not been focused to the same extent. Thus, in this study we 
consider here the prediction of both basic tree attributes (tree diameter, height and volume) 
and characteristics describing tree quality more closely (crown height, height of the lowest 
dead branch and sawlog proportion of tree volume) by means of high resolution ALS data. 
The tree species considered is Scots pine (Pinus sylvestris), and the field data originate from 
14 sample plots located in the Koli National Park in North Karelia, eastern Finland. The 
material comprises 133 trees, and size and quality variables of these trees were modeled 
using a large number of potential independent variables calculated from the ALS data. These 
variables included both individual tree recognition and area-based characteristics. Models 
for the dependent tree characteristics to be considered were then constructed using either the 
non-parametric k-MSN method or a parametric set of models constructed simultaneously by 
the Seemingly Unrelated Regression (SUR) approach. The results indicate that the k-MSN 
method can provide more accurate tree-level estimates than SUR models. The k-MSN esti-
mates were in fact highly accurate in general, the RMSE being less than 10% except in the 
case of tree volume and height of the lowest dead branch.
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1 Introduction

Quality assessments of trees have rarely been 
carried out in traditional forest inventories where 
stands have usually been characterised by regis-
tering species and measuring tree diameters and 
heights. Variables that are more closely related 
to the external technical quality of trees, such as 
branch height characteristics and actual sawlog 
recovery, i.e. sawlog recovery in the light of tech-
nical defects and bucking constraints, have been 
measured or assessed only in specific inventories 
or from sample trees, since these measurements 
have been found to be too laborious in practice. 
Thus the forest resource data used for planning 
purposes for example in Finland, do not include 
detailed information on tree quality. The descrip-
tion of the quality of tree stock is, however, of 
primary interest. Information on quality can be 
used when selecting stands to be bought and 
what kind of end-use they are suitable. Tree stock 
quality together with market situation affects 
on decision of harvesting schedule from where 
timber should be cut in order to fulfil production 
demands. If quality characteristics of marked 
stands are not known considerable economical 
losses may arise.

The development of high resolution remote 
sensing techniques has made it possible to obtain 
tree-level information. In the case of 2D data, 
usually in the form of aerial photographs, such 
information is restricted to characteristics related 
to the area of the tree crown, but tree height can 
also be assessed when using 3D data. The most 
commonly used 3D information is based on air-
borne laser scanning (ALS), which also provides 
information on tree crowns and stems by means 
of spatially registered (3D) point measurements 
of the canopy. ALS data have been used for many 
forestry purposes in recent years, including the 
prediction of mean stand characteristics (Næsset 
1997), pre-harvest inventories (Peuhkurinen et al. 
2007), comparisons of forest inventories based on 
cost plus loss analysis (Eid et al. 2004), ecologi-
cal studies (Omasa et al. 2003, Gaveau and Hill 
2003) and assessments of forest growth issues 
(Yu et al. 2004).

In general, ALS data can be utilized both on 
individual tree level and per area unit. The accu-

racy of stand level estimates (volume, basal area, 
stem number, mean height and diameter) from 
area based forest inventories using ALS is usually 
very good (see Næsset et al. 2004, Packalén and 
Maltamo 2007). In such approaches the height 
information in the ALS point data is used to 
predict the forest variables statistically. Such an 
area based approach was for example used by 
Korhonen et al. (2008) to estimate stand sawlog 
recovery rates.

More detailed information on detected trees 
can be obtained when ALS data are used at the 
tree level, although only a proportion of the indi-
vidual trees in the standing stock can be detected 
in this way and a model chain is needed to derive 
forest inventory end products (Persson et al. 2002, 
Maltamo et al. 2004a, 2007, Solberg et al. 2006). 
Since the proportion of trees detected varies 
according to the stand density, spatial pattern and 
tree species, it has been quite difficult to obtain 
general forest resource information by means of 
individual tree approaches.

Nevertheless, the use of ALS data at the indi-
vidual tree level offers possibilities for obtaining 
information on the quality of the trees detected. 
Estimates of crown height (lower limit of the con-
tinuous living crown) have been obtained using 
ALS-based tree level statistical models (Næsset 
and ∅kland 2002, Maltamo et al. 2006a, Popescu 
and Zhao 2008). Peuhkurinen et al. (2007) suc-
cessfully retrieved pre-harvest quality information 
of marked stands from ALS data. The recognition 
of trees and prediction of their diameters was 
highly accurate in sparsely stocked stand. In the 
final phase, timber assortments were calculated 
using taper curves and the results were compared 
with accurately measured harvester data.

Tree-level and area-based ALS variables can 
be combined in tree level prediction models. 
Examples of such processes have involved tree 
crown height prediction (Næsset and ∅kland 
2002, Maltamo et al. 2006a), species interpre-
tation (Holmgren and Persson 2004), and stem 
volume modelling (Takahashi et al. 2005, Chen 
et al. 2007, Villikka et al. 2007).

