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*  Argan agro-sylvo-pastoral system is a unique agro-ecosystem of arid land in the world.

» Climate variability, drought and vegetation dynamic are assessed in the GIAHS site using a
combination of remote sensing and field investigation.

»  Findings highlights a significant decrease in agricultural and woodland cover and consistent
increase in drought.

* Resilience implications are discussed to inform socio-economic actors.

Abstract

Agroforestry systems are critical for building resilience to socio-environmental shocks, espe-
cially in drought-prone arid and semi-arid areas. This study the ecological impact of drought
on the Mediterranean Globally Important Agricultural Heritage Systems (GIAHS) site of Ait
Saoub-Ait Mansour in Morocco. Machine learning-based random forest (RF) classification and
change detection were used to explore the change in land use classes such as built-up areas, agri-
cultural areas, woodland, and bare land. Spatiotemporal analysis of temperature, precipitation,
and Precipitation-Evapotranspiration Index (SPEI) is performed using Mann-Kendall and Sen’s
slope test for the period 1983-2020. Additionally, the Normalised Difference Vegetation Index
(NDVI) is analyzed from 2000 to 2020 for some specified crop species such as Argan tree (Arga-
nia spinosa (L.) Skeels), cereal, palm tree, and cereal mixed. The results show a decrease in the
area of agricultural and woodland and a consistent increase in drought (decrease in SPEI-6 and
SPEI-12) over time. Annual and seasonal trends in NDVI for Argan tree, cereal, palm tree, and
mixed cereal are negative. These findings provide consistent evidence of the ongoing degradation
of this ecosystem and the changing climate. The resilience implications are discussed to inform
socio-economic actors and stakeholders.
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1 Introduction

A prolonged dry period in the natural climate cycle has an effect on water quantity and access. It
causes drought that can be classified based on its causes and consequences. Further, droughts are
characterized in terms of their severity, location, duration and timing (WMO and GWP 2016).
Meteorological drought occurs when there is a prolonged period of significantly below-average
precipitation. It is mainly weather-related and can lead to other types of drought such as agricul-
tural drought that is caused when there is not enough soil moisture to support crops and plants.
Hydrological drought is associated with both surface and groundwater shortages, such as reduced
river flows, dried-up lakes. Socio-economic drought arises when water scarcity begins to have an
impact on human activities, leading to disruptions in the availability and the water demand (Van
Loon 2015).

Drought directly affects about 1.84 billion people globally, an estimated quarter of human-
ity (UNCCD 2023). According to the World Bank (2023), 85% of this population is estimated to
live in low or middle-income countries. In addition, drought increases the risk of deforestation
and land degradation by 17% in arid and semi-arid areas (UNCCD 2023). Although drought is a
natural hazard, human influence due to land use (LU) change is an important and essential factor
that worsens the impact (Ayugi et al. 2022; Tanarhte et al. 2024).

Climate change effects, characterised by high spatiotemporal variability of precipitation (Aba-
hous et al. 2018, 2020; Pérez-Cutillas and Salhi 2024) and prolonged meteorological drought, have
devastating socio-environmental impact. These include biodiversity losses, increases in wildfires,
decreases in water storage, groundwater depletion, and growing animal and plant diseases (Verner
et al. 2018). In addition, agricultural practices in rainfed systems are highly vulnerable to drought
(Agoussine and Bouchaou 2004; Choukr-Allah et al. 2016; Abahous et al. 2018; Hssaisoune et
al. 2020). According to Filho et al. (2023), climate poses a great risk to the realization of United
Nations Sustainable Development Goals such as SDG 1, 2, and 15, on No Poverty, No Hunger,
and Life on Land, respectively, among many others.

The United Nations (UN 2016), reported that land degradation affects 19% of Moroccan
land as soils are fragile and suffer from water and wind erosion. Therefore, cropland and rangeland
are losing their productivity, threatening livelihoods and causing socio-economic problems. For
instance, cropland and rangeland degradation is estimated to cost between US$91 million and
US$178 million annually (Croitoru and Sarraf 2010). Moreover, drought and land degradation
increase social vulnerability and cause rural exodus which represented almost 20.7% of the entire
internal migrant population in 2014 (HCP 2023).

In North Africa (NA) and the Mediterranean region, climatic projections indicate a high
likelihood of more frequent and intense drought events (Elkouk et al. 2021, 2022; Ayugi et al.
2022). In Morocco, drought and its socioeconomic impacts in the past millennia are well docu-
mented (Chbouki 1992; Cook et al. 2016; Ait Brahim et al. 2017; Baqgloul et al. 2021; Tadoumant
et al. 2022), as well as in contemporary times (Swearingen and Bencherifa 2000; Bouchaou et
al. 2011; Driouech et al. 2021; Hadri et al. 2021). It is estimated that a drought event can cost the
agriculture sector up to $500 million (Moneo and Iglesias 2007).

