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Abstract
This paper examines forest resource mapping from a statistical perspective, highlighting the 
opportunity to use a design-based approach to ensure inferential congruency with the estimation 
of averages and totals of forest attributes. Traditionally, in forest surveys estimates of averages 
and totals are obtained using design-unbiased estimators, with known variance expressions 
that can be easily estimated using standard sampling methodologies. The paper emphasizes the 
prominent role of kNN and Random Forest techniques in forest mapping while addressing the 
methodological limitations identified over more than thirty years of forest literature in efforts 
to estimate map precision. The critical importance of design-based map consistency, often 
overlooked in forest literature, is discussed and clarified, demonstrating that it allows for the 
development of design-based estimators of map precision through bootstrap resampling from 
the estimated maps.
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1 Introduction

Forest surveys, particularly large-scale surveys such as National Forest Inventories (NFIs), are 
crucial for conducting international and national forest monitoring and assessment programs. Forest 
data are essential for various purposes, including reporting on forest resources (FAO-FRA 2020), 
monitoring biodiversity (Corona et al. 2011; Forest Europe 2020), tracking deforestation and forest 
degradation (Corona et al. 2023), as well as improving decision-making processes, silvicultural 
practices, harvesting, and conservation activities (Chirici et al. 2020).

Traditionally, forest surveys are based on probabilistic sampling and aim to provide estimates 
of averages and totals of forest attributes such as forest extents, growing stock volumes and their 
increments at national and regional level (Tomppo et al. 2010). Commonly, the estimation of these 
quantities is approached from a design-based perspective in which the values of the attributes of 
interest are considered as fixed, thus avoiding any model assumption on them, and the properties 
of the adopted estimators derive only from the sampling schemes actually performed in the survey 
(Mandallaz 2008). In contrast, in model-based approaches those values are random variables that 
are assumed to be generated by a super-population probability model, while sampling is of pur-
posive or ignorable in nature (Rubin 1976), so that the properties of the adopted predictors derive 
from the assumed model (Chambers and Clark 2012).

Here, we do not intend to discuss the advantages and disadvantages of the design-based 
versus model-based approaches, as these are well delineated in the statistical literature (Smith 
1994, 2001; Gregoire 1998; Thompson 2002, chapter 10; Little 2004). Our aim is simply to high-
light that design-based inference is the traditional approach used in most forest surveys, including 
NFIs, and that: i) this approach ensures design-unbiased estimators of averages and totals of forest 
attributes, with analytical expressions of their sampling variances, which can be estimated using 
standard survey sampling methods (Gregoire and Valentine 2008); ii) the design-based properties 
of these estimators can be considered objective because they derive directly from the sampling 
scheme actually used in the survey, rather than being derived from an assumed model (Särndal et 
al. 1992, page 21).

Furthermore, the design-based approach enables the use of large datasets obtained from 
remote sensing (e.g., satellite multispectral data), which are available either for free or at low cost 
for the entire survey area, thanks to the increasing capabilities of remote sensing technologies 
(Barrett et al. 2016; Di Biase et al. 2018). In particular, remotely sensed data can be utilized at the 
design level, for example, in the initial stratification of sampling units based on major land uses 
(McRoberts and Tomppo 2007), or at the estimation level, within the framework of model-assisted 
inference. In this approach, models that incorporate remotely sensed data as covariates are used to 
build improved estimators, while still retaining the properties derived from the sampling scheme 
used in the field. Specifically, model-assisted inference ensures approximate design-unbiasedness 
for the resulting estimators of averages and totals, as well as approximate design-based variance 
expressions, with subsequent variance estimators (Opsomer et al. 2007; Breidt and Opsomer 2017).

However, even if design-based estimation of averages and totals of forest attributes pro-
vides reassuring statistical soundness, the resulting estimates can support forest monitoring and 
management at large scale only, without providing explicit spatial details. On the other hand, the 
construction of wall-to-wall maps and the provision of small-area estimates or predictions of forest 
attributes are becoming essential in most large-scale forest surveys. In particular, wall-to-wall forest 
mapping is now considered as unavoidable in modern NFIs, usually referred to as Enhanced Forest 
Inventories (Stinson and White 2018).