ALS data also provide possibilities for deriving 
3D texture variables for tree crowns. Vauhkonen 
et al. (2008) employed the alpha shape concept, a 
computational geometry technique introduced by 
Edelsbrunner and Mücke (1994), to construct tree 
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crown approximations from ALS point clouds. 
They used this information to predict tree species, 
although it could equally well be used to deter-
mine tree crown variables (Vauhkonen 2008).

This study aimed at developing a method of 
utilizing ALS data for determination of certain 
tree-level characteristics, with specific focus on 
external tree quality. The characteristics consid-
ered were tree diameter, height, volume, crown 
height, height of the lowest dead branch and 
actual sawlog proportion of stem volume, i.e. 
the proportion of the volume which meets the 
dimension and quality requirements for sawlogs. 
The tree species considered was Scots pine (Pinus 
sylvestris) and the material was restricted to saw-
log-sized trees. Both tree level and area based 
ALS derived variables were used in the current 
models. A non-parametric k-MSN method and a 
parametric set of models constructed simultane-
ously by the Seemingly Unrelated Regression 
(SUR) approach were compared and appraised 
on the basis of mean prediction error and RMSE 
estimates.

2 Material and Pre-Processing

A test site was chosen in the southern part of 
the Koli National Park in North Karelia, eastern 
Finland, and 14 rectangular plots were established 
there during the spring of 2006. These were typi-
cally located in randomly chosen pure Scots pine 
stands on poor soils. To have around 100 trees 
per plot, quadratic plots of 30 by 30 meters were 
established. All trees with a diameter at breast 
height (DBH) of more than 5 cm were mapped 
and the species, height, crown height (LCH), 
DBH and diameter at a height of 6 metres (D6) 
were recorded for each. Sawlog-sized Scots pines 
(DBH over 17 cm) were selected for the study of 
a number of external technical quality variables, 
as presented and defined in Table 1. In addition, 
sawlog proportion of stem volume was calculated 
for all the sawlog-sized Scots pines using the fol-
lowing criteria
– log length > 310 cm,
– DBH > 170 mm,
– maximum diameter of a dead or vertical branch 

< 40 mm,

– maximum diameter of a living branch < 60 mm,
– maximum curvature or crookedness < 1cm within 

1 metre,
– no curves in the crown part or multiple curvature, 

and
– no other defects such as decay, worm holes, cracks 

or foreign objects.

Sawlogs as a proportion of stem volume was then 
calculated as the volume of that part of the tree 
that fulfilled the above requirements using the 
taper curve models of Laasasenaho (1982). Total 
stem volumes (V) were calculated using the stem 
volume models of Laasasenaho (1982), which 
include tree height, DBH and D6 as independent 
variables. Altogether there were 929 living Scots 
pine trees, of which 449 were of sawlog size.

Differentially corrected Global Position-
ing System measurements with an accuracy of 
approximately 1 metre in the XY directions were 
used to determine the position of the four corners 
of each of the 14 plots. This accuracy is based 
on measurements using Real Time Kinematic 
technique, static GPS and tachymeter measure-
ments in the same area. Tree locations within a 
plot were assessed by projecting the trees onto 
the same coordinate system as in the ALS data by 
affine transformation using the measured corner 
positions as reference points.

Georeferenced ALS point cloud data were col-
lected from an area of approximately 2500 hec-
tares in Koli on July 13 2005 using an Optech 
ALTM 3100 scanner operated at a mean altitude 
of 900 m above ground level, resulting in a nomi-
nal sampling density of about 4 points per m2. 
Elevation within the test area varied from 95 m to 
350 m (local zero sea level), resulting in a varying 
sampling density across the target. The diver-
gence of the laser beam (1064 nm) was 0.26 mrad. 
The data were captured using a scanning angle of 
±11 degrees, which resulted in a swath width of 
about 350 m. The last pulse data were employed 
to generate a digital terrain model (DTM) by the 
method explained in Axelsson (2000), using a 
grid size of 1 m.
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3 Methodology

3.1 Identification of Individual Trees

Terrain surface heights (i.e. vegetation heights) 
for the laser points were obtained by subtracting 
the corresponding DTM values. Points with a 
value over 0.5 m were classified as vegetation 
hits (see Hyyppä and Inkinen 1999). The Canopy 
Height Model (CHM) was interpolated to a regu-
lar grid of 0.5 m using canopy heights by taking 
the maximum value of the laser measurements 
within a radius of 0.5 m. Because the ALS point 
cloud is not exactly regular, the method is not 
able to produce a value for every grid cell (pixel). 
Consequently values for the missing pixels (pixels 
with no value) were interpolated by taking the 
average from a 3 × 3 pixel window in each case 
and performing the interpolations successively 
until every pixel had a value.