The Arganeraie Biosphere Reserve (ABR), located in central and southwest Morocco, is an
agro-sylvo-pastoral and socio-ecological system, which is tolerant to the region’s aridity (UNESCO
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2018). The argan trees considered the main component of the ABR, contribute to the preserva-
tion of the ecosystem by creating an atmosphere that supports floristic and faunistic biodiversity
(Saddik et al. 2024). In the occidental Anti-Atlas as part ABR, the argan based agro-sylvo-pastoral
system of Ait Souab-Ait Mansour is registered as the Globally Important Agricultural Heritage
System Programme (GIAHS) of the United Nations Food and Agricultural Organisation (FAO)
(https://www.fao.org/giahs/en/). The argan trees constitute around 70% of the woodland area in
the ABR (M’hirit et al. 1998; Chakhchar et al. 2022). Despite its resilience, this ecosystem faces
intense environmental and socio-economic challenges, including land degradation, exploitation and
preservation trade-off, rural-urban migration, and loss of local knowledge and practices (Barkaoui
et al. 2022; Santoro et al. 2023; Baqloul et al. 2024; Hakam et al. 2024; Tadoumant et al. 2024;
Tairi et al. 2024).

There is a need for understanding the occurrence of the challenges in ABR so as to devise
and implement effective response strategies. Effective drought management must be cross-sectorial,
and addressed at different levels starting from community to national scale and beyond. This is
supported by an elaborate Integrated Drought Management (IDM). IDM framework is based on
three interrelated pillars: (1) monitoring and early warning systems; (2) vulnerability and impact
assessment; and (3) mitigation, preparedness, and response (Pischke and Stefanski 2016; Wilhite
2017). Thus, accurate drought assessment and monitoring are essential steps toward IDM. Different
approaches are used to assess drought and its impact on ecosystems. Among the most cost-efficient
and rapid, the use of indices and models derived from remotely sensed data provides valuable
insights into spatial and temporal drought dynamics, land surface conditions, and vegetation health
(WMO and WGP 2016; Bouaakkaz et al. 2020; Boudhar et al. 2022; Labbaci and Bouchaou 2022,
Han and Singh 2023).

This work aims to assess the drought effects on land degradation in ABR. In this way, land
use changes and vegetation are used as a proxy of drought and precipitation deficit (i.e., meteoro-
logical drought) as the main trigger of other types of droughts, namely: hydrological, agricultural,
and socio-economic. The findings of this study would help to assess the impact of environmental
shocks in the context of the Argan ecosystem. Moreover, the ambition is to inform stakeholders
on mitigation and adaptation efforts.

2 Material and methods
2.1 Study area

The GIAHS site Agro-silvo-pastoral system of the Argan tree in the Ait Souab-Ait Mansour region
is in the Southeast of Agadir in the Souss Massa region. It lies between the longitude 8°15°00”W
and 9°30°00”°W, and the latitude of 28°15°00”N and 30°00°00”°N (Fig. 1). It has an elevation
varying from 159 to 2376 m. The study area is characterized by a Mediterranean climate with a
dry period from March to November (Fig. 2), cold winter in December, January, and February,
and hot dry summer in June, July, and August. The rainfall regime is influenced by orographic
disturbances, which are responsible for the stormy nature in summer and ocean disturbances at
the start of the winter and spring rains.

The income of the rural population in the area is mainly dependent on biodiversity-
related sources such as agriculture and tourism (Santoro et al. 2023). Thus, biodiversity plays
a key role in food security and livelihood, providing services for sustainability and economic
development.
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Fig. 1. The location and topography of the study area map.
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Fig. 2. Rainfall and temperature climatology of the GIAHS site based on observed data
for the Amaghouz station for the period 1983-2022. Globally Important Agricultural
Heritage Systems (GIAHS).
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2.2 Methodology

The satellite images were downloaded and processed and used to create LULC maps, and calcu-
late NDVI and other spectral indices. Then, the NDVI time series were analyzed for the period
2000-2020, for the different species within the GIAHS such as palm tree, argan tree, and cereals.
Secondly, precipitation and temperature were analyzed from 1983 to 2020, based on data avail-
ability (Fig. 3). Because of limited gauging stations, the precipitation data were extracted from the
PERSIANN-CDR (Rainfall Estimation from Remotely Sensed Information using Artificial Neural
Networks — Climate Data Record). PERSIANN-CDR dataset has a resolution of 0.25°x0.25°
(Ashouri et al. 2015). The temperature data were extracted from the ERAS5-Land product by the
European Centre for Medium-Range Weather Forecasts (ECMWF) in 2019 (Mufioz-Sabater et al.
2021). These products were evaluated and assessed using a gauging station, and by calculating
the correlation coefficient (CC), the root-mean-square error (RMSE), and relative bias in percent
(PBIAS) (Khettouch et al. 2023; Hakam et al. 2024). The trend of these parameters was performed
using Mann—Kendall (MK) (Mann 1945; Kendall 1975) test and Sen’s slope estimator (Sen 1968).
Finally, drought was quantified using The Standardized Precipitation-Evapotranspiration Index
(SPEI) (Eq. 1) (Vicente-Serrano et al. 2010). The SPEI was calculated at 6- and 12-month time-
scales to evaluate seasonal and annual drought conditions, respectively. SPEI at nine months scale
(SPEI09) to twelve months (SPEI12) are more appropriate for agricultural drought analysis (Liu et
al. 2024). On the other hand, SPEI at less than six months scale is appropriate for characterization
of meteorological drought. These calculations were conducted using the SPEI package within the R
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Fig. 3. Flowchart of the adopted methodology for assessing Drought and vegetation dynamics dynamics in GIAHS
site. Globally Important Agricultural Heritage Systems (GIAHS), The spectral indices used include the Soil-Adjusted
Vegetation Index (SAVI), Normalized Difference Built-up Index (NDBI), and Normalized Difference Water Index
(NDWI). The classification was carried out using the Random Forest (RF) algorithm implemented in Google Earth
Engine (GEE). LULC — Land Use and Land Cover; SAVI — Soil-Adjusted Vegetation Index; NDBI — Normalized Dif-
ference Built-up Index; NDWI — Normalized Difference Water Index; RF — Random Forest; OA — Overall Accuracy;
Kappa — Kappa coefficient.
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environment (Begueria et al. 2014). The estimation of potential evapotranspiration (PET;) for each
month was calculated using the Hargreaves method. This method utilizes thermal meteorological
variables, including minimum and maximum temperatures and latitude, to estimate the potential
evapotranspiration rate. By incorporating these factors, the Hargreaves method provides a reliable
estimation of PET;, which is essential for understanding the moisture deficit Di (Eq. 1).

