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Cavity trees contribute to diverse forest structure and wildlife habitat. For a given stand, the 
size and density of cavity trees indicate its diversity, complexity, and suitability for wildlife 
habitat. Size and density of cavity trees vary with stand age, density, and structure. Using Forest 
Inventory and Analysis (FIA) data collected in western Oregon and western Washington, we 
applied correlation analysis and graphical approaches to examine relationships between cavity 
tree abundance and stand characteristics. Cavity tree abundance was negatively correlated with 
site index and percent composition of conifers, but positively correlated with stand density, 
quadratic mean diameter, and percent composition of hardwoods.

Using FIA data, we examined the performance of Most Similar Neighbor (MSN), k nearest 
neighbor, and weighted MSN imputation with three variable transformations (regular, square 
root, and logarithmic) and Classification and Regression Tree with MSN imputation to estimate 
cavity tree abundance from stand attributes. There was a large reduction in mean root mean 
square error from 20% to 50% reference sets, but very little reduction in using the 80% refer-
ence sets, corresponding to the decreases in mean distances. The MSN imputation using square 
root transformation provided better estimates of cavity tree abundance for western Oregon and 
western Washington forests. We found that cavity trees were only 0.25 percent of live trees 
and 13.8 percent of dead trees in the forests of western Oregon and western Washington, thus 
rarer and more difficult to predict than many other forest attributes. Potential applications of 
MSN imputation include selecting and modeling wildlife habitat to support forest planning 
efforts, regional inventories, and evaluation of different management scenarios.
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1 Introduction

Forest landscape planning has evolved from a 
simple harvest scheduling concept to a more 
detailed analysis involving commodity produc-
tion as well as habitat preservation/creation and 
provision of ecosystem services. This change 
is occurring at all scales and across all owner-
ships in western Oregon and western Washington, 
requiring resource management plans to increas-
ingly consider stand, landscape, and forest level 
attributes. This has led to the need to link and 
integrate various attributes across scales. To real-
ize this linkage, analysts would like detailed data 
on every parcel of land of a management area. 
Usually, interpreted aerial photograph informa-
tion, such as a forest cover map, is available for 
every parcel of land, supplemented by detailed 
ground information on selected parcels. Sample 
parcels are obtained through two-phase sampling, 
and provide initial stand condition and tree-lists 
(a tree-by-tree record).

For habitat modeling, the second phase samples 
include cavity tree-lists (tree-lists that include 
attribute information on cavity presence) to be 
used as input into a habitat model in order to 
obtain estimates for every parcel of land (e.g., 
Ohmann et al. 1994, Temesgen and LeMay 
2001). Cavity trees are “trees with holes or other 
structure[s] large enough to shelter animals” (Fan 
et al. 2003a). In this paper, cavity trees are defined 
as live or standing dead trees greater than 12.5 cm 
diameter and 1.37 meters in height, which contain 
cavities that could be used by wildlife such as 
birds or mammals.

Cavity trees are an important indicator of wild-
life habitat. Despite analysts’ desire, complete 
and detailed information on every parcel of land 
is rarely available and must be supplied through 
other methods. Because a forest cover map is usu-
ally available for every parcel of land, approaches 
that estimate or generate the second phase sam-
ples from an existing information source (e.g., a 
forest inventory database) are invaluable.

Most cavities are found in dead standing and 
recently dead down trees which contribute to 
forest structure, dynamics and forest succession 
(Bull et al. 1997, Ganey 1999) and provide habitat 
for the maintenance or enhancement of wildlife 

(e.g., nest cavities, nurseries, etc.) (Ohmann et al. 
1994, Ganey 1999, McComb and Lindenmayer 
1999, McComb 2007). The size and density of 
cavity trees provide one indication of the suitabil-
ity of a forest stand for wildlife habitat (Ohmann 
et al. 1994, Ganey 1999). Size and density of 
cavity trees vary with crown closure, understory 
vegetation, and stand structure (Fan et al. 2003a, 
Fan et al. 2003b). Because of their importance, 
forest certification efforts often use wildlife tree 
retention as a local criteria and indicator to evalu-
ate a management plan of a given area.

In the western United States, the national inven-
tory of public and private forests (the Forest 
Inventory and Analysis [FIA] inventory) selects 
approximately one plot per 2400 hectares of land 
for detailed field measurements, with one tenth 
of the sample plots measured each year (USDA 
Forest Service 2005). In some regions, informa-
tion on cavity occurrence is collected along with 
other information such as species, diameter, and 
height of individual trees.

Managers and planners interested in assessing 
wildlife habitat for their forests would prefer to 
have tree-related information (such as species 
composition, forest structure, and snag and cavity 
occurrence) that is accurate, comprehensive in 
spatial extent, current, and very detailed. Realisti-
cally, such information is far too costly to collect. 
Instead, the ground-based samples of forest poly-
gons measured in the inventories provide detailed 
information about trees in the form of tree lists, 
and then the tree lists are imputed to update the 
information temporally or extend it spatially to 
unsampled forest polygons for forest assessment 
and planning.

Many approaches have been used to gener-
ate tree-lists. Broadly, these approaches can be 
categorized into parametric (e.g., Lindsay et al. 
1996), imputation (e.g., Moeur and Stage 1995, 
Temesgen and LeMay 2001, Temesgen et al. 
2003, LeMay and Temesgen 2005), and classifica-
tion and regression tree (CART) (Fan et al. 2003a, 
Fan et al. 2004) methods. Although the methods 
described by these researchers have been used to 
generate general tree-lists, the methods also have 
potential for generating cavity tree-lists.