The CHM was low-pass filtered using the 
Gaussian kernels, as in the method suggested by 
Pitkänen et al. (2004), where the size of the filter-
ing window and the intensity of the filtering were 
increased stepwise as a function of the heights 
of the CHM. The size of the window is small-
est and the filtering mildest in the lowest class, 
while correspondingly, the filtering is always the 

most intense at the highest level of heights. The 
parameters required in the height-based filtering 
include a sigma (σ) and corresponding height 
classes. The height ranges and their ơ values were 
0–8 m ơ 0.4; 8–16 m ơ 0.6; 16–24 m ơ 0.8; 24–32 
m ơ 1.0; 32–40 m ơ 1.2.

Local height maxima were searched for in the 
low-pass filtered CHM by a method in which all 
the pixels are first marked as possible maxima 
(Pitkänen et al. 2004), after which all those having 
a neighbour in an eight-connected neighbourhood 
with a greater value than the pixel itself were 
labelled as non-maxima. Thirdly, local maxima 
were found in the highest sections of the CHM 
and also in the lowest sections (ground), the 
former being finally taken to represent tree tops, 
whereas the latter were masked out by a binariza-
tion process in which all the pixels were classified 
as belonging either to the tree canopy or to the 
background area by defining a threshold value. 
This value was set at 2 metres to guarantee that 
all the trees measured (DBH at least 5 cm) could 
be found and to eliminate the undergrowth from 
the local maxima in the background area.

The filtered CHM was segmented by water-
shed segmentation using a flooding algorithm 
following the direction of drainage (Gauch 1999, 
Pitkänen 2005). In watershed segmentation an 

Table 1. Definitions of tree quality variables.

Quality variable Definition

Crown height The height of the lower limit of the continuous living crown, which is defined
 as beginning from the height above which all branches will be dead after
 a maximum of one year’s successive growth period

Height of the lowest The height of the lowest dead branch of diameter > 15 mm
dead branch

Height of the largest Height of the dead branch with largest diameter
living branch

Height of the largest Height of the dead branch with largest diameter
dead branch

Oversized Height of an oversized living branch (diameter > 60 mm) not acceptable
living branch for sawlogs

Oversized Height of an oversized dead branch (diameter > 40 mm) not acceptable
dead branch for sawlogs

Other defect Height of some other defect that affects the external technical quality
 of the timber (decay, dead crown, etc.)
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image is regarded as a topographic surface where 
the darkest z values represent low points and the 
brightest ones the highest points and is visualized 
in three dimensions: x- and y- and z-coordinates 
(Gonzales and Woods 2002). Starting from the 
minimum values of the image, the surface is 
then filled with water. To avoid merging basins, 
dams consisting of single pixels are built around 
their edges. Finally, all the basins are bounded 
by dams, which thus constitute the boundaries 
of the segments (Beucher 1992, Gonzales and 
Woods 2002). The watershed algorithms produce 
closed boundaries, even though the transitions 
between areas are not equally strong (Adams and 
Bischof 1994).

The algorithm used here processed the negative 
of the CHM and the segmentation was started 
from the local minima, which were actually the 
local maxima of the CHM, i.e. the assumed tops 
of the canopies. Pixels belonging to the local 
minima were labelled with a new segment number, 
whereas those not belonging to the minima were 
linked to their neighbouring pixels with the small-
est value. Every pixel was linked to one minimum 
by following the path thus formed. The flooding 
algorithm was then followed through.

Finally, the binarization and segmentation proc-
esses were combined and those pixels which were 
labelled as background in the thresholding were 
also set as background in the segmentation image. 
Thus the canopy segments did not include any 
pixels with a height value smaller than the thresh-
old value (2 metres), and no local maxima outside 
the canopy were taken into account. The proce-
dure resulted in 687 canopy segments, which were 
taken as automatically detected candidate trees.

The segments were then linked to field trees 
a) if there existed only one field tree inside the 
segment, and b) if the difference between the 

maximum pulse height value in the segment and 
the height of the field tree was less than 2 metres. 
The linked trees were considered to be correctly 
identified and it is these that were selected for 
further analysis. This process of linking the can-
didate trees to field trees resulted in a total of 185 
correctly identified trees, of which 133 were of 
sawlog size. The characteristics of these trees are 
presented in Table 2.

3.2 Derived ALS Characteristics

The modelling of DBH, height, volume, crown 
height, height of the lowest dead branch and the 
proportion of sawlogs involved the calculation 
of various ALS-based characteristics at both the 
tree and plot level. These characteristics included 
physical tree variables, tree and plot-level ALS 
point cloud characteristics, alpha shape variables 
and indices of spatial competition. The calcula-
tion of these variables will be explained below.