The purpose of this discussion paper is to argue how forest attribute mapping should be 
conducted from a statistically sound perspective, while ensuring consistency with the design-based 
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inference used for estimating averages and totals. Section 2 focuses on the dominant role of kNN 
and Random Forest (RF) methods in forest resource mapping. Section 3 outlines the methodolog-
ical shortcomings of the approaches applied over the past thirty years in forest literature regarding 
these mapping techniques. Section 4 highlights the necessary steps to achieve methodological 
soundness. Finally, concluding remarks are presented in Section 5.

2 Forest attributes mapping

For a long time, mapping has typically relied on geostatistical methods. Among these, kriging 
predictors are probably the most widely used and well-established techniques. In the most general 
case, known as kriging with external drift or universal kriging, it is assumed that the values to be 
mapped follow a deterministic trend. This trend is expressed as a function of a set of covariates 
available for the entire survey region, plus error terms that stem from a centered, intrinsically sta-
tionary, and Gaussian random process, characterized by a spatial autocovariance function.

The theoretical appealing of kriging and its large use are due to the fact that, under the 
assumed model, kriging ensures the best linear unbiased predictors with an analytical variance 
expression that can be readily estimated from sample observations (Cressie 1993). Alternatively, a 
theoretically founded, well-experienced mapping criterion is the geographically weighted regres-
sion, based on the assumption that the relationship between the interest variable and covariates 
varies across the survey region and tend to be similar for nearby locations. Therefore, the values 
to be mapped are predicted by a regression model in which the covariate values at sample loca-
tions are weighted in relation to their distances to the location under estimation (Fotheringham et 
al. 2002). Surprisingly, despite their solid theoretical basis, both the techniques has been scarcely 
applied for mapping forest resources. Sales et al. (2007) and Wang et al. (2021) constitutes rare, 
even if not unique, examples.

In contrast, towards the end of the last century, mapping techniques based on the nearest 
neighbor method became increasingly popular in forest studies. This mapping approach was first 
introduced in forest research by Tomppo (1990, 1991) for use in the Finnish NFI. Among these 
techniques, the kNN method has been the most widely applied (Corona et al. 2014). Its popularity 
is likely due to its simplicity and flexibility. Specifically, kNN predictions are easily generated 
by linearly combining the k sample observations that are “nearest” to the location where the 
prediction is being made, according to some distance criterion and in some space, thus avoiding 
the computational challenges of more complex geostatistical and weighted regression methods. 
Furthermore, the number of neighbors (k) involved in the predictions determines the smoothness 
of the resulting map, and various distance metrics (e.g., Euclidean distance, Mahalanobis distance, 
etc.) can be chosen, offering great flexibility in its implementation. Another advantage of kNN is 
its ability to efficiently incorporate auxiliary information by determining the k nearest neighbors in 
the space of the auxiliary variables, rather than in geographical space. After the two seminal papers 
by Tomppo, hundreds of applications of kNN stemmed from forest studies. Chirici et al. (2016) 
provide a detailed review of these applications and, among the listed plethora of articles, Landsat 
imagery is the most frequent source of auxiliary information followed by airborne laser scanning 
metrics, digital aerial imagery, SPOT imagery and combinations of these sources. At least in this 
review article, there is no mention of kNN applications directly performed in the geographical 
space or including spatial coordinates as auxiliary information.

In recent years, the use of kNN applications has decreased in favor of machine learning 
techniques, with RF imputation becoming increasingly popular (e.g., Baccini et al. 2008; Cartus et 
al. 2014; Chirici et al. 2020). However, Lin and Jeon (2006) demonstrated that RF can be viewed 
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as an adaptively weighted kNN method, suggesting that it is likely to share similar properties. 
The similarity between the two techniques is evident from the results of a large simulation study 
by Fattorini et al. (2024), in which the performances of kNN and RF are found to be virtually 
identical. Therefore, from this point onward, the two mapping methods will be considered jointly 
whenever possible.

3 What was done

As already stated, one of the main reasons for the popularity of kNN and RF in forest resource 
mapping is the computational simplicity of the first with respect to the more challenging compu-
tational tasks involved in geostatistical and weighted regression methods, and the wide disposal 
of software for the automated applications of the second (e.g., package randomForest, R Core 
Team 2021). Unfortunately, this utilitarian choice has not considered the subsequent difficulties 
in performing a rigorous statistical inference.