D; = F, - PET; @

where D, represents the moisture deficit (measured in mm) for month #, P; stands for the precipita-
tion (mm) in month 7, and PET; denotes the potential evapotranspiration (mm) for month i.

2.2.1 Field data collection

In order to collect the necessary field information for the classification, data collection companies
coupled with Google Earth visualization, were carried out during the period September 2022,
February and May 2023. Several points were collected covering the different classes, as well as
the location, the notes and the photos to complete the detail. This field campaign allowed reliable
training and the validation dataset, which was then incorporated into the classification process
using RF classifier. Around 800 points were collected in 80% were used as training data, and 20%
were used for the validation.

2.2.2 Image data pre-processing

The Landsat satellite imagery including Multispectral Scanner (MSS), Enhanced Thematic
Mapper Plus (ETM+), Thematic Mapper (TM), and Operational Land Imager (OLI) data, down-
loaded from the United States Geological Survey (USGS) Earth Explorer platform (https://earth-
explorer.usgs.gov/), were used to create LULCC and NDVI maps for the years 1995, 2000, 2005,
2010, 2015, and 2020. All images were captured from July to September when various vegetation
types remained in a stable state to ensure accurate compararganisons of LULC variations. The
selection of satellite images followed the criteria outlined by Sun et al. (2009): (1) preference for
images with less than 10% cloud coverage, with a priority for cloud-free conditions whenever
feasible; (2) prioritization of satellite image series with extensive temporal coverage to enable
robust long-term analysis.

2.2.3 Random forest classifier

The LULC maps were carried out using the RF classifier. Several classes were taken into account
such as bare land, agriculture, build-up area, and woodland. The RF is a supervised machine
learning algorithm that can be used for both classification and regression tasks. It is a popular
method for land cover classification because it can handle large datasets and high-dimensional
spaces and is resistant to overfitting. Breiman (2001) developed it as a machine learning algorithm
that improves the precision of the classification and reduces the processing costs compared to the
traditional methods. This algorithm is based on multiple decision trees to perform the classifica-
tion and the regressions tasks. Many trees were built for stability (ntree = 200), and since store all
the variables for each split. The features for classification were derived from multi-spectral data
and other indices (i.e., NDVI, NDWI, and SAVI) found within the earth engine. A sample was
identified for four different land cover classes (agriculture, woodland, bare land, built-up land)
and was created by hand drawing the land cover boundaries using high-resolution imagery, field
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entry, and expert interpretation, ensuring spatial and homogeneity for each land cover class. The
sampling was distributed spatially, each training dataset was randomly split into 80% training data
and 20% testing data using a random column. Since the default settings have been demonstrated
to produce high classification accuracy while successfully limiting overfitting in comparable land
cover investigations, they were employed as advised by Ming et al. (2016) and Rodriguez-Galiano
etal. (2012). The classifier was trained using ee.Classifier.smileRandomForest() and model accu-
racy was assessed using the field data and by calculating the confusion matrix, overall accuracy
(04; Eq. 2), the kappa index (KI; Eq. 3), producer’s accuracy (PA; Eq. 4), and user’s accuracy
(UA; Eq. 5) (Congalton 1991). The Kappa coefficient gauges the agreement between the classi-
fier’s resulting classes and the ground truth, with values ranging from 0 to 1. A Kappa coefficient
of 0 signifies no agreement, while a value of 1 indicates perfect agreement (Stehman 1996; Foody
2020). Overall Accuracy and Kappa statistics are pivotal metrics utilized to evaluate the accuracy
of land cover classification (Mawenda et al. 2020).