Even though the Optech ALTM 3100 records up 
to four echoes per pulse, we only used “first” and 
“last” echoes where the original “only” echoes 
were duplicated to both of these pulse classes. 
The so called “intermediate” echoes were not 
used. The height distributions of the first and last 
pulse canopy height hits was used to calculate 
plot-level percentiles for 0, 1, 5, 10, 20, …, 90, 95, 
99 and 100% heights (H0, H1, H5, H10,…, H100) 
(see Næsset 2002), and cumulative proportional 
canopy densities (P0, P1, P5, P10,…, P100) were 
calculated for the respective deciles. The height 
distributions contained only those laser points 
which were classified as above-ground hits, using 
a threshold value of 0.5 metres. H5, for example, 
denotes the height at which the accumulation 
of laser hit heights in the vegetation is 5%, and 

Table 2. Characteristics of the trees identified (n=133), as measured in the field.

Characteristic Mean Maximum Minimum Standard deviation

Stem volume, m3 0.448 1.186 0.140 0.234
Proportion of sawlogs 0.756 0.958 0.309 0.145
Diameter at breast height, cm 24.23 37.60 17.20 4.65
Height, m 19.52 27.20 12.10 3.67
Crown height, m 11.14 18.80 4.80 3.05
Height of the lowest dead branch, m 5.00 11.30 0.30 2.45
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correspondingly, P5 denotes the proportion of 
laser hits accumulating at the 5% height. Other 
variables calculated for the sample plots were 
the proportion of ground hits versus canopy hits, 
using a threshold value of 0.5 metres (VEG), and 
the average height (Hmean) and standard deviation 
of the above ground hits (Hstd). All the metrics 
were calculated separately for both the first (F) 
and last pulse data (L).

After the tree segmentation, ALS based esti-
mates of tree height (hALS), crown area (acrALS), 
maximum crown diameter (dcrmaxALS), crown 
diameter perpendicular to the maximum crown 
diameter (dcrperpALS) and mean crown diam-
eter (dcrmeanALS) were derived. hALS is equal to 
the elevation of the highest ALS point within a 
crown. The tree crown areas and diameters were 
extracted from the tree segments in the ALS data. 
The corresponding height metrics (heights h and 
densities p) were calculated for the areas of identi-
fied trees as in the case of the plot-level data, in 
addition to which estimates for the length (lbALS) 
and height of the longest branch (hbALS) were 
calculated from the ALS point cloud data

Different computational geometry techniques 
were employed for deriving the other crown 
characteristics. The estimate for crown height 
(LCHALS) was based on calculating the cross-
sectional area, defined as the convex hull of the 
point data, at different heights. The maximum 
area of the point cloud was first calculated and the 
point cloud was then traversed from the 20% tree 
height towards the top. The area that included the 
traversed point was then calculated and the crown 
base at the point where the area calculated in this 
way exceeded a threshold of 20% of the maxi-
mum area was defined. This threshold was based 
on empirical tests. A 3D alpha shape (Edelsbrun-
ner and Mücke 1994) was constructed from the 
points above this crown base. An alpha shape can 
be regarded as a weighted Delaunay triangulation 
from which all the simplices which have an empty 
circumsphere with a squared radius larger than 
the defined alpha value have been removed, i.e. 
the alpha value determines the level of detail in 
the shape obtained. Here the traversing of alpha 
values (Vauhkonen et al. 2008) was avoided by 
performing the computation using an optimal 
alpha value (opt_alpha) selected such that the 
resulting alpha shape included all the data points 

within a single connected component. The volume 
of the interior (int_vol) and exterior (ext_vol) of 
the alpha shape were extracted for estimating the 
size and shape of the tree crown.

Finally, in the case of individual tree detection, 
the location and height of each detected tree was 
obtained together with the same characteristics 
for neighbouring trees. This allowed us to calcu-
late height-based competition indices. The local 
maxima of the tree segment were taken as the 
tree top locations. Using this spatial information, 
additive competition indices were calculated for 
all the individually detected trees. The calculated 
competition indices were based on elevation angle 
sums (Miina and Pukkala 2000) and were calcu-
lated using the equation

CI
h a h

da b
i

ii

n

_
arctan=

− ×

=
∑

1
 (1)

where CIa_b = competition index of the target tree, 
a = relative height of the horizontal plane (rela-
tive to the height of the target tree), b defines the 
maximum distance for a tree i to be regarded as a 
competitive tree, h = height of the target tree, d = 
horizontal distance between the spatial locations 
of the target tree and neighbouring trees i and i = 
competitive tree within a distance in maximum b 
to the target tree. Parameter a defines what trees 
are competitive trees based on the heights of the 
trees and how competitive the neighbouring trees 
are as a function of the vertical distance between 
the trees. Only trees with heights greater than 
the height of the horizontal plane are regarded as 
competitive trees. The competition indices for the 
correctly identified trees were calculated taking 
all the candidate trees as potential competitors 
and using different values for a and b.

