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Abstract
We draw insights regarding intricacies with spatially explicit data and analyses when studying the 
vulnerability of forest socio-ecological systems to disruptive abiotic and biotic factors. Common 
issues associated with data include location precision, spatial delimitation, methodological 
comparability, and measurement consistency. Spatial data analyses are challenged by issues of 
interpolation and extrapolation, inferences using data at different spatial scales, and assessment 
of disruption impacts at detectable spatial scales. The inextricable empirical nature of spatial 
data and analyses requires carefully conducting and disclosing the sensitivity of findings, and 
including robustness tests to openly inform decision-makers on issues of uncertainty associated 
with possible interventions. These considerations might be central to identifying forest socio-
ecological hotspots as forest-dominated geographic areas encompassing social and ecological 
systems vulnerable to disruptions caused by abiotic and biotic factors, but where risks to human 
wellbeing may be considerably reduced through adaptive interventions.
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1 Introduction

A changing climate, evolving societal demands, and the restoration of biodiverse habitats require 
forest management to be tailored to local conditions, for which data at fine spatial scales are 
instrumental (Cantarello et al. 2024). The availability of spatially explicit (e.g., latitude, longitude) 
data representing bio-physical and socio-economic dimensions across the forest sector is growing 
substantially. These include a wealth of openly accessible remotely-sensed tree cover information 
from local to global scales (Pickering et al. 2021; Global Forest Watch 2024). Information on forest 
species composition, stand age, and diameter structures, among other bio-physical attributes, can 
be inferred from systematically inventoried plots commonly conducted by national forest inven-
tory (NFI) programs (Breidenbach et al. 2021; Nesha et al. 2021; US Department of Agriculture 
2024). Access to spatial data on the forest sector including information on forest-using industries, 
landowners, and ancillary infrastructure is also expanding fast. In direct response to social and 
ecological needs, and reflecting localized norms, regulations and land use legacies, analyses of 
spatial data can help decision-makers prioritize geographic areas for adaptive interventions – as 
exemplified by the identification of biodiversity hotspots to target conservation (Marchese 2015; 
Costello et al. 2022).

Here, we draw insights regarding intricacies with spatially explicit data and analyses in 
the context of applications in Fennoscandia and North America by virtue of the long history of 
their NFI programs. We address both bio-physical and socio-economic aspects in order to capture 
the spatial complexity of forest-dominated socio-ecological systems (Winkel et al. 2021), when 
other perspectives seem to consider either only biological (Riva and Nielson 2021) or social 
(Lähteenmäki-Uutela et al. 2023) dimensions. We conclude by offering ideas on the importance 
of conducting and disclosing the sensitivity of findings, and robustness tests of both data and 
analyses to correctly inform decision-makers on issues of uncertainty in the spatial identification 
and prioritization of forest socio-ecological hotspots.

2 Spatial data and analyses of forest sector socio-ecological systems

What forests look like, the flow of ecosystem services contributing to human wellbeing, and how 
society values forests and their services, all carry inherent spatial dimensions (Millennium Eco-
system Assessment 2005). Forest biology and ecology are affected by location including latitude, 
longitude and topography (Paquette and Messier 2011). Spatially explicit data denote how loca-
tion shapes bio-physical conditions that partly explain heterogeneity in forest composition and 
structure, ecosystem functions, and ecological dynamics (Paquette and Messier 2011; Stein et al. 
2014). How geographically proximal forests are to users including human settlements, agricultural 
and forest industries, affects land rents that partly determine the feasibility and intensity of forest 
management activities, non-market externalities, and the opportunity costs underpinning land uses 
(Isard 1949; Aguilar 2009; Aguilar and Kelly 2019). A gradient in societal values between forest 
location and markets demanding raw or processed wood products and other ecosystem services is 
often reflected on patterns of land allocation and management intensity (Roos et al. 2018).

Modern spatial analyses in the forest sector encompass a wide array of applications. They 
include: (1) wood flow analyses to minimize costs and risks along value chains, (2) regional- and 
national-level optimization of the delivery of ecosystem services, (3) landscape planning for the 
conservation of key biodiversity habitats and siting of wood-using facilities, (4) impact assessments 
of policies and industrial wood procurement, and (5) spatially-dependent non-market values and 
interactions among forest owners (Bergseng et al. 2013; Forsius et al. 2016; Aguilar et al. 2017; 
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Bakhtiari et al. 2018; Hyvönen et al. 2020; Jåstad et al. 2023; Tanhuanpää et al. 2023). Spatial data 
commonly used within defined ecological or geo-political boundaries include NFI plots, satellite 
and light detection and ranging-sensed information, and georeferenced industry, roads, human and 
other species populations. Moreover, advances in computing power and machine learning have 
already opened the door for imputations to generate data missing or at finer spatial resolutions than 
currently available (Lidberg et al. 2020).