04=13x; @)
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where N represents the total number of observations, while » denotes the number of rows and
columns in the error matrix. The term Xj; signifies the count of observations in both column i and
row i (the diagonal element). Additionally, X;. and X}; represent the marginal totals of the columns
and rows, respectively (Tariq et al. 2023).

2.2.4 Spectral indices

For better classification guidance and orientation, some spectral indices such as NDVI (Eq. 6)
(Rouse Jr et al. 1974), Soil-Adjusted Vegetation Index (SAVI) (Eq. 7) (Huete 1988), Normalized
Difference Built-up Index (NDBI) (Eq. 8) (Zha et al. 2003), and Normalized Difference Water
Index (NDWI) (Eq. 9) (Gao 1996). These indices give ideas on the different land use types such
as vegetation, built-up, and water.

(NIR-RED)
NDVI = +—— 2 (6)
(NIR+ RED)
NIR — RED
SAVI:QX(HL) (7)
(NIR+RED+L)
NDBp < SWIR—RED @®
NIR + RED
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_ GREEN — NIR

NDWI =
GREEN + NIR

)

where NIR is near-infrared reflectance, RED is the red reflectance, GREEN represents the green
reflectance, SWIR represents the Short-Wave Infrared and L is the adjustment factor.

2.2.5 Change detection of LULC classification

The area and percentage of change, or the rate of change, are widely applied quantitative methods
for detecting LCLU changes, revealing the magnitude of loss and gain for each land cover/land
use in the region (Opedes et al. 2022), currently measured in hectares and percentage. Mathemati-
cally, this is presented using Eq. 10:

% Change area = % LULC;;) —%LULC; 10)

where LCLU; represents the land cover/land use area of a specific class in the previous year (i),
while LCLU;4; denotes the land cover/land use area of the same class in the subsequent year
@(i+1).

2.2.6 Index based change detection

The study examined the variability in vegetation condition and drought severity over 20 years
through the analysis of NDVI time series. The average of multiple point-in-time series provides
information about vegetation changes. Time series were generated from Landsat data accessed
via the Google Earth Engine platform, the NDVI time series provided insights into the annual and
seasonal dynamics of various vegetation species within the research area. Trend analysis was com-
puted to quantify vegetation change trends in both annual and seasonal averages (Winter, Spring,
Summer, and Autumn) across agricultural classes. Furthermore, NDVI maps were classified based
on the NDVI values according to Table 1. This classification is an adaptation of the classification
already carried out by Mohajane et al. (2018).

Table 1. Classification of land cover types based on NDVI
values for the GIAHS site.

NDVI Values Class description
NDVI<0.03 Bare land

0.03 <NDVI<0.3 Low-density vegetation

0.3 <NDVI<0.4 Moderate-density Vegetation
NDVI> 0.4 High-density Vegetation

NDVI: Normalized Difference Vegetation Index; GIAHS: Globally
Important Agricultural Heritage Systems (GIAHS).
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Fig. 4. Climatology of annual (a) precipitation and (b) temperature, in the GIAHS site from 1983-2020. Globally Im-
portant Agricultural Heritage Systems (GIAHS).

3 Results
3.1 Spatio-temporal climate variability

The precipitation ranges between 150 and 170 mm yr! going from the south to the north. The
temperature ranges from 15 °C to 24 °C, with the northwest regions recording the highest tem-
perature (Fig. 4).

The spatio-temporal dynamics of temperature and precipitation during the period of 1983—
2020 across the GIAHS site throughout the seasons are presented in (Figs. 5,6). Figures SA1-A4
and 5Y 1-Y4 show a negative trend with a precipitation shift from the southeast to the northwest
starting in winter to autumn. While the summer and the autumn show a positive trend. The pre-
cipitation decreased by —1.5 mm yr! in the northwest during winter and increased by 1 mm yr!
during autumn. Figures 6K 1-K4 and 6G1-G4 depict the temporal variation of temperature from
1983 to 2020. Temperature variability shows a relatively higher increase in the southern than in the
northern part of the GIAHS site during both spring and winter. Overall, the warming rate is less
than 0.2 °C yr ! over most parts of the study area. In summer, the temperature variability remains
stable with a slow increasing trend. In autumn, a small proportion of the GIAHS site experiences
increasing temperatures with a slow positive trend. While fluctuations in temperature and precipita-
tion patterns provide valuable insights into climate dynamics, they also influence the occurrence
and severity of meteorological drought.
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Fig. 7. Time series of changes in SPEI at the seasonal scale (SPEI-6) and annual scale (SPEI-12) from 1983 to 2020 in
the GIAHS site. The Standardized Precipitation-Evapotranspiration Index (SPEI).

3.2 Analysis of meteorological drought

Drought analysis is based on SPEI 6 and 12-month timescales to evaluate the impact of changing
climatic characteristics on meteorological drought in the GIAHS site (Fig. 7). The SPEI analysis at
SPEI-6 and SPEI-12 timescales provide insights into the drought patterns over different decades.
In the first decade, from 1983 to 1990, four drought years (1984, 1986, 1987, and 1988) were
identified as experiencing low to high levels of drought. The second decade, from 1990 onwards,
saw fewer drought occurrences (1995, 1998, and 1999) according to SPEI-6 and SPEI-12 measure-
ments. Moving to the third decade, spanning from 2000 to 2003, with additional occurrences in
2007 and 2008, a longer drought spell was observed compared to previous decades. Similarly, the
fourth decade, ranging from 2012 to 2015, with additional occurrences in 2017 and 2018, revealed
a prolonged drought period.