3.3 The k-MSN Method

The k-MSN method is a non-parametric method 
which uses canonical correlation analysis to pro-
duce a weighting matrix used for the selection of 
the k Most Similar Neighbours from reference 
data. Most Similar Neighbours are observations 
that according to predictor variables are similar to 
the target of prediction (Moeur and Stage 1995). 
By using canonical correlations it is possible to 
find the linear transformations Uk and Vk of the 
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set of dependent variables (Y, tree variables) and 
independent variables (X, ALS variables) which 
maximize the correlation between them:

U Y V X
k k k k

= =α γ, and  (2)

where αk is the canonical coefficient of the inde-
pendent variables and γk is the canonical coef-
ficient of the dependent variables.

The MSN distance metric derived from canoni-
cal correlation analysis is:

D (X X ) (X X )
uj
2

u j
1 p

2

p p
u j
p 1

= − − ′
× × ×

ΓΛ Γ'  (3)

where Xu is the vector of the known search vari-
ables from the target observation, Xj is the vector 
of the search variables from the reference obser-
vation, Γ is the matrix of canonical coefficients 
of the predictor variables and Λ is the diagonal 
matrix of squared canonical correlations.

To optimize the accuracy of estimates pro-
duced using the derived model a variable subset 
selection method was used that is based on an 
optimization algorithm which inserts transforma-
tions x = x2, x = x , x = 1/x and x = log(x) of the 
predictor variables and removes all the variables 
via stepwise optimization of the relative RMSE 
of volume (Maltamo et al. 2006b). The insertion 
and deletion phases are conducted twice.

3.4 SUR Models

The response variables were also simultane-
ously modeled by means of Seemingly Unrelated 
Regression (SUR) (Zellner 1962; Borders 1989). 
SUR models were estimated using the R-software 
(R Development Core Team 2007), the candidate 
models having first been constructed by OLS 
estimation and stepwise predictor selection.

3.5 Accuracy Assessment

Accuracy was assessed by cross-validation, where 
observations from the same plot were not used in 
the estimation stage. The results were validated in 
terms of absolute and relative RMSE and absolute 
mean prediction error at the tree level:

RMSE =
−

=
∑( ˆ )y y

n

i i
i

n
2

1  (4)

mean prediction error =
−

=
∑( ˆ )y y

n

i i
i

n

1  (5)

where n is the number of trees, yi is the observed 
value for tree i and ŷ

i
 is the predicted value for 

tree i. The relative RMSEs were calculated by 
dividing the absolute values by the means of the 
observed variables.

The usability of the ALS-based estimates was 
also tested by calculating estimates for further tree 
variables based on the characteristics modelled. 
These variables were slenderness (height /DBH), 
form factor (volume /(basal area × height)), crown 
ratio ((height-crown height)/height) and length of 
the dead branch section (crown height-height of 
the lowest dead branch).

4 Results

There were usually 20–30 predictors and their 
transformations in the k-MSN models, similar 
to the results reported by Packalén and Maltamo 
(2007). The dependent variable and its squared 
transformations were always used in the canonical 
correlation analysis. An example of the predictor 
variables used in modelling the sawlog proportion 
is presented in Table 3. The SUR models for the 
tree and quality variables considered here (Table 
4), contained only 2–6 predictors. Tree height, for 
example, was not used as a predictor when mod-
elling DBH. Correspondingly, it is worth noting 
that the plot-level characteristics and ALS-based 
longest branch explained best the variation in 
height of the lowest dead branch.

The RMSE and mean prediction error of the 
height estimates derived directly from the ALS 
data (hALS) were 0.74 m and 0.56 m, respectively, 
while the ALS-based estimate of crown height 
had an RMSE and mean prediction error of 2.1 m 
and –0.87 m, respectively. The accuracies of the 
variables derived from the models are presented in 
Table 5. As the table shows the k-MSN estimates 
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seem to be more reliable than the SUR estimates. 
There are also notable differences between the 
volume and branch height characteristics in terms 
of relative RMSE. The number of nearest neigh-
bours (k) used varied from two to eight, being 
eight in the case of most variables.

The ALS-based estimates of slenderness, form 
factor, crown ratio and the length of the dead 
branch section are presented in Fig. 1, which 
again shows the better accuracy of the k-MSN 
estimates. The form factor was estimated sub-
stantially less accurately than the other charac-
teristics. However, both methods considerably 
underestimated for factor values exceeding 0.7. 
Otherwise, all the estimates were realistic. The 
SUR approach also led to underestimates in the 
highest values for tree slenderness and the length 
of the dead branch section.