The parametric approach involves fitting a 
cavity tree diameter distribution for each stand, 
and then predicting the parameters of a selected 
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distribution function using stand-level variables. 
Depending upon how the parameters are pre-
dicted, parametric methods have been classified 
as parameter prediction (Rennolls et al. 1985, 
Biging et al. 1994, Lindsay et al. 1996), parameter 
recovery (Bailey and Dell 1973, Bailey 1980, 
Hyink and Moser 1983), or percentile prediction 
(Bailey 1980).

Imputation methods can also be used to gen-
erate cavity tree-lists from aerial attributes or 
forest cover maps (Temesgen 2003). Imputation 
is defined as “replacing missing or non-sampled 
measurements for any unit in the population with 
measurements from another unit with similar 
characteristics” (Ek et al. 1997). Such methods 
include the nearest neighbor method (Moeur 
2000), the most similar neighbor method (Moeur 
and Stage 1995), the k-nearest neighbor method 
(Katila and Tomppo 2002, Maltamo and Kangas 
1998), geo-statistical estimation (Moeur and Her-
shey 1998), and tabular imputation models (Ek 
et al. 1997). Unlike the parametric approach, 
imputation methods can retain both spatial and 
attribute structure of the data (Ek et al. 1997, 
Moeur and Stage 1995); do not restrict the form 
or shape of the underlying distribution; create 
projections that will always be within the bounds 
of biological reality (Moeur and Stage 1995); and 
can be used to link stand, landscape, and forest 
level attributes (LeMay and Temesgen 2005).

In the CART method, the model-building proc-
ess can be seen as a hierarchical refinement of 
parametric models, similar to forward variable 
selection in regression analysis. To predict the 
value of the response variable, the mean value 
of the response variable in a terminal (leaf) node 
of the tree is the estimated value. If the response 
variable is continuous, then a regression tree is 
generated.

The advantages of regression tree approaches 
include: they are non-parametric, do not require 
specification of a functional form (e.g. a general 
linear model); pre-selection of variables is not 
needed (a robust stepwise selection method is 
used); and the same variable can be reused in 
different parts of a tree as context dependency is 
automatically recognized. Unlike multiple linear 
regression or maximum likelihood methods, no 
single dominant data structure (e.g. normality) 
is assumed or required; and these methods are 

robust to the effects of outliers and missing data 
because surrogate variables can be used for miss-
ing values.

Count distributions are useful to describe non-
negative integer values such as frequency of snags 
and cavity trees/ha. Most count data require trans-
formation of the dependent variable. However, 
little is known about the performance of the impu-
tation methods when variables are transformed. 
This study utilizes the FIA western Oregon and 
western Washington inventory and imputes cavity 
tree lists utilizing two transformations of number 
of cavity trees/ha (square root and logarithmic 
transformations) with three different sampling 
intensities. The goal is to not only assist in deter-
mining an appropriate variable transformation 
method for a given variable, but to provide infor-
mation of assistance in preparing guidelines for 
future variable selection and transformation.

Due to prohibitive costs of collecting detailed 
information over an extensive land base, most 
stands do not have initial cavity tree-lists or cavity 
tree abundance for habitat modeling. However, 
forest cover maps, derived from aerial informa-
tion or remote sensing data, are often available for 
every parcel of land in the area of interest. In this 
manuscript, we examined relationships between 
cavity tree abundance and stand characteristics, 
and compared the accuracy of the Most Simi-
lar Neighbor (MSN) imputation, the CART and 
MSN imputation, and variable transformation for 
their predictive abilities in estimating cavity tree 
abundance to aid habitat modelling for western 
Oregon and Washington forests.

2 Methods

2.1 Data

Data for this study were obtained from the Forest 
Inventory and Analysis (FIA) databases for west-
ern Oregon and western Washington. The FIA 
databases are part of the national inventory of 
forests for the United States (Roesch and Reams 
1999, Czaplewski 1999). A tessellation of hexa-
gons, each approximately 2400 hectares in size, 
is superimposed across the nation, with one field 
plot randomly located within each hexagon. 
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Approximately the same number of plots is meas-
ured each year, and each plot has the same prob-
ability of selection. Each field plot is composed 
of four subplots, with each subplot composed of 
three nested fixed-radius areas used to sample 
trees of different sizes (Fig. 1). Forested areas 
that are distinguished by structure, management 
history, or forest type, are identified as unique 
polygons (also called condition-classes) on the 
plot and correspond to stands of at least 0.4047 
hectare in size.

In the field, cavity presence was collected by 
classifying each live or dead tree taller than 1.5 
meters and greater than 12.5 cm diameter meas-
ured at 1.37 meters above the ground (DBH) 
into one of three categories: 1) no cavity or den 
present, 2) cavity or den greater than 15.2 cm 
diameter is present, and 3) cavity or den less than 
15.2 cm diameter is present, no larger cavities 
are present. A hole in a tree was considered to be 
a cavity only if, in the field crew’s judgment, it 
could be used by birds or small or large mammals. 
We assumed cavity tree abundance to be additive 
from individual trees in a stand, and quantified 
cavity tree abundance as the number of conifer 
and hardwood cavity trees per hectare without 
partitioning it by species.

We selected a number of stand-level variables 
for examination of relationships to cavity tree 
abundance. The independent variables included 
items related to site, forest structure, and gen-
eral species composition. Collectively, we refer 
to these items as map label (aerial) variables, 
because they are typical of attributes available 
from mapped forest data. For both dependent 
and independent variables, data were prepared 
and compiled by mapped polygon (stand). So, 
for example, stems and volume per hectare are 
expressed on a stand basis.

Our 2001–2004 FIA data set for Oregon and 
Washington contained 2285 sample polygons that 
covered a wide range of ground and aerial vari-
ables (Table 1), including a range of diameter at 
breast height (DBH) values from 12.7 to 200.7 
cm, stems per hectare value from 24 to 2296 trees, 
and predicted volume per ha values from 2 to 
4008.7 m3 per ha. The forest cover map or aerial 
variables ranged from 6 to 2164 m in elevation, 
0 to 150.0 percent slope, and 0.1 to 200.7 cm 
quadratic mean diameter.