3.3 Land use /land cover changes

The classification was carried out using satellite and ground truth data and by applying the RF.
The evaluation of the results was performed by calculating the overall accuracy, Cohen’s kappa
coefficient, and the confusion matrix. The results showed a high value of overall accuracy for all
the classifications of about 83.33%, 85.90%, 95.77%, 93.72%, 95.62%, and 97.87% respectively
for 1995, 2000, 2005, 2010, 2015, and 2020. and Cohen’s kappa coefficient of about 0.82, 0.86,
0.90, 0.93, 0.95, and 0.96, respectively (Table 2).
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Table 2. Confusion matrix and accuracy assessment of (LULC) classification for the GIAHS site.

Year Ground truth
1995 Classes Agriculture Woodland Bare land Built-up Producer’s accuracy
Agriculture 83.33 0.67 0.07 0.00 99.12
Woodland 0.00 87.33 0.21 19.35 81.72
Bare land 16.67 4.67 99.49 16.13 72.63
Build up 0.00 7.33 0.24 64.52 89.51
User’s accuracy 83.33 87.33 99.48 64.52
OA = 83.66; KI = 0.82
2000 Classes Agriculture Woodland Bare land Built-up Producer’s accuracy
Agriculture 88.24 2.40 0.11 14.29 84.01
Woodland 0.00 91.62 0.17 7.14 92.62
Bare land 11.76 4.79 99.49 14.29 76.33
Build up 0.00 1.20 0.23 64.29 97.82
User’s accuracy 88.24 91.61 99.49 64.28
OA = 85.90; KI = 0.86
2005 Classes Agriculture Woodland Bare land Built-up Producer’s accuracy
Agriculture 93.75 2.08 0.00 0.00 97.83
Woodland 6.25 97.92 0.00 0.00 94.00
Bare land 0.00 0.00 99.73 8.33 92.30
Build up 0.00 0.00 0.27 91.67 99.71
User’s accuracy 93.75 97.92 99.73 91.67
OA=95.77; KI=0.90
2010 Classes Agriculture Woodland Bare land Built-up Producer’s accuracy
Agriculture 93.55 9.23 0.00 0.00 91.00
Woodland 6.45 90.77 0.00 0.00 93.37
Bare land 0.00 0.00 99.93 9.38 91.37
Build up 0.00 0.00 0.07 90.63 99.92
User’s accuracy 93.55 90.77 99.93 90.62
0OA=93.72; KI=0.93
2015 Classes Agriculture Woodland Bare land Built-up Producer’s accuracy
Agriculture 91.67 4.29 0.02 0 95.51
Woodland 8.33 95.24 0 0 91.96
Bare land 0 0.48 99.89 8.33 91.92
Build up 0 0 0.09 91.67 99.90
User’s accuracy 91.67 95.24 99.89 91.67
OA=95.62; KI=0.95
2020 Classes Agriculture Woodland Bare land Built-up Producer’s accuracy
Agriculture 92.86 0.69 0 0 99.26
Woodland 7.14 99.04 0.01 0 93.27
Bare land 0 0 99.93 0.62 99.38
Build up 0 0 0.07 99.38 99.93
User’s accuracy 92.86 99.31 99.92 99.38

OA=97.87; KI=0.96

LULC: land use/land cover; GIAHS: Globally Important Agricultural Heritage System.
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Fig. 8. Spatio-temporal change of LULC over the period 1995-2020 within the
Globally Important Agricultural Heritage System (GIAHS) site.

The results LULC change illustrate that the bare land is the dominant class in all the period
(Fig. 8). While, the woodland and agricultural areas decreased during the same period from 1.90%
to 1.07% and 0.82% to 0.43%, respectively. On the other hand, the Build-up areas have been

increased from 0.002% to 0.054% (Fig. 8 and Table 3).

Table 3. Temporal variability in LULC Composition across Different Classes: 1995-2020.

Classes 1995 (%) 2000 (%) 2005 (%) 2010 (%) 2015 (%) 2020 (%)
Bare land 97.268 98.123 96.562 97.869 96.783 98.429
Woodland 1.902 1.789 3.082 1.995 3.149 1.079
Built-up 0.002 0.018 0.009 0.026 0.045 0.055
Agriculture 0.828 0.070 0.347 0.111 0.022 0.436

LULC: land use land cover (LULC).
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3.4 Change detection of LULC