5 Discussion

The aim here was to examine the usefulness 
of high density ALS data for predicting tree 
characteristics, especially those related to wood 
quality. A large number of ALS-derived vari-
ables were considered: height metrics at both the 
tree and plot level, variables obtained from the 
detection of individual trees, spatial competition 
indices and 3D metrics. Two modelling methods 
were compared. These were the non-parametric 
k-MSN method and SUR models in which all 
the variables were estimated simultaneously. The 
accuracy of the derived variables was in general 
found to be very good, especially in the case of 
the k-MSN models.

The information available on numerous ALS-
based variables was utilized more effectively in 
k-MSN, whereas SUR regression employed only 
2–6 predictors. Although the number of vari-
ables in the k-MSN model was typically 20–30, 
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this is a basic phenomenon of the approach, and 
it cannot be said that the model was overfitted. 
In the k-MSN approach canonical correlation 
analysis orthogonalizes the large number of pre-
dictor variables, thus avoiding the problems often 
encountered in regression with collinearity among 
numerous predictor variables (Moeur and Stage 
1995). The present results were based on a small, 
local data set that does not cover the variation in 
pine forests within Finland. On the other hand, 
this means in the case of k-MSN estimation that 
it is also more difficult to find neighbours that are 
good predictors for the target tree.

The two approaches achieved similar accuracy 
in the case of tree height, possibly because this 
is the only variable which is directly available 
from ALS data, although height observations are 
usually an underestimate due to the properties of 
the ALS point cloud. It is a typical situation in 
laser scanning that the laser beam does not reflect 

from the highest point of the tree, and this causes 
some underestimation in laser heights (e.g. St-
Onge 2000). The underestimation in the present 
ALS-based tree height estimates was 0.56 m, 
which corresponds to earlier findings for pine 
trees (Hyyppä and Inkinen 1999, Persson et al. 
2002, Maltamo et. al. 2004b). To predict tree 
height without underestimation only a simple 
calibration model is needed, as in this study. In 
the case of the k-MSN model tree height is based 
on a weighted average of the most similar trees. 
It is also worth noting that the number of nearest 
neighbours used for height estimation was only 
two, i.e., lower than for other characteristics.

The accuracy of the DBH estimates was similar 
to that reported in earlier studies in the case of 
the SUR models (Kalliovirta and Tokola 2005, 
Korpela et al. 2007). Korpela et al. (2007), for 
example, obtained an RMSE of 3.2 cm for pine, 
whereas it was 2.8 cm in this study. When using 

Table 3. ALS variables used in the k-MSN model for the proportion of sawlogs.

Abbreviation Definition

F_H20 Plot-level height percentile 20%, first pulse data
F_H90 Plot-level height percentile 90%, first pulse data
F_HMEAN Plot-level mean of ALS heights, first pulse data
F_HSTD Plot-level standard deviation of ALS heights, first pulse data
L_HMEAN Plot-level mean of ALS heights, last pulse data
L_VEG Plot-level proportion of vegetation hits, last pulse data
hALS Tree height, ALS based estimate
acrALS Tree crown area
f_h20 Tree-level height percentile 20%, first pulse data
f_h80 Tree-level height percentile 80%, first pulse data
f_p20 Tree-level density at the 20% height, first pulse
f_p70 Tree-level density at the 70% height, first pulse
f_hmean Tree-level mean of ALS heights, first pulse data
f_hstd Tree-level standard deviation of ALS heights, first pulse data
l_h20 Tree-level height percentile 20%, last pulse data
l_h80 Tree-level height percentile 80%, last pulse data
l_p20 Tree-level density at the 20% height, last pulse
l_p70 Tree-level density at the 70% height, last pulse
l_hmean Tree-level mean of ALS heights, last pulse data
l_veg Tree-level proportion of vegetation hits, last pulse data
l_hstd Tree-level standard deviation of ALS heights, last pulse data
lbALS Length of longest branch
hlbALS Height of longest branch
f_opt_alpha Optimal alpha value, first pulse data
int_vol Interior alpha shape volume
ext_vol Exterior alpha shape volume
CI80_10 Competition index, relative height of competitors (minimum 80%) at a maximum 

distance of 10 metres.
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such estimates together with height estimates in 
taper curve or volume models rather high errors 
will accumulate in the volume characteristics 
(Maltamo et al. 2007). Tree height is usually used 
as basic predictor variable when estimating DBH 
in individual tree remote sensing applications (see 
Kalliovirta and Tokola 2005), but our model did 
not include tree height in its predictors, as various 
ALS point cloud variables were used instead.

One of the most interesting findings of this 
study was the very good accuracy of DBH predic-
tion in the case of k-MSN, an accuracy which was 

considerably improved when using ALS point 
cloud information at both the tree and plot levels. 
If this finding can be confirmed with other data 
sets that include larger amounts of geographical 
variation, this would mean that tree variables for 
individual tree-based forest inventory applications 
should be predicted using the nearest neighbour 
approach rather than regression models. Tree 
species recognition could also be included in 
this process, in which case a larger set of alpha 
shape variables could be included in the predic-
tors (Vauhkonen et al. 2008).