The data set represented many tree species, 
including Douglas-fir (Pseudotsuga menziesii), 
white fir (Abies concolor), Pacific silver fir (Abies 
amabilis), western hemlock (Tsuga heterophylla), 
mountain hemlock (Tsuga mertensiana), west-
ern red cedar (Thuja plicata), red alder (Alnus 
oregona (rubra)), and Oregon white oak (Quercus 
garryana).

In this study, stand age represented develop-
ment stage as a categorical variable, while slope, 
aspect, and elevation represented biophysical gra-
dients as covariates. Potential site productivity or 
mean annual increment (MAI) is calculated from 
the stand’s site index, which is itself calculated 
from age and height of site trees (Hanson et al. 
2002).

The Pearson product-moment correlation 
coefficients were used to measure relationships 
between cavity tree abundance and stand (and 
site) attributes. Graphical approaches were used 
to indicate relationships between cavity tree 
abundance and stand characteristics in western 
Oregon and Washington forests. These included 
the frequency distribution of stands with cavity 
trees and various stand characteristics.

Fig. 1. Each field plot is composed of four subplots, with 
each subplot composed of three fixed-radius areas 
used to sample trees of different sizes.
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2.2 Imputation

Using observed and estimated cavity tree abun-
dance and related attributes, the most similar 
neighbor stand (MSN), variable transformation, 
and CART approaches were compared for their 
predictive abilities.

Nearest Neighbor (MSN) Imputation

In this study, the 2285 sample polygons (n) 
were randomly divided as reference and target 
polygons. Reference polygons refer to sampled 
polygons that had both cavity tree attributes and 
map/aerial attributes, while target polygons refer 
to un-sampled polygons that only had map/aerial 
attributes. Reference polygons formed the pool of 
potential similar neighbors that could be selected 
to impute cavity tree abundance and related 
attributes on to target polygons. They were used 
to develop a similarity function in selecting a 
neighbour stand in the MSN analysis. The target 
polygons were assumed to be un-sampled poly-
gons (missing cavity tree abundance data), and 
were used to validate the accuracy of the MSN 
approach by comparing the observed cavity tree 
abundance to the expected cavity tree abundance, 
obtained by substituting the cavity tree abundance 

of the most similar reference polygon using SAS 
(SAS Institute Inc. 1990).

To link a reference stand to a target stand, the 
MSN involved two steps. First, canonical cor-
relation between cavity tree abundance (Y set) 
and selected map/aerial (X set) attributes was 
used to determine weights. Second, the “most 
similar” sampled polygon was selected based on 
the aerial data, weighted by the correlations to the 
ground data, and linked to a target stand (Moeur 
and Stage 1995).

For non-sampled polygons (target polygons), 
cavity tree abundance was estimated from a simi-
lar sampled (reference) polygon, by imputing the 
cavity tree abundance of the reference polygon. 
A reference stand was selected using weighted 
squared Euclidean distance, as outlined in Moeur 
and Stage (1995):

D2
uj = (Xu – Xj) ΓΛ2Γ´ (Xu – Xj)´ (1)

Γ is a matrix of standardized canonical coef-
ficients of aerial variables and Λ2 is a diagonal 
matrix of squared canonical correlations between 
map/aerial attributes and cavity tree variables. 
Xu is a vector of standardized values of the map/
aerial variables for the uth target polygon and Xj is 
a vector of standardized values of the aerial vari-
ables for the jth reference polygon. The weighted 

Table 1. Descriptive statistics for cavity trees, snags, and selected aerial or map variables, n = 2285.

Category Variable Minimum Mean Median Maximum Std

Cavity No. of conifer trees/ha 0.0 1.8 0.0 264.2 17.7
 No. of hardwood trees/ha 0.0 0.5 0.0 100.5 5.7
 No. of cavity trees/ha 0.0 7.9 0.0 264.2 18.5
 Basal area of cavity trees/ha 0.2 6.4 3.6 61.8 7.7

Snags Basal area of snags/ha 0.0 6.1 2.4 134.2 9.6
 No. of snags/ha 0.0 55.4 29.7 952.9 80.3
 Average snag diameter (cm) 0.0 28 21.6 28.0 29.5
 Average snag height (m) 0.0 7.8 7.4 52.5 7.0

All Diameter at breast height (cm) 12.7 32.3 28.8 200.7 16.5
 Height (m) 1.5 18.8 18.8 57.4 7.2
 BA/HA (m2/ha) 0.2 45.3 40.0 307.0 34.1
 No. of trees/ha 24 497 500 2296 290
 Aspect (deg) 0.0 167.5 170.0 360.0 115.7
 Elevation (m) 0.0 606.1 508.0 2164.0 444.0
 Slope (%) 0.0 35 30.0 150.0 26.4
 Stand age (years) 0.0 87.3 59.0 683.0 96.7
 Mean annual increment (m3/ha/yr) 0.0 9.3 14.0 41.9 10.9
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squared Euclidean distance was selected over 
the absolute difference (Maltamo and Kangas 
1998) and Euclidean distance (Moeur 2000), as it 
incorporates the relationships between map/aerial 
through Λ2 and cavity tree variables.

To indicate the suitability of a forest stand for 
wildlife habitat, density of cavity trees were rep-
resented by two species groups (i.e., conifers and 
hardwoods). For each target stand, conifer and 
hardwood cavity tree abundance and seven map/
aerial variables (Table 2) were used to select a ref-
erence stand with the smallest weighted squared 
Euclidean distance. Subsequently, the selected 
polygon’s cavity tree-lists were imputed to the 
target polygons.