In fact, although the properties of kNN and RF predictors have a long tradition in the sta-
tistical literature, starting from the seminal works by Stone (1977) and Devroye et al. (1994) to 
the more recent papers by Breiman (2001), Hall et al. (2008), Samworth (2012) and Gadat et al. 
(2016), the results are derived by considering the sample data as realizations of independent and 
identically distributed random variables. This restriction prevents the extension of these results 
to the mapping of forest attributes in which sample data traditionally arise from a probabilistic 
sampling of locations, usually performed without replacement (thus precluding independence) and 
possibly with different inclusion probabilities of locations (thus precluding identical distributions).

Specific studies would have been necessary for determining the properties of kNN and RF 
predictors in forest mapping. In contrast, while at least to our knowledge no theoretical study 
regarding RF mapping is present in forest literature, the review by Chirici et al. (2016) found that 
most papers regarding kNN are of applicative nature (about 80%) while only about 7% are of 
methodological nature, with proposals invariably supported by practical applications or simula-
tions, with no theoretical investigation able to justify their use. The theoretical weakness of kNN 
studies in forest literature has been evidenced by Eskelson et al. (2009), who are the unique authors, 
among the myriads who have dealt with kNN, pointing out that “In general, estimation techniques 
are chosen based on statistical properties such as unbiasedness, consistency and efficiency. These 
properties are not well understood for NN imputation”.

The main methodological issues faced – with little success – in forest literature regarding 
kNN mapping is bias mitigation and estimation of precision. The bias issue has been well recog-
nized by Magnussen et al. (2010b) and Baffetta et al. (2012). Both papers evidence that the largest 
values of the interest variable tend to be underestimated and the smallest ones to be overestimated 
and propose empirical machineries to reduce bias. Nevertheless, the performance of the proposed 
methods is evaluated only by case studies, in the first case, and by a simulation study, in the second 
case, without any theoretical demonstration of their effectiveness.

Regarding the estimation of precision, Baffetta et al. (2012, section 4) pessimistically argue 
that any rigorous inference at the pixel level is precluded in kNN mapping. Other authors, however, 
have been more optimistic. Model-based inference is the approach typically used to estimate the 
mean squared errors of kNN predictors, reflecting foresters’ skepticism toward the possibility of 
adopting design-based methods. For instance, Kim and Tomppo (2006, equation 3) ignore the pres-
ence of bias and propose a variance estimator based on a variogram model defined in the space of 
auxiliary variables, estimated using the Matern class of variograms. Three years later, Tomppo and 
co-authors (Magnussen et al. 2009, equation 4 and appendices A.1–A.5) develop a mean squared 
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error estimator, again model-based, because in their view, “distributional assumptions are needed 
for estimating the uncertainty of kNN predictions”. This estimator is derived under the assumption 
that population values are random variables with expectations and variances depending on a vector 
of auxiliary variables. Surprisingly, one year later, the same authors (Magnussen et al. 2010a, equa-
tion 4), neglecting bias, propose another estimator for the variance of kNN predictions based on 
modified balanced repeated replications. Once again, the authors’ skepticism toward design-based 
approaches is evident in their statement that “the nonparametric nature of kNN estimators precludes 
an analytical design-based kNN variance estimator.” As we will discuss in the next section, this 
view turns out to be unjustified in light of more recent studies.

The statistical weaknesses of these proposals are evident from the fact that they have been 
all tested on real or artificial data without any theoretical investigation into their properties, and 
without even being subjected to simulations. Furthermore, at least to our knowledge, none of these 
proposals have applied in the subsequent literature. In practice, they have been only used in the 
papers in which they were introduced.

In conclusion, drawing on the extensive forest literature on kNN and RF mapping, it is clear 
that assessments of map precision are, in most cases, based on highly empirical cross-validation or 
leave-one-out techniques. While these methods may be useful as global indices of fitting perfor-
mance, they do not reflect the actual precision of kNN and RF predictions at any specific location 
within the survey area. In other words, the forest literature has yet to provide reliable tools for 
estimating the true precision of kNN and RF maps.