LULC change detection between 1995 and 2000 revealed a modest increase of 0.86% in desert
bareland, alongside a decrease of 0.76% in agricultural land, a slight gain of 0.02% in built-up areas,
and a reduction of 0.11% in woodland cover (Fig. 9). Moving to the subsequent period from 2000
to 2005, there was a modest decrease of 1.56% in bareland, juxtaposed with a 1.29% increase in
forest cover, a 0.28% growth in agricultural land, and a marginal 0.01% decline in built-up areas.
Transitioning to the timeframe spanning 2010 to 2015, the analysis revealed a 1.09% decline
in bareland, a 1.15% rise in forest cover, a slight 0.02% increase in built-up areas, and a 0.09%
reduction in agricultural land. Notably, the most significant changes in land cover and land use at
the GIAHS site occurred between 2015 and 2020, characterized by a notable 1.65% increase in
bareland, a 2.07% decline in forest cover primarily attributed to conversion to range land, a 0.1%
growth in built-up areas, and a 0.41% expansion in agricultural land.
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Fig. 9. Area based change detection of LCLU in respective periods.
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Fig. 10. Spatial patterns of NDVI rate of change in the Globally Important Agricultural Heritage System (GIAHS) site
from 2000 to 2020.

3.5 Spatiotemporal and Crop-Specific NDVI Dynamics

Results of the NDVI change maps are presented in Fig. 10 and Table 4. The findings indicate that
low vegetation density (LVD) is the dominant class throughout all periods, with a slight decrease
from 98.57% in 1985 to 96.38% in 2020. Moderate vegetation density (MVD) has increased during
the same period, from 0.55% to 1.52%. Conversely, the percentage of the area with high vegetation
density (HVD) has also increased, from 0.25% to 0.53%.

Table 4. Percentage temporal variation of vegetation density classes: 1985-2020.

NDVI class 1985 1990 1995 2000 2005 2010 2015 2020
BL 0.63 2.76 2.55 2.55 2.16 1.22 0.68 1.57
LVD 98.57 96.65 96.78 94.72 96.50 97.38 92.8 96.38
MVD 0.55 0.39 0.45 0.45 0.98 1.1 5.22 1.52
HVD 0.25 0.20 0.22 0.30 0.36 0.30 1.30 0.53

BL, LDV, MVD, and HDV are acronyms for Bare Land, Low Vegetation Density, Moderate Vegetation Density, and
High Vegetation Density, respectively.

16



Silva Fennica vol. 59 no. 2 article id 24056 - Meskour et al. - Drought and vegetation dynamics in dryland of ...

0,50 -
0,45
0,40
=
=
0,35
7
0,30 -
0,25 -
Argan tree Palm tree Cereal Cereal mixed with species
0,20 t t t t t t f t t t t t t t t t t t t {
"8 58 €8 8 3 8 8 5 8 8 2 g g2 22 £ 2 2 g
& &8 &8 &8 &8 &8 &8 &8 &8 8 &8 &8 8 8 & &8 &8 &8 &8 & =&

Fig. 11. Annual NDVI trends among various crop types from 2000 to 2020. Cereal mixed with species cereals are cul-
tivated together with other crops, such as legumes, maize and alfalfa (Medicago sativa).

Fig. 11 presents the annual NDVI trends for various crop types (Cereals, Argan trees, Palm
trees, and Cereals mixed with other species) spanning the period from 2000 to 2020. The results
of the MK test show an upward trend for the Argan trees and palm trees and a downward trend
for the Cereals and the Cereals with other species. The NDVI seasonal trend of the two classes
of Cereals and Cereals mixed with other species showed a downward trend during all seasons.
seasonal NDVI for the argan trees, show an increase except for winter. While the NDVI seasonal
trend of palm trees showed an uptrend except for summer (Fig. 12).
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Fig. 12. Seasonal NDVI trends among various crop types from 2000 to 2020.
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Table 5. Mann-Kendall trend and Sen’s slope of remote sensing and drought index.

Variables NDVI SPEI-6 SPEI-12

Palm tree Argan tree Cereal Cereal mixed
with species

Z-score 1.11 0.09 —1.42 —2.99* -3.95% —4.52%
Sen’s slope 0.001 0.006 —0.002 —0.004 —0.001 —-0.001
Tau 0.18 0.02 -0.23 —0.48 —0.12 -1.43
Variance 1096.6 1096.6 1096.6 1096.6 10158610 10158460

* Significant p-value at 99% confidence level; SPEI-6: Standardized Precipitation Evapotranspiration Index at 6 months;
SPEI-12: Standardized Precipitation Evapotranspiration Index at 12 months.

3.6 Temporal analysis of LULC and meteorological droughts
3.6.1 Trend analysis

Results of the NDVI trend analysis are intriguing (Table 5). NDVI values for palm trees and argan
trees showed a non-significant upward trend, with Tau values of 0.18 and 0.02 respectively, low
z-scores of 1.11 and 0.09, as well as Sen’s slopes of 0.001 and 0.006. Conversely, cereal crops
exhibited significant downward trends, particularly for mixed cereals (p<0.001), with a Tau of
—0.48, a z-score of —2.99, and a negative Sen’s slope of —0.004. These findings suggest that crops
such as cereals are less resilient to the observed drought conditions in the region during this period
compared to fruit trees.