Multiple Neighbor Imputation
– KNN and Weighted KNN

Once nearest neighbors are found for the target 
stand, the imputation of detailed information from 
the Y set of variables has been based on:
1) Using the information for the nearest neighbor as 

the substitute (NN; e.g., Moeur and Stage 1995);
2) Using an average of the Y variables over the 

k nearest neighbors (KNN; e.g., Korhonen and 
Kangas 1997, Maltamo and Kangas 1998); or

3) Using a weighted average of the k-th nearest 
neighbors, often based on distance from (or simi-
larity to) the target stand (WKNN; e.g., Maltamo 
and Kangas 1998).

The choice of how many neighbors to use and 
what weight to use in calculating the average 
values is not clear, and is sometimes chosen to 
meet an objective criterion (e.g., small root mean 
squared error used by McRoberts et al. 2002 

for pixel classification). Tuominen et al. (2003) 
noted that “The higher the value of k, the more 
averaging that occurs in the estimates. Thus, the 
optimal value of k is a trade-off between the 
accuracy of estimates and the variation retained 
in the estimates”. McRoberts et al. 2002 also 
noted that as k increases, the biases (average dif-
ference between observed and predicted values) 
rise for extreme values of the variables of interest. 
Using one neighbor would likely provide the best 
results if there were a high proportion of stands 
with full information, since these reference stands 
would represent the population well. Conversely, 
if there were a low proportion of stands with full 
information, using more than one neighbor might 
give better results, as averaging would provide 
a wider variety of Y variables. Using too many 
neighbors might result in less variability in the 
imputed values than was present in the population 
because of averaging of values. Also, as noted ear-
lier, values that do not exist in the population may 
also result via averaging. In this study, for each 
simulation, imputed values were repeated using 
the single most similar neighbor (NN), average 
of three nearest neighbors (KNN), and weighted 
average of three nearest neighbors (WKNN).

Proportion of Stands with Full Information

The stands with information on all variables form 
the reference set. If the reference set was based 
on a simple random selection of stands from the 
population, a larger proportion should result in 
better imputation results, as least in matching 
the X variables, because the reference set would 
better represent the variability in the population. If 
the reference set represents the variability present 

Table 2. Variables selected for the most similar neighbour analysis.

Variables of interest (Y set) for cavity tree Map label (aerial) and site variables (X set)
abundance for habitat modelling

 Number of conifer cavity trees/ ha Percent composition of conifers
 Number of hardwood cavity trees/ ha Stand age (years)
 Height class midpoint (m)
 Potential productivity (m3ha–1yr–1)
 Elevation (m)
 Aspect (degrees)
 Slope (%)
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in the population for the Y set of variables, and 
the X and Y sets of variables are well correlated, 
then the imputation should work well. The pro-
portion (or number of observations) needed to 
obtain a “good” representation of the population 
will increase with increasing variability of the Y 
variables in the population, and decrease with 
increasing correlations between X and Y vari-
ables. Also, a greater proportion would be needed 
as the number of Y variables increases, because 
it will be difficult to find a match that is similar 
for all Y variables.

For this simulation, three sampling intensi-
ties were selected: 20% (≈ 457 reference poly-
gons), 50% (≈ 1142 reference polygons), and 
80% (≈ 1828 reference polygons) of the FIA plots 
were used as reference polygons, and formed the 
pool of potential similar neighbours that could be 
selected to impute cavity tree abundance on to 
the remaining target polygons. The target poly-
gons were assumed to be un-sampled polygons 
that only had map/aerial attributes, and were 
used to validate the accuracy of the MSN under 
varying sampling intensities by comparing the 
observed cavity tree abundance to the expected 
cavity tree abundance, obtained by substituting 
the cavity tree abundance of the most similar 
reference polygon using SAS (SAS Institute Inc. 
1990). Moeur (2000) indicated that 20% sampling 
intensity is likely sufficient for estimating stand 
level variables. LeMay and Temesgen (2005) 
used simulations to compare the use of different 
proportions for imputing tree-lists from aerial 
variables. They noted that there was an improve-
ment in results when the proportion of stands with 
full information was increased from 20% to 50%, 
but observed little gain in extending to 80%.

Variable Transformation

Variable transformation affects canonical corre-
lation coefficients. Thus, the nearest neighbour 
selected as a substitute polygon can change when 
variables are transformed. Variable selection for 
NN methods consists of two components: 1) 
examining variable sets for correlation and 2) 
selecting significant variables for nearest neigh-
bour imputation (NNI). As a result, selection of 
significant variables for NNI method is more chal-

lenging than parametric variables selection using 
stepwise regression or the best selection or other 
procedures. The transformation of the dependent 
variables affect the distribution of the Y set vari-
ables and the error terms (Ramsey and Schafer 
2002). Thus, a set of transformations might help 
in selecting an ideal nearest neighbour.

In this study, to simplify relationships and to 
examine the impacts of variable transformation in 
imputing cavity tree abundance, we transformed 
the Y set variables using square root and loga-
rithmic transformations. Extensive Monte Carlo 
simulation studies were conducted to examine the 
performance of dependent-variable transforma-
tions for asymptotic behaviour of the imputation 
estimates.

The target polygons were assumed to be un-
sampled polygons (missing cavity tree abundance 
data), and were used to validate the accuracy 
of variable classification and transformation 
approaches by comparing the observed cavity tree 
abundance to the expected cavity tree abundance, 
obtained by substituting the cavity tree abundance 
of the most similar reference polygon using SAS 
(SAS Institute Inc. 1990).