Spatial analyses can retrospectively, contemporaneously, or preemptively help to identify 
forest socio-ecological hotspots. We define these as forest-dominated geographic areas encom-
passing social and ecological systems vulnerable to abiotic (e.g., snow, wildfire, wind throw) and 
biotic (e.g., anthropogenic, disease, insect) disruptions but where risks to human wellbeing may 
be considerably reduced through adaptive interventions. This definition is grounded on the con-
tribution of forest ecosystem services to human wellbeing (Millennium Ecosystem Assessment 
2005), and extends the concept of a biodiversity hotspot (Begum et al. 2022) in three ways. First, 
while biodiversity hotspots are largely defined in terms of richness and composition of species 
(Costello et al. 2022), forest socio-ecological hotspots are defined in terms of high social value 
– which includes a broader range of ecosystem services all contributing to human wellbeing. 
Second, biotic disturbances encompass anthropogenic factors disrupting forests – as illustrated 
by how public policy can drive structural and functional changes (de Oliveira Garcia et al. 2018). 
Third, it acknowledges that adaptive management explicit to particular socio-ecological contexts 
can ameliorate losses in forest ecosystem services. These make the concept highly policy-relevant 
as it allows prioritizing locations where adoption might yield the greatest net benefit to society.

Disturbances bring specific spatial dimensions in how these affect forests’ capacity to supply 
and sustain the quality of ecosystem services (Millennium Ecosystem Assessment 2005; Senf 
and Seidl 2021), while location-specific ecological and social conditions will partly determine 
the degree of resilience or vulnerability (O’Brien et al. 2004). Concomitant to location-specific 
disturbances, a changing climate will most likely exacerbate their frequency and intensity. Exam-
ples of disturbances likely to be magnified by a changing climate in boreal and temperate forests 
include losses and degradation in species composition e.g., by shifting ecological zones, long-term 
carbon stock losses e.g., through loss of permafrost and heightened tree mortality, and net losses 
of forest-related employment e.g., due to changes in seasonal winter patterns affecting timber and 
non-timber jobs (O’Brien et al. 2004; Mahlstein et al. 2013). Impacts might spill beyond geopo-
litically-defined boundaries as illustrated by how forest wildfire gases, aerosols, and particulate 
emissions can affect human health in geographically distant areas (Sokolik et al. 2019). Trade is 
a specific socio-economic mechanism that bridges forest-level disruptions and value-added forest 
product markets, effectively coupling ecological hotspots with human wellbeing even between 
distant socio-ecological systems (Liu et al. 2013).

3 Challenges with spatially explicit data and their analyses to identify 
vulnerable socio-ecological forest systems

Spatial data and their analyses can help identify areas warranting human interventions to strengthen 
their adaptability and resilience to disturbances. Accounting for spatial effects, when they exist, 
can substantially reduce unobserved bias in modeled results and their interpretation (Anselin 2001; 
Riva and Nielson 2021). As an example, the inclusion of geographically salient processes e.g., 
albedo in boreal forest regions, in spatial modeling increases the optimality of the analyses and 
their policy implications (Sjølie et al. 2013; Favero et al. 2018; Lintunen et al. 2022). On the other 
hand, caution should be taken in how the spatial effect is modeled in order not to introduce bias 
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or confound causal interpretation of the results (Gibbons and Overman 2012). Spatial data carry 
some constraints owing to how these are constructed and to the nature of forest socio-ecological 
processes. For instance, variation in the scale of available remote-sensed data may have a large 
impact in the description of ecological processes (Riva and Scott 2021; Fassnacht et al. 2024).

Next, we outline some features and associated challenges with spatial data and spatial 
analyses in the identification of forest socio-ecological hotspots making references to both bio-
physical and socio-economic information:

• Location precision: The accessibility of precise latitude and longitude coordinates 
can present significant opportunities and challenges to the inclusion of fine-scale 
data, such as a site’s altitude and topography, and their subsequent analyses. Access 
to explicit coordinates, as in the case of NFI plot data, are often fuzzed and in some 
instances swapped to introduce a degree of anonymity (Burrill et al. 2018). This 
pseudo-random relocation can affect inferences at small scales such as stand or man-
agement area, but less so when inferences about larger areas are made (Coulston et 
al. 2006). Geo-referenced socio-economic information such as forest ownership and 
wood-using mill information brings similar concerns over explicit site identification 
for which they are commonly anonymized or aggregated at larger scales to avoid 
identification. In other cases, socio-economic information might be georeferenced to a 
centroid such as those in polygons of parcels or ownership data (Aguilar et al. 2017). 
The precision of coordinates for socio-economic data across a parcel or management 
unit might be less of a challenge regarding location precision when a goal is simply 
to control for different decision-makers behind management but aggregation across 
multiple ownerships or ownership classes undermines the ability to study individual- 
or group-specific effects.