The meteorological indices, SPI-6 and SPI-12 also showed a significant downward trend
(p<0.001), confirming the previous observations. The negative Sen’s slope (—0.001) and negative
z-scores (—3.95 and —4.52) of SPEI on both scales (SPEI-6 and SPEI-12) highlighted a decreasing
trend, indicating a significant shift towards climate warming in the region.

3.6.2 Correlation analysis

Positive correlations were observed between NDVI and both seasonal (SPEI-6) and annual (SPEI-
12) drought indices, indicating that vegetation dynamics respond to climatic variability. However,
the strength of this relationship varied among vegetation types, reflecting differences in sensitivity
to drought conditions (Fig. 13). Cereals mixed with other species refer to agricultural areas where
cereals are cultivated together with other crops, such as legumes, maize and alfalfa (Medicago
sativa), (displayed the highest correlation coefficient with the SPEI on an annual scale (r=0.51),
followed by palm trees (r=0.48) and argan trees (r=0.36). Conversely, cereals showed weak rela-
tionships with SPEI on both time scales.
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Fig. 13. Pearson correlation coefficient matrix of drought indicators. Cereal mixed with
species (cereals are cultivated together with other crops, such as legumes, maize and
alfalfa (Medicago sativa)). SPEI-6: Standardized Precipitation Evapotranspiration In-
dex at 6 months; SPEI-12: Standardized Precipitation Evapotranspiration Index at 12
months.

4 Discussion
4.1 Dought dynamics in the GIAHS

This study investigates drought effects on agriculture and livelihoods in a traditional agro-sylvo-
pastoral heritage system of the south of the Mediterranean. To this end, an approach integrating
climate, satellite, and ground data was adopted to better understand the impact of climatic con-
ditions on the spatio-temporal distribution of vegetation over the period 2000-2020. Findings
highlight an intensification of climatic variability in recent years. This pattern is characterized
by a decrease in precipitation and higher temperatures clearly illustrated in Fig. 4. These findings
demonstrate the trend towards a hotter and drier climate in southwest Morocco and North Africa.
While fluctuations in temperature and precipitation patterns provide valuable insights into climate
dynamics (Figs. 5,6), they also influence the occurrence and severity of meteorological drought.
Using the SPEI-3 and SPEI-6 as an index of meteorological drought indicates that the decreasing
trend in negative SPEI values leads to a decrease in vegetation in the region, notably in the form
of expansion of agricultural lands.

Accordingly, previous research concluded the mounting of the drought risks and its impact
on livelihoods (Khomsi et al. 2015). Other studies (Ouhamdouch and Bahir 2017; Tanarhte et al.
2024) have also noted a significant decrease in precipitation in southern Morocco, which aligns
with our results. Spatially, a trend towards decreased precipitation and increased temperatures has
been observed over the last four decades, with more pronounced variations in the North than in
the South (Fig. 5). Additionally, an increase in temperatures and a decrease in precipitation during
the rainy seasons have been particularly notable in our study region, distinctly in Tafraout and Ait
Souab (Fig. 6). Furthermore, a trend towards increased precipitation in autumn has been observed,
suggesting a shift in the rainy season from winter and spring to autumn, consistent with previous
studies (Acharki et al. 2019; Hakam et al. 2022).
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Fig. 14. Illustration of the impact of abandon on terraces: (a) soil loss and degraded terraces (b) Water erosion in the
Southeast of the GIAHS. Credit: Moussa Ait El Kadi.

4.2 Changes in the landscape

This work shows the climate effects on LULC changes over the past decades. Despite the modest
changes, in a dry and highly arid environment like the GIAHS site, the reduction of small amounts
of vegetation is an indicator of the impact of drought conditions. NDVI of the cereals showed
a downward trend, whereas the NDVI time series for palm trees and argan trees showed a non-
significant increase. This can be interpreted by the relative resilience of these species to difficult
climatic conditions and droughts. Furthermore, field investigations revealed the contribution of
other factors to argan and palm degradation, including soil erosion, fires, and the lack of adapta-
tion of soil and water conservation methods in high-altitude areas, such as terraces. For instance,
Ziyadi et al. (2019) identified the significant climatic and social challenges facing TAS (Terraced
Agroforestry System) in the Anti-Atlas region. Regional climate change scenarios forecast warmer
and drier conditions for the area as shown in Fig. 14. At the social level, the new generation of local
communities shows declining interest in maintaining TAS and increasingly seeks opportunities in
the Souss-Massa plain cities. Moreover, the decline of the rural population and mass immigration
to neighboring cities is also a direct socio-economic issue involved in ecosystem degradation. The
population of all rural mountainous communes of the GIAHS shows a decrease from 1994 to 2025
according to the official consensus (MHPV 2017).