CART Partitioning with MSN Imputation

A binary CART (Breiman et al. 1984) approach 
was used to develop classification rules for esti-
mating cavity tree abundance and to characterize 
relationships between cavity tree abundance and 
stand attributes. In fitting the CART models, stand 
and site variables were used to split the data into 
increasingly homogenous subsets, using binary 
recursive algorithms developed in SAS (SAS 
Institute Inc. 1990). The stand classifying vari-
ables included slope and basal area per hectare. 
The chi-square test was used to split nodes at a 
significance level of 0.2.

Using the CART method (Breiman et al. 
1984), data were partitioned into homogenous 
groups. Within each node, sample polygons 
were randomly divided, as reference and target 
polygons, and then imputation was carried out 
within each node. The reference polygons were 
used to develop a similarity function to select a 
neighbour stand within each node. Within each 
node, the target polygons were assumed to be un-
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sampled polygons (missing cavity tree data), and 
were used to validate the accuracy of the MSN 
approach by comparing the observed cavity tree 
abundance to the expected cavity tree abundance, 
obtained by substituting the cavity tree abundance 
of the most similar reference polygon using SAS 
(SAS Institute Inc. 1990).

2.3 Comparison of Approaches

For each of the 9 combinations (three sample sizes 
and three transformations), the random separation 
of the data into target versus reference stands was 
repeated 200 times. Fit statistics commonly used 
by other authors are based on comparing observed 
with estimated values in the simulated target 
dataset, and in particular, the average difference 
(often called bias) and root mean squared error 
(square root of the average squared difference; 
RMSE) are often calculated.

The average of the imputed Y values will not 
be an unbiased estimator of the population aver-
age (LeMay and Temesgen 2005), even if there is 
only one variable of interest in the variable-space 
nearest neighbor imputation. For more than one 
variable of interest, a small average difference 
in one variable could be compensated by small 
average difference in another variable. Also, large 
negative and positive differences would result in 
an average difference of zero. The RMSE gives a 
better indication of the imputation results, because 
differences are squared prior to averaging.

Moeur and Stage (1995) suggested that the dis-
tance metrics could be used to assess the adequacy 
of results; if distance metrics were high for some 
stands, then no suitable match was found in the 
reference set.

To evaluate the results for each simulation, bias 
(average difference) and RMSE were calculated 
for each replicate, as follows (after LeMay and 
Temesgen 2005):

1) Bias for each variable in the Y sets of the target 
data, as shown for the l th Y variable:

  (2)

2) RMSE for each variable in the Y sets, as shown 
for the l th Y variable:

  (3)

where n is the number of stands with missing 
ground data (target stands) for the replicate. 
Because a large value for one variable might be 
compensated by a small value for another vari-
able, these two statistics were also obtained by 
replicate for all Y variables combined as shown 
below:

3) Bias for all Y variables combined:

  (4)

4) RMSE for all Y variables combined:

  (5)

The mean, minimum, maximum, and range of 
each of these two statistics were summarized 
over the 200 sampling replications. In addition, 
the mean distance was also calculated for each 
simulation and then averaged over the 200 sam-
pling replications.

For the CART method, weighted RMSE values 
were calculated and used to compare the predic-
tive abilities of the classification method against 
other methods considered in this study. More-
over, graphical comparisons of observed (target) 
and estimated (selected reference) cavity tree 
abundance were used to examine the predictive 
abilities of the three approaches. The most similar 
neighbor stand (MSN), and variable transfor-
mation CART approaches were compared for 
accuracy using observed and estimated cavity tree 
abundance by size and species composition.
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3 Results and Discussion

The 2001–2004 FIA data covered 11.1 million 
hectares of forestland in western Oregon and 
western Washington, and indicated that there are 
an estimated 11.35 million live cavity trees greater 
than 5.0 cm dbh, which is just 0.25 percent of all 
live trees. For the same area, there are an esti-
mated 79.8 million dead standing cavity trees, 
which is 13.8 percent of all dead trees. Because 
field crew are more likely to miss spotting a cavity 
in a tree than to see a cavity that is not there, it 
can be expected that there is some bias toward 
underestimation in these attributes.

Out of the 2285-forested FIA polygons, 612 
(26.8%) polygons did not have any standing dead 
trees. The remaining 1673 polygons that had at 
least one snag tree, of which 780 stands had one 
or more cavity trees (34% of the total polygons 
had one or more visible cavities). Accordingly, 
the overall odds ratio of a polygon with no cavity 
trees (odds of a polygon with no cavity trees/odds 
of a polygon having cavity trees) in western 
Oregon and Washington forests was 1.94. In other 
words, there are 1.94 polygons with no cavity tree 
for every polygon with one or more cavity trees.

The number of conifer and hardwood cavity 
trees ranged from 0 to 264 and 0 to 101 trees/ha, 
while the number of live conifer and hardwood 
varied from 0 to 2044 and 0 to 1346 trees/ha 
(Table 1). The distributions of sample FIA poly-

gons by stand age and basal area/ha depicted a 
reverse J-shape (Fig. 2). Cavity tree abundance by 
species and size class graphs showed reasonable 
matches for some species and poor matches for 
others (Fig. 3).

Fig. 2. Frequency distribution of sample polygons by stand age and basal area per ha.

Fig. 3. Performance of imputation methods for estimat-
ing cavity tree abundance using 50% sampling 
intensity. MSN = Most Similar Neighbor; MSR-RT 
= Most Similar Neighbor with square root transfor-
mation; MSN-LOG = Most Similar Neighbor with 
logarithmic transformation; CART-BA-M = CART 
classified by basal area with MSN; CART-SLP-
MSN = CART classified by slope with MSN.
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Table 3a. Pearson’s correlation coefficient and significance between selected variables, n = 2285.