Table 4. ALS variables used in the SUR models of tree variables.

Tree variable Definition
Predictor

Natural logarithm of stem volume
1/ F_VEG Inverse of plot-level proportion of vegetation hits, first pulse data
acrALS Tree crown area
f_h60 Tree-level height percentile 60%, first pulse data
l_h100 Tree-level height percentile 100%, last pulse data
ln(l_veg) Natural logarithm of tree-level proportion of vegetation hits, last pulse data

Proportion of sawlogs
dcrmeanALS Mean crown diameter
ln(l_veg) Natural logarithm of tree-level proportion of vegetation hits, last pulse data
l_hstd Tree-level standard deviation of ALS heights, last pulse data
f_opt_alpha Optimal alpha value, first pulse data
CI60_6 Competition index, relative height of competitors (minimum 60%) at a maximum distance 

of 6 metres

DBH
L_P5

2 Second power of plot-level density at a height of 5%, last pulse
acrALS Tree crown area
f_h60 Tree-level height percentile 60%, first pulse data
l_p10

2 Second power of tree-level density at a height of 10%, last pulse

Height
hALS Tree height, ALS-based estimate
f_h60 Tree-level height percentile 60%, first pulse data

Crown height
F_VEG2 Second power of plot-level proportion of vegetation hits, first pulse data
f_h30 Tree-level height percentile 30%, first pulse data
ln(l_veg) Natural logarithm of tree-level proportion of vegetation hits, last pulse data
LCHALS ALS-based estimate of crown height

Height of the lowest dead branch
1/L_HMEAN Inverse of plot-level mean height, last pulse data
1/L_H30 Inverse of plot-level height percentile 30%, last pulse data
L_P5

2 Second power of plot-level density at a height of 5%, last pulse
lbALS Length of longest branch
hlbALS Height of longest branch
CI80_10 Competition index, relative height of competitors (minimum 80%) at a maximum distance 

of 10 metres.
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Based on remote sensing data, RMSEs of 
approximately 10% for tree volume at tree level 
can be considered accurate. Variables based on 
ALS point cloud data have also been used for 
volume modelling in earlier studies, most notably 
those of Takahashi et al. (2005), Chen et al. (2007) 
and Villikka et al. (2007). Villikka et al. (2007) 
employed Norway spruce data from the same 
local area in this study. Correspondingly, they 
also used ALS based tree level height distribution 
characteristics in their regression models, achiev-
ing an accuracy level that was considerably lower 
than in our k-MSN estimates but close to that of 
the present SUR modelling. The spruce trees were 
larger on average, however, and showed more 
variation in stem form.

The height of the lowest dead branch and crown 
height have been found to be the best predictors 
of quality in pine timber (see Heiskanen 1954, 
Kärkkäinen 1980, Uusitalo 1995). In the current 
study we first derived an estimate for crown height 
by applying computational geometry techniques. 
The RMSE of this estimate was 2.1 m and this 
was obtained without any field calibration. This 
estimate was then used further along with various 
ALS variables for constructing k-MSN estimates, 

in which the RMSE was even less than 1 metre. 
When the present results are compared with those 
of earlier crown height studies based on laser 
scanning (Næsset and Økland 2002, Holmgren 
and Persson 2004, Maltamo et al. 2006a, Popescu 
and Zhao 2008), the results of the current study 
seem to be more accurate. However, it should be 
remembered that the level of accuracy is always 
dependent on the variation in the original data.

We also examined the possibility of predicting 
the length of the dead branch section (Fig. 1), a 
characteristic that can be considered an excellent 
indicator of the quality and value of pine butt logs 
(see Rikala 2003). Our results (Fig. 1) show that 
combinations of estimates of separate models 
(crown height, height of the lowest dead branch) 
can also yield realistic values for use in applica-
tions related to wood quality.

Sawlog proportion of stem volume was pre-
dicted using direct models, which usually give 
more precise estimates than long model chains. In 
our case too, the sawlog proportion was predicted 
quite accurately by means of the direct k-MSN 
model. Another option would be to predict the 
defects that affect sawlog recovery, but this is 
problematic since there are many attributes that 

Table 5. Accuracy of the tree variables obtained by the k-MSN and SUR methods.