4 What needs to be done

As inference on averages and totals of forest attributes, from their estimation to the estimation 
of their precision, is traditionally performed in a design-based framework, the estimation of the 
precision of forest maps should be congruent and should be performed in the same design-based 
framework without resorting to models. As we shall see in this section, the track toward a design-
based estimation of the precision of forest maps, even if essential to ensure inferential congruence, 
is much more complex than the fast tracks that can be travelled by supposing and exploiting more 
or less realistic model assumptions, in which the resulting estimates of precision crucially depend 
on the validity of these assumptions.

In this context, it is important to note that the kNN mapping criterion, as well as similar – 
albeit much less commonly used – criteria such as the inverse distance weighting (IDW) and nearest 
neighbour (NN) mapping, are invariably based on the naïve assumption that locations that are close 
(in some sense) tend to be more similar than those that are farther apart. This is typically referred 
to as Tobler’s Law (Tobler 1970). Based on this assumption, estimation at unsampled locations 
is naturally performed by linear combinations of the sample values observed at locations that are 
neighbour (in some sense) to the locations under estimation. Regarding the NN mapping, note that 
it can be viewed as a variation of kNN when a single neighbour (the nearest) is exploited instead 
of k, or a variation of IDW mapping when the smoothing parameter adopted to weight distances 
approaches infinity (Fattorini et al. 2022).

Obviously, when applying these criteria to estimate the value at a single location an error 
invariably occurs, but nothing ensures that the error has a design-based distribution centred and 
clumped at the true value. In practice, for finite samples, the design-based finite sample properties 
of these mapping estimators are not clearly delineated. Little is known about their design-based 
bias and mean squared errors and how these are related to the sampling effort. Accordingly, the 
sole way to render statistically sound these mapping techniques is to determine conditions ensur-
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ing the design-based consistency of the corresponding estimators. In addition, if the variables to 
be mapped are bounded, as always happens in practical applications, consistency also involves 
asymptotic design-based unbiasedness.

Surprisingly, consistency has been invariably neglected in forest literature, probably for 
the fact that it holds as the number of sampled locations approaches infinity, so that consistency 
is viewed as a pure theoretical property never attainable in practice, as in practice the number of 
sample locations is always finite. On the other hand, as pointed out by Sarndal et al. (1992, sec-
tion 5.3), design-based consistency has a very practical importance, in the sense that, if consistency 
holds, then we can trust in the resulting estimates because the sampling distribution of the estima-
tors of the population values can be considered tightly concentrated around the true values when 
the number of sample locations is large enough. Moreover, owing to the asymptotic unbiasedness, 
these sampling distributions can be considered centred around the trues values.

Fattorini et al. (2018a,b, 2022) demonstrate the design-based consistency of IDW and NN 
mapping in geographical space under mild continuity conditions on the surfaces to be mapped, 
highlighting the crucial role of the sampling schemes used in the surveys. In particular, they prove 
that consistency holds under random selection of locations, as well as under tessellated schemes 
widely applied in forest surveys and NFIs, such as tessellation-stratified sampling and systematic 
grid sampling for continuous populations, and their counterparts for finite populations of areas 
(pixels).

Furthermore, for the first time in over thirty years of kNN applications, Fattorini et al. 
(2024) prove the consistency of kNN mapping (and presumably RF mapping) under the same mild 
conditions on the surfaces to be mapped, and the same random and tessellated sampling schemes. 
These results may be surprising to forest scientists who have traditionally applied kNN and RF 
in the space of auxiliary variables, often neglecting geographical coordinates, as in such cases, 
the two mapping criteria may still lack consistency. These findings emphasize the critical need to 
incorporate geographic coordinates into the distance calculations, alongside the auxiliary variables.