Attribute Basal area of  No. of cavity  No. of conifer No. of hardwood Basal area of 
 cavity trees/ha trees/ha cavity trees/ha cavity trees/ha snags/ha

% conifers 0.09229 0.14303 0.59325 –0.35519 0.20421
 0.0585 <.0001 <.0001 <.0001 <.0001

% hardwoods –0.07843 –0.04277 –0.33988 0.70775 –0.11859
 0.1081 0.131 <.0001 <.0001 <.0001

Site index (m) 0.01226 –0.0634 –0.06012 0.01932 –0.0932
 0.816 0.0444 0.0566 0.5406 0.0031

Basal area (m2ha–1) 0.15363 0.22363 0.44536 0.03804 0.30371
 0.0016 <.0001 <.0001 0.1928 <.0001

Average age (yr) 0.18201 0.1961 0.0633 –0.08195 0.35724
 0.0002 <.0001 0.0254 0.0038 <.0001

Average height (m) 0.20375 0.23506 0.0966 –0.11133 0.35054
 <.0001 <.0001 0.0006 <.0001 <.0001

Slope –0.0228 0.01772 –0.01859 0.04964 0.03056
 0.6412 0.5322 0.5123 0.0799 0.2813

Aspect –0.02035 0.03324 0.02758 0.0322 0.03857
 0.6775 0.2412 0.3309 0.2562 0.1738

Elevation (m) 0.04982 0.10466 0.22837 –0.2242 0.20831
 0.3078 0.0002 <.0001 <.0001 <.0001

Volume (m3ha–1) 0.15995 0.23858 0.34075 –0.02182 0.34528
 0.001 <.0001 <.0001 0.4411 <.0001

No. of trees per ha –0.05483 0.10223 0.82681 0.43017 0.07566
 0.2617 0.0003 <.0001 <.0001 0.0075

Mean annual increment –0.01598 –0.02272 0.07316 0.04468 –0.11868
(m3ha–1yr–1) 0.7438 0.4368 0.0122 0.126 <.0001

Table 3b. Pearson’s correlation coefficient and significance between selected variables, n = 2285.

Attribute No. of conifer No. of hardwood No. of cavity  Basal area of cavity 
 trees/ha trees/ha trees/ha trees/ha

No. of conifer snags/ha 0.35155 –0.14374 0.43238 0.35028
 <.0001 <.0001 <.0001 <.0001

No. of hardwood snags/ha –0.08505 0.28823 0.06080 –0.03931
 0.0026 <.0001 0.0317 0.4211

Basal area of snags/ha 0.14149 –0.09414 0.58930 0.83104
 <.0001 0.0009 <.0001 <.0001

No. of snags/ha 0.27228 0.01244 0.41564 0.32407
 <.0001 0.6606 <.0001 <.0001

Average snag diameter (cm) 0.02842 –0.02880 0.20697 0.29475
 0.3158 0.3093 <.0001 <.0001

Average snag height (m) 0.17822 0.01439 0.20460 0.14428
 <.0001 0.6114 <.0001 0.003
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3.1 Relationships

Cavity tree abundance was negatively correlated 
with site index and percent composition of coni-
fers, but positively correlated with stand density, 
quadratic mean diameter, and percent composi-
tion of hardwoods. Thirty-four percent of the 
forested FIA plots had a least one cavity tree, 
and 29% of the sampled plots had more than 
4.1 m2/ha basal area of cavity trees. No signifi-
cant correlation was observed between number 
of hardwood cavity trees and basal area/ha and 
mean annual increment (Table 3). The number of 
cavity trees (cavity tree abundance) was strongly 
related to snag density, snag basal area, or other 
snag attributes (Table 4). Cavities were more often 
detected on bigger and taller tree snags that had 
larger DBH and height. This is consistent with 
other studies (Screiber and de Calesta 1992).

There was significant correlations between 
basal area of cavity trees per ha and stand age, 
average tree height, and quadratic mean diam-
eter. No significant correlations were observed 
between basal area of cavity trees or cavity tree 
abundance and slope or aspect of stands (Table 3). 
Low correlations between cavity tree abundance 
and most of the predictor variables considered in 
this study indicate that either predictor variables 
are not useful or cavity tree abundance is highly 
variable.

Cavity tree abundance generally increased with 
stand development stages. In early developmental 
stages (S40), the proportion of stands with snags 
was low, and stands contained the fewest number 
of cavity trees; 17.3% of these plots had at least 
on cavity tree, while at late developmental stages 
(>90 years, S90) 55% of the plots had at least one 

cavity tree (Fig. 2).
Within each stand development stage, cavity 

tree abundance was found to be highly variable, 
and the average snag size increased with stand 
development stage (14.1, 20.2, and 34.7 cm for 
the three stand development stages). The basal 
area of snags ranged from 0 to 51.2 m2/ha, 0.2 
to 134.2 m2/ha, and 0 to 71.4 m2/ha, while the 
basal area of cavity trees ranged from 0.2 to 29.1 
m2/ha, 0.2 to 61.8 m2/ha, and 0.2 to 59.8 m2/
ha, respectively, for the three stand development 
stages (Table 4).

In mid-developmental stages (40 to 90 years, 
S60), the proportion of the snags was high, and 
the ranges of the number of snags and cavity trees 
were wider than those observed for mature devel-
opmental stages (S90). Proportion of stands with 
at least one cavity tree increased with stand age. 
Cavity trees were most abundant and tallest in 
the mature development stage. Number of cavity 
trees varied more in S90 than in S40, as shown 
by a standard deviation that was 3.2 times higher. 
This variation would have a large influence on 
wildlife habitat selection and management. High 
variability of cavity tree abundance in the mature 
development stage is also reported by Ohmann et 
al. (1994) and Fan et al. (2005).