• Disturbance delimitation: Disturbances such as abiotic drought or flooding have unclear 
boundaries and are often delimited by other variables e.g., pixels from remote-sensed 
data, socio-political boundaries (Wolf et al. 2023). By extension, biological disruptors 
such as bark beetle-caused mortality, may be delimited by disturbance edges, but pro-
cesses of dispersion and mortality can be highly dynamic, making it nearly impossible 
to precisely define spatial boundaries. In the absence of direct or reliable measurements, 
proxies such as deadwood or indicator species for biodiversity might be used to delimit 
disruption boundaries; but these can oversimplify complex ecological relationships and 
lead to inaccurate conclusions and could miss-identify or confound main effects (Eigen-
brod et al. 2010). In some data reflecting socio-economic information and dynamics, 
land ownership boundaries might be well-defined but social networks might influence 
ownership preferences and objectives across property limits (Aguilar et al. 2017). In the 
case of studies assessing industrial impacts on forest conditions, an overlap of procure-
ment areas makes the delimitation of multiple industry effects a significant empirical 
challenge (Aguilar et al. 2022; Mirzaee et al. 2023).

• Methodological comparability: NFI programs are currently implemented across 150 
countries albeit differences exist in methodologies, quality, and public accessibility 
(Nesha et al. 2021). NFI programs follow different traditions in response to particular 
data collection needs (Breidenbach et al. 2021; Nesha et al. 2021). There is a lack of 
harmonization in collection and estimation methods, which can challenge the direct 
comparability across different NFI programs, though efforts are underway to improve 
it (McRoberts et al. 2009; Tomppo and Schadauer 2012). Similar issues are faced with 
remotely sensed data collected from different sources such as satellite missions of 
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varying sensitivity (Fassnacht et al. 2024). The comparability of methods used for col-
lecting socio-economic data such as ownership objectives and forest uses seems even 
more challenged by heterogenous sampling and objectives across national-level NFI 
programs (Bakkegaard et al. 2016).

• Measurement consistency: Sampling design and collection methods for NFI and other 
spatial data e.g., land ownership or industry, often follow irregular intervals and may 
be temporally mismatched, even within a single nation (US Department of Agriculture 
2024). Further, while remotely sensed data detects conditions such as canopy cover at 
a specific time, annual NFI estimates might be derived from multi-year averages and 
may not accurately reflect forest conditions at a specific time (Hou et al. 2021). Changes 
in measurement techniques can create temporal inconsistencies in data collection, and 
the failure to account for changes in remotely sensed measurement techniques can 
gravely skew modeling results (Palahí et al. 2021). Data representing socio-economic 
conditions including surveys of forest owners and the forest industry are some of the 
most irregular, often not systematically sampled, and data are commonly derived from 
multi-year averages (Bakkegaard et al. 2016) or one-time collections.

Beyond spatial data, we also point to the importance of observing some issues regarding 
analyses and identification of forest socio-ecological hotspots including:

• Interpolation and extrapolation: Missing spatial data might be imputed to generate 
secondary data from within sampled areas and time periods, or outside them. NFI and 
remotely-sensed data are already being integrated to estimate stand-level characteristics 
and, while challenges persist such as detecting species-specific or biodiversity-relevant 
information, these might be ameliorated with advances in optical and Lidar-based sen-
sors (Maltamo et al. 2021). NFI data have been used to interpolate land patterns and 
assess forest fragmentation, with reported effects between the intensity of sampling and 
confidence intervals of fragmentation indicators (Ramezani and Lister 2023). Spatially 
explicit information as in the case of soil carbon stocks reported on NFI programs might 
also be estimated using known auxiliary variables due to empirical challenges for their 
direct measurement (Domke et al. 2017).