Tree variable k RMSE Mean prediction RMSE, % 
Method   error

Stem volume, dm3

k-MSN 6 49.30 4.32 11.00
SUR  104.68 2.64 23.79

Proportion of sawlogs
k-MSN 6 0.066 –0.006 8.73
SUR  0.15 0.002 20.12

DBH, cm
k-MSN 8 1.25 0.005 5.16
SUR  2.81 0.000 11.60

Height, m
k-MSN 2 0.38 –0.026 1.95
SUR  0.49 0.037 2.50

Crown height, m
k-MSN 8 0.79 0.063 7.13
SUR  1.65 –0.513 14.84

Height of the lowest dead branch, m
k-MSN 8 1.26 –0.069 25.20
SUR  1.83 –0.688 36.52
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need to be considered that are difficult to pre-
dict from ALS data (oversized branches, curves, 
cracks etc.), Furthermore, the heights of the 
defects must be predicted to make cross-cutting 
possible. More careful estimates of the quality 
of the sawlogs would in any case require other 
attributes such as crown height and height of the 
lowest dead branch to be considered.

When employing the k-MSN approach all the 
variables were predicted separately. It would also 
have been possible to estimate them simultane-
ously, by imputing all the characteristics from 
the same reference trees. This would have had 
the advantage that the relationships between the 
characteristics would have been natural ones, 
at least when k = 1. Although Moeur and Stage 
(1995) used only one neighbour, most recent 
MSN studies have been based on the use of more 
than one, which means that covariance structure 
of the derived variables is not retained but the 
accuracy is usually better (Maltamo et al. 2003, 
Sironen et al. 2003, Packalen and Maltamo 2007). 
When all the attributes are imputed from the same 
reference observation(s), whatever the k, nearest 
neighbour methods do not extrapolate and the 
relations between the attributes usually remain 
quite logical. The weighting of variables and the 
use of multiobjective optimization methods may 
also be useful when predicting several dependent 
variables simultaneously (Packalén and Maltamo 
2007). In the present instance no simultaneous 
search for variables was made due to the small 
number of reference trees, i.e. it would have not 
been possible to find neighbouring trees with sim-
ilar variables. Some example calculations involv-
ing a simultaneous search, however, showed that 
the accuracy was poorer, although still better than 
that of the SUR models in the case of most of the 
derived variables.

Although k-MSN proved better than the SUR 
approach in this study, the latter has the benefit 
that the set of models can be effectively cali-
brated using field measurements in application 
phase (Siipilehto 2006). It would be possible, 
for example, to measure the DBH or some other 
characteristics of a few sample trees per plot in 
the field and as a result all the variables included 
in the model set would also have been calibrated 
by using covariance structure of the model set. Of 
course the effectiveness of this kind of calibration 

is directly related to correlation between consid-
ered tree characteristics. Calculations of this kind 
remain a topic for future study.

The area from which the data were taken was 
located in a part of the Koli National Park that had 
been established in 1991, which means that no 
forestry operations had been carried out there for 
the last 15 years (prior to measurement in 2006). 
Thus some of the stands may have become too 
dense, so that the trees are smaller and differ in 
crown structure and stem form from those in man-
aged stands. The stands concerned nevertheless 
had a routine silvicultural history up to 1991 and 
the effect of the unmanaged period may still have 
been only minor in these slow growing stands 
where rotation age is almost 100 years.

The focus in this work was on modelling tree 
variables by means of ALS data. We were espe-
cially interested in variables related to technical 
quality. In general, tree variable modelling is one 
part of the individual tree detection approach 
to the utilization of ALS data. In this approach 
tree identification and species determination are 
important phases prior to the modelling of tree 
variables. The results of tree identification are 
usually dependent on stand density (see Persson 
et al. 2002). The present material contained 449 
sawlog-sized trees, of which only 133 could be 
linked to individually detected candidates. More 
trees were identified, of course, but no clear field 
counterpart could be found for them. A realistic 
forest inventory approach would require that all 
the dominant trees should be identified at the 
individual tree detection stage. Related to this, our 
results point to difficulties in recognizing trees in 
boreal forests. Species identification did not fall 
into the scope of the present work, of course, since 
we had only Scots pines in our material. Various 
authors have presented methodologies for species 
recognition based on lidar data (Holmgren and 
Persson 2004, Moffiet et al. 2005, Brandtberg 
2006, Liang et al. 2007, Ørka et al. 2007, Vauhko-
nen et al. 2008). An automatic species recognition 
system should also be included in any practical 
forest inventory application and the accuracy of 
classification to species should be about 95% 
(Korpela and Tokola 2006).
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6 Conclusions

The results for both the basic tree variables and 
those describing tree quality were highly accurate 
when ALS-based variables were used in con-
nection with non-parametric k-MSN modelling. 
Another highly interesting result was the very 
promising accuracy achieved in the prediction of 
DBH, a basic variable when deriving tree volume 
characteristics. It could therefore be assumed that 
a reliable individual tree-based forest inventory 
system would base its prediction of tree variables 
on the non-parametric methods and a large set of 
both tree and plot-level characteristics derived 
from ALS data.
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