On several scales, LULC changes are influenced by a complex interplay of biophysical and
human factors, including extreme weather events and anthropogenic activities (Wang et al. 2023).
In 2022, Karmaoui et al. (2022a) identified a series of natural and economic factors driving LULC
changes in the semi-arid region of Morocco. They found that the pressure on natural resources,
particularly groundwater, and soil quality is at risk due to ongoing land development. In addition,
Hadri et al. 2021, studied the effect of meteorological drought on vegetation and crop response in
the Chichaoua-Mejjate basin. The analysis indicates an upward trend in drought, with the vegeta-
tion activity heavily influenced by drought. Thus, Highlights uncertainties in drought monitoring
due to irrigation and a weak correlation between SPI and SWI, affected by overexploitation of the
aquifer and extensive irrigation. In a similar context, Moumane et al. (2022) revealed a signifi-
cant expansion of desertified lands (+168.09%) between 1991 and 2021. Moreover, the oasis of
Ait Mansour has experienced significant desertification related to human and natural factors. For
instance, due to extreme heat events and non-responsible citizen practices, the palm grove of this
oasis has deteriorated because of fire incidents. Field visits in February and May 2023 allowed us
to document these events as it is reported in Fig. 15.
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Fig. 15. Palm trees threatened by fire in Ait Mansour Oasis. Credit: Brahim Meskour.

Future drought threats are not solely driven by climate change but also involve social factors
(Elkouk et al. 2022; Karmaoui et al. 2022b). In this region, local communities depend on traditional
agriculture, where Argan trees are a primary source of income. Agricultural practices have been
severely impacted by prolonged droughts, water scarcity, soil erosion, and migrations (Le Polain
De Waroux and Lambin 2012).

4.3 Challenges and insights for resilience

Despite prolonged periods of drought in the region, endemic species have shown remarkable resil-
ience. For example, the argan tree can survive water deficits and extreme precipitation fluctuations
through a series of morphological, anatomical, physiological, and metabolic mechanisms (Soufiani
et al. 2023). These adaptations include maintaining relatively high water content in their leaves,
enabling them to withstand prolonged periods of drought. However, the local agricultural sector
has been severely impacted by frequent and severe droughts since the 1980s.

The Argan ecosystem would benefit from research and innovation to improve its resilience
and recover from drought events. For instance, Genin et al. (2017) explored the association of
prickly pear and argan plantation and showed significant improvement in the soil organic matter
and the development of argan plantation. In addition to species association, the use of fogger
shrubs can be considered in the restoration of arid agro-pastoral land (Zucca et al. 2011). While
the regeneration efforts face water scarcity issues, non-conventional water (fog and stormwater,
reclaimed water) could be a valid option in the Anti-atlas context (Hussein et al. 2019; Ait el Kadi et
al. 2024), as highlighted by Castelli et al. (2019), who stressed how water collection and landscape
restoration might improve mesoclimate regulation in dryland agroecosystems. Furthermore, Boselli
et al. (2020) demonstrated that in the Assaragh site of the Anti-Atlas, the abandonment of terraced
agroecosystems is primarily driven by social rather than climatic factors, highlighting the need for
integrative, community-centered interventions to preserve agrobiodiversity and resilience. These
findings align with our study, suggesting that reinforcing traditional knowledge and local govern-
ance can be pivotal for the sustainability of GIAHS sites under increasing environmental pressures.

This study serves as a preliminary investigation into drought as an environmental shock and
its impact on an arid agro-sylvo-pastoral system. However, future research efforts should integrate
the social dimension to better understand the dynamic between social and environmental shocks
and explore drought adaptation pathways.
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5 Conclusion

This study provides a comprehensive spatial and temporal analysis of drought as an environmental
shock in the GIAHS site based on the agro-sylvo-pastoral system. The integration of land use land
cover (LULC) and change metrics in assessing spatio-temporal variability of drought severity proves
highly effective. Utilizing remote sensing-based vegetation time series metrics, alongside drought
indices and climatological indices, enabled a nuanced understanding of ecosystem dynamics.
Landsat satellite imagery (Thematic Mapper, Enhanced Thematic Mapper Plus, and Operational
Land Imager) facilitated detailed LULC mapping, while the Mann-Kendall test and Sen’s slope
estimator revealed significant trends in SPEI and NDVI variability.

The results showed a substantial decrease in agricultural and woodland areas, with the surface
of woodland and agriculture decreasing by 43.28% and 47.35% from 1983 to 2020. Additionally,
the NDVI for key species such as the Argan tree, cereal, palm tree, and mixed cereals displayed
significant annual and seasonal negative trends, indicating deteriorating vegetation health. The
SPEI-6 and SPEI-12 indices demonstrated a consistent decline, reflecting an increasing drought
trend over time. Notably, temperature increased by 0.2 °C, while precipitation decreased by
—1.5 mm yr!, further intensifying drought conditions.

These findings underscore the compounded impact of environmental shocks namely, decreas-
ing land cover, rising temperatures, and diminishing precipitation on the agro-sylvo-pastoral system.
The projected increase in drought intensity and frequency is expected to exacerbate the ecosystem’s
degradation, posing significant challenges for future resilience.

This work establishes a foundational baseline for proposing an Integrated Drought Manage-
ment (IDM) framework tailored to North Africa’s drylands. The insights derived from this study
are vital for agro-ecosystem stakeholders, offering actionable guidance to bolster the resilience
of the GIAHS site. By proactively addressing these environmental challenges, stakeholders can
implement strategic interventions to safeguard and sustain the socio-ecological integrity of this
globally important agricultural heritage system.
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