The number of snags differed significantly 
among the three age classes, steadily increas-
ing with stand age (Table 4). Stands older than 
90 years had 80% higher number of snags than 
stands 40 to 90 years old. The number of snags 
and cavity trees of each stand age class were 
significantly different from one another. These 
differences may be due to increased natural mor-
tality over time and stand deterioration.

Table 4. Descriptive statistics for selected variables by stand development stages, n = 2285.

Variable Younger than 40 years, n = 753 40 to 90 years, n = 812 Older than 90 years, n = 720
 Min Median Max Std Min Median Max Std Min Median Max Std

Average diameter (cm) 12.7 21.5 200.7 17.9 13.4 29.1 137.2 11.3 17.8 37.4 152.0 16.3
Average height (m) 1.5 14.0 38.9 5.6 4.1 19.9 45.0 6.6 4.6 20.7 57.4 7.4
Snag diameter (cm) 0.0 14.1 228.6 32.7 0.0 20.2 190.5 22.4 0.0 34.7 191.5 28.9
No. of cavity trees 0.0 0.0 83.1 7.4 0.0 0.0 264.2 20.0 0.0 2.5 191.4 22.8
No. of snags 0.0 2.7 757.7 52.4 0.0 35.1 952.9 90.5 0.0 60.1 602.3 81.2
No conifer cavity trees 0.0 0.0 83.1 6.9 0.0 0.0 264.2 18.6 0.0 2.5 191.4 22.3
No. hardwood cavity trees 0.0 0.0 45.1 2.8 0.0 0.0 100.5 7.3 0.0 0.0 74.9 5.7
Snag basal area (m2/ha) 0.0 0.3 51.2 5.5 0.0 2.2 134.2 8.3 0.0 8.4 71.4 11.6
Cavity tree basal area (m2/ha) 0.2 2.7 29.1 4.9 0.2 2.7 61.8 7.2 0.2 5.4 59.8 8.4
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Table 5. Minimum, mean, and maximum root mean square (RMSE) of three variable transformation approaches 
used to estimate cavity tree abundance.

Attribute KNN MSN WKNN
 Mean Min Max Mean Min Max Mean Min Max

ORIGINAL UNIT
20%
No. of conifer cavity trees 9.3 8.4 10.1 8.8 7.6 10.4 9.1 6.4 11.1
No. of hardwood cavity trees 21.8 20.7 23.8 21.7 20 23.9 21.3 14.8 23.9
Total number cavity trees 25.2 24.3 27.2 25 23 27 24.6 17.3 27.2

50%
No. of conifer cavity trees 5.9 5.4 6.3 5.5 5 5.9 5.9 5.4 6.3
No. of hardwood cavity trees 13.7 13.1 14.2 13.7 13 14.4 13.7 13.1 14.2
Total number cavity trees 15.8 15.3 16.4 15.7 15.1 16.3 15.9 15.3 16.4

80%
No. of conifer cavity trees 4.7 4.4 4.9 4.4 4.1 4.6 4.3 4 4.5
No. of hardwood cavity trees 10.8 10.4 11.2 10.8 10.4 11.2 9.9 9.4 10.2
Total number cavity trees 12.5 12.2 12.9 12.4 12.1 12.7 11.4 11 11.8

SQUARE ROOT TRANSFORMATION
20%
No. of conifer cavity trees 5.7 4.7 6.6 6 4.6 8 5.5 4.8 6.3
No. of hardwood cavity trees 10.6 9.4 11.8 11.3 9.4 13.2 8.7 7.9 9.5
Total number cavity trees 25.2 24.3 27.2 24.8 22 27 23.1 22.3 24.8

50%
No. of conifer cavity trees 3.7 3.2 4.2 3.9 3.1 4.6 3.4 3.1 3.6
No. of hardwood cavity trees 6.8 6.5 7.2 7.3 6.7 8 5.7 5.3 5.9
Total number cavity trees 15.9 15.3 16.4 15.7 15 16.3 14.8 14.3 15.2

80%
No. of conifer cavity trees 3.1 2.8 3.4 3.2 2.8 3.8 2.8 2.4 3.3
No. of hardwood cavity trees 5.6 5.3 6 6 5.5 7 4.7 4.4 5.4
Total number cavity trees 12.5 12.2 12.9 12.4 12.1 12.7 11.6 11.4 11.9

LOGARITHMIC TRANSFORMATION
20%
No. of conifer cavity trees 11.5 9.9 13.5 17.8 13.6 24.4 16.3 13.7 19.1
No. of hardwood cavity trees 20.5 18.7 22.4 31.9 27.3 35.7 27.5 24.7 30.5
Total number cavity trees 42.7 40.8 44.4 67.6 59.9 73.5 43.4 41.6 48.4

50%
No. of conifer cavity trees 9.3 8 11.5 11.5 9.9 13.5 10.1 9.2 11.1
No. of hardwood cavity trees 17 15.2 19 20.5 18.7 22.4 17.4 16.3 19
Total number cavity trees 33.8 32.9 34.7 42.7 40.8 44.4 33.3 31.6 34.3

80%
No. of conifer cavity trees 8.5 7.8 9.3 9.4 8 11.5 8.5 7.8 9.9
No. of hardwood cavity trees 15.5 14.4 16.7 17 15.2 19 14.4 12.9 16
Total number cavity trees 29.5 28.6 30.5 33.8 32.9 34.7 29.5 28.6 30.5

3.2 Predictions

For the seven aerial/map label variables and two 
ground variables, the canonical correlations were 
very strong with 0.58, 0.86, and 0.95 for the first, 
second, and third canonical variates, respectively. 
The first four variates had canonical correlations 

greater than 0.99. The number of conifer cavity 
trees had high linear canonical correlation coef-
ficients for three of these four variates. Other 
variables that weighted highly were number of 
hardwood trees per hectare and basal area per 
hectare. Other variables such as elevation had 
lower coefficients on the first six covariates, and 
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therefore, were weighted less in the Most Similar 
Neighbour distance measurement.