These findings are especially relevant because design-based consistency is also crucial for the 
design-based estimation of map uncertainty. The core idea, first introduced by Fattorini et al. (2022) 
in NN mapping and later applied to IDW mapping with the smoothing parameter selected from the 
sample data using leave-one-out procedures (Fattorini et al. 2023), should be easily extendable to 
kNN, where the smoothing parameter is the number k of neighbors used in the interpolation. The 
approach involves treating the estimated map as a pseudo-population (Quatemberg 2016), from 
which bootstrap samples are drawn using the same spatial scheme adopted for the original sample. 
Then, all the steps performed on the original sample to estimate the map are repeated in each boot-
strap sample. The key intuition behind this proposal is that, under consistency, as the estimated 
maps converge to the true maps, the bootstrap distributions arising from these maps should also 
converge to the true distributions of the estimators, thus providing consistent estimators of their 
mean squared errors. Franceschi et al. (2022) empirically investigate the effectiveness of NN maps 
as pseudo-populations, showing that they are likely to be good representations of the true maps.

In this framework, the pseudo-population bootstrap constitutes a very effective tool that 
allows to consider the design-based uncertainty entailed not only by the sampling scheme, but 
also by any estimation step performed on the sample data, from the choice of the “best” smooth-
ing parameter to the choice of the “best” auxiliary variables to be exploited, irrespective of the 
criterion adopted to define what is “best”. That has been experienced in a model-assisted approach 
in which the auxiliary variables are exploited as covariates in a linear prediction model and the 
estimated values are obtained from the predictions plus an error component achieved from the 
IDW mapping of the sample errors in the geographic space (Di Biase et al. 2022). The strategy 
has been subsequently automated in the R programming language by adopting Sentinel-2 remote 
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sensing data as auxiliary information downloaded from the Google Earth Engine cloud computing 
platform (Francini et al. 2024).

A further issue that may sound awkward in the reporting phase is that the estimates of aver-
ages and totals of forest attributes achieved by the familiar design-based estimators for the whole 
study area and for domains partitioning the area (e.g., the administrative regions of a country) 
will invariably differ from the total estimates achieved from the resulting map as the sum of the 
estimated values. To obtain non-discrepant results, Marcelli et al. (2022) suggest a harmonization 
procedure in which the values estimated by means of the IDW technique are rescaled, so that their 
totals coincide with those achieved by traditional estimation. The capacity of the harmonization 
procedure to maintain consistency of the rescaled maps is proven providing that the traditional esti-
mators are themselves consistent, a feature that has been proved to hold under the above mentioned 
random and tessellated sampling schemes (Fattorini et al. 2020). Therefore, under IDW mapping 
and tessellated sampling schemes, the uncertainty involved by harmonization can be included in 
the pseudo-population bootstrap, viz. by resampling from the harmonized maps and including the 
harmonization as a further step to be performed in each bootstrap sample.

Obviously, as the number of domains increases and their size decreases, the number of 
sample locations available for traditional estimation within each domain becomes smaller. This 
inevitably leads to an increase in the variance of traditional estimators, making the resulting esti-
mates unreliable. Therefore, harmonization with excessively small domains should be avoided. 
However, the sum of interpolated values within these domains can still be used as appropriate 
design-based small-area estimates, thus bypassing the complex modeling typically employed in 
small-area estimation (Rao and Molina 2015). The design-based consistency of these small-area 
estimators has been proven under IDW mapping and tessellated sampling schemes (Fattorini et 
al. 2018a, appendix B), while their mean squared errors can once again be estimated within the 
framework of pseudo-population bootstrap.

5 Conclusions

The integration of sample survey inventory data and mapping information has become a key issue 
in the development and implementation of surveys designed to monitor and assess forests and 
forest ecosystems. The ever-growing availability of remote sensing data provides valuable ancil-
lary information for spatially estimating forest attributes, i.e., for forest resource mapping, such 
as wall-to-wall mapping, which is now considered essential in modern NFIs.

From this perspective, this paper has explored the opportunity to use a design-based approach 
to ensure inferential congruency between mapping and the estimation of averages and totals of 
forest attributes, while also addressing the methodological challenges identified over more than 
thirty years of forest literature in attempts to estimate map precision.

The results achieved for IDW and NN mapping in geographical spaces, as presented and 
discussed in this paper, can be easily extended, with minimal adjustments, to kNN and RF map-
ping in the space of auxiliary variables, as long as geographical coordinates are included to ensure 
consistency. This approach would ultimately enable statistically sound, design-based estimation of 
map precision, at least within the tessellated sampling schemes commonly used in forest surveys, 
particularly large-scale ones such as NFIs.
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