• Inferences using data at different spatial scales: Spatial analyses may integrate data 
from several sources including remote-sensed and field-level data on forests, which 
bring their own set of empirical challenges (Fassnacht et al. 2024). Socio-economic 
information such as population or employment are reported at different geopolitical 
scales e.g., household, municipality, county, state, national, and integrated into spatial 
analyses. Other socio-economic data such as industrial sites and infrastructure are 
georeferenced in point, vector or shape information. Integrating variables measured 
at different scales can introduce noise in statistical estimation (Anselin 2001) and be 
reflected in a high degree of variability in subsequent modeling results (Tanhuanpää et 
al. 2023). Unexpected or not, results from modeling efforts may point to heterogeneity 
within smaller scale units e.g., landscape to stand-level, national to local impacts, or 
differences between localities e.g., impacts across latitudinal gradient, rural versus urban 
impacts (O’Brien et al. 2004). The issue of spatial integration and errors may only be 
exacerbated across temporal scales.

• Vulnerability assessment at detectable spatial scales: Projected disturbances can carry 
substantial uncertainty as exemplified in the downscaling of changes in global climate 
patterns to localized effects (Huber et al. 2021). Conversely, lower stand-scale eco-
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logical processes such as species competition and succession that determine growth 
and regeneration may only compound and become discernible at a larger geographic 
scale. Stand-level inventory data have already been integrated with larger regional 
economic models to infer impacts from alternative forest management on total eco-
nomic output (Karttunen et al. 2018). But acute economic impacts from disturbances 
affecting the forest sector might only be discernible at local scales, more often within 
rural areas, where losses in employment and added value account for a larger share 
of local economies. Regarding estimated economic impacts of disruptions and policy 
interventions, there can be substantial discrepancies in results arising from differing 
assumptions including the geo-political scale at which socio-economic data are aggre-
gated. It is a concern that such apparent inconsistencies might affect credibility among 
policy-makers in regional assessments (Henderson et al. 2017). Plausibly, tests for 
data aggregated at different spatial scales could help define gradients and thresholds 
of detection of impacts on wellbeing.

• Robust evaluation of disturbances and interventions: It is important to evaluate impacts 
as the deviation from baseline/control conditions (e.g., the flow of forest ecosystem 
services affected by heightened abiotic disturbances compared with historic averages; 
the effects of adaptation interventions against status quo scenarios). A common chal-
lenge with past spatially explicit evaluations of disturbances and policy interventions 
is the lack of clearly identified control/baseline observations (Ceccherini et al. 2020). 
Although the use of counterfactual approaches such as statistical matching of NFI plots 
to identify comparable control and treated observations is well established (Villalobos et 
al. 2018; Aguilar et al. 2022), they still possess challenges e.g., in terms of knowledge 
required for selecting matching candidates (dos Santos Ribas et al. 2020). Robustness 
and sensitivity of findings with respect to precision in location and identification can 
help validate directional findings, and differing net values and levels of statistical sig-
nificance might point to possible uncertainties associated with data, methods, or both. 
In some instances, researchers might be able to use different data sources and methods 
to estimate a degree of data accuracy and proxy uncertainty (Emick et al. 2023) of find-
ings, but these may not be universal.

4 Final remarks

Spatial data and analyses are inextricably empirical, hence, their findings can have immediate 
applications and might be directly used to inform policy decisions. Recent spatial analyses (Cec-
cherini et al. 2020) have been called into question for possible spurious interpretations (Palahí et al. 
2021; Riva and Nielson 2021) – yet findings reportedly linking forest losses to public policy have 
still served as the backbone to new initiatives such as the European Union’s Forest Strategy for 
2030 (European Commission 2021). Spatial analyses in general, and in particular those aiming at 
the identification of forest socio-ecological hotspots and the effect of interventions, should observe 
disclosure practices presenting the sensitivity of results to data issues, and report robustness in 
findings across analytical approaches. The transparent disclosure of challenges in spatial analyses 
and possible inconsistencies in findings across data and methods would allow decision-makers to 
be better informed when exploring any course of action to enhance the capacity of forest socio-
ecological hotspots to adapt to abiotic and biotic disruptors.

All-in-all, we deem it central to qualitatively and/or quantitatively recognize the degree of 
uncertainty associated with spatial data and analytical methods. On data, issues of location preci-
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sion, factor identifiability, measurement regularity, methodological comparability, and temporal 
consistency should be acknowledged where relevant. Reporting on inherent limitations and any 
methodological steps taken to possibly reduce these issues should be clearly disclosed. Regarding 
spatial methods, processes of interpolation and extrapolation of missing spatial data, inferences 
made using data at different spatial scales, assessment of impacts at detectable spatial scales, and 
the evaluation of interventions including the selection of spatial controls, should be well discussed. 
In addition to common guidelines for ethics in publishing and disclosure practices for open data 
and reproducibility, and because of their high level of empirical nature and the possibility that 
findings could be directly fed into public policy interventions, submissions to scientific outlets 
should acknowledge empirical uncertainty when spatial data and analyses are used.
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