Bias and RMSE for hardwood cavity trees were 
consistently higher than bias and RMSE obtained 
for conifer cavity trees. The square transformation 
consistently resulted in lower RMSE values than 
the original unit, while logarithmic transformation 
resulted in the highest RMSE values (Table 5). 
For the MSN approach, there was a reasonable 
match in aerial variables between the target and 
reference polygons. As expected, weighting the 
reference polygons by squared Euclidean distance 
consistently resulted in the lowest RMSE values 
for all ground variables (Table 6).

Unlike the results reported by Maltamo and 
Kangas (1998) for more simple Scots pine stands, 
the MSN resulted in lower biases (absolute values) 
in cavity tree abundance by species class than 
other distances examined in this study.

3.3 CART Partitioning and MSN Imputation

CART models were fitted by splitting the data 
into homogenous subsets or groups and estab-
lishing a set of classification rules for predicting 
the status (alive or dead) of trees. The number of 
cavity trees was then estimated for each subset. 
In this study, stand variables (i.e., slope and basal 
area per hectare) were important in estimating 
cavity tree abundance and characterizing rela-
tionships between cavity tree abundance and 
stand attributes. The CART method indicated 
that basal area of 40 m2/ha and slope of 30% 
were thresholds for distinguishing cavity trees 
from non-cavity trees at different stand develop-
ment stages. Using the CART method, the stands 
were thus classified into two basal area classes 
(≤40 m2/ha and >40 m2/ha) and two slope classes 
(≤30% and >30%).

Table 6. Minimum, mean, and maximum root mean square by two classifying variables

CART & Attribute KNN MSN WKNN
 Mean Min Max Mean Min Max Mean Min Max

SLOPE
20%
No. of conifer cavity trees 13.1 9.9 17.1 30.6 25.8 35.1 10.8 9.1 13.3
No. of hardwood cavity trees 30.7 26.0 34.6 12.3 9.0 16.4 25.2 22.4 27.5
Total number cavity trees 35.5 31.2 39.7 35.2 30.9 39.5 29.2 27.0 31.5

50%
No. of conifer cavity trees 8.3 7.2 9.5 17.1 15.4 18.7 8.5 7.6 9.4
No. of hardwood cavity trees 19.4 17.7 20.9 6.7 5.9 7.7 20.0 19.0 21.3
Total number cavity trees 22.4 20.9 23.8 19.6 17.9 21.0 23.2 22.1 24.5

80%
No. of conifer cavity trees 6.6 6.1 7.1 15.3 14.7 15.9 6.6 6.1 7.1
No. of hardwood cavity trees 15.3 14.7 15.9 6.2 5.7 6.6 15.3 14.7 15.9
Total number cavity trees 17.7 17.1 18.4 17.6 17.0 18.2 17.7 17.1 18.4

BA
20%
No. of conifer cavity trees 13.0 9.6 17.6 18.3 16.2 20.7 13.0 9.6 17.6
No. of hardwood cavity trees 30.6 25.8 35.1 13.4 11.7 16.1 30.6 25.8 35.1
Total number cavity trees 35.5 31.2 39.8 25.8 23.9 28.1 35.5 31.2 39.8

50%
No. of conifer cavity trees 8.3 7.2 9.5 19.4 17.7 20.9 8.3 7.2 9.5
No. of hardwood cavity trees 19.4 17.7 20.9 7.8 6.7 8.9 19.4 17.7 20.9
Total number cavity trees 22.4 20.9 23.8 22.2 20.7 23.6 22.4 20.9 23.8

80%
No. of conifer cavity trees 6.6 6.1 7.1 15.3 14.7 15.9 6.6 6.1 7.1
No. of hardwood cavity trees 15.3 14.7 15.9 6.2 5.7 6.6 15.3 14.7 15.9
Total number cavity trees 17.7 17.1 18.4 17.5 17.0 18.2 17.7 17.1 18.4
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Most classifications obtained using the CART 
methods were surprisingly simple with usually 
no more than two splits (levels of data group-
ing). For example, the selected CART models 
for proportion of stands with at least one cavity 
tree showed that the first split used slope at 30% 
as a threshold.

When slope and basal area per ha were consid-
ered, the CART method indicated clear distinction 
or clear classifying rules for estimating cavity tree 
abundance. Given this clear separation of cavity 
tree abundance, imputation within each node or 
group was expected to result in more precise 
cavity tree abundance estimates than imputing 
from the entire data set. However, CART parti-
tioning and imputing (MSN) within each node 
resulted in marginally worse estimation of the 
number of cavity trees/ha than imputing from 
the entire sample. This can be ascribed to the 
conversion of continuous variables into discrete 
variables.

3.4 Variable Transformations

Distances cannot be compared across the three 
variable transformation methods. However, com-
parisons across the three variable transformation 
methods (original unit, square root, and logarith-
mic) and proportions of stands with full informa-
tion were made for each variable transformation 
method.

Distances were lowest for square root transfor-
mation, followed by the original unit and then by 
logarithmic transformation. The short distances 
might have resulted in better matches and lower 
squared Euclidean distances using square root 
transformation and original unit. Conversely, the 
distances using logarithmic transformation were 
very large and this might have resulted in poor 
matches. The possible reasons for this improve-
ment might be ascribed to that the assumption 
about linear correlation was better met with the 
square root transformation, followed by the origi-
nal unit and then by logarithmic transformation. 
The square root transformation (power = 0.5) 
might have resulted in better representation in 
multivariate space and more accurate NN predic-
tions because it moves the sparse tails closer to 
the denser center of the multivariate distribution 

than the original unit untransformed (power = 
1) feature space and the logarithmic (power = 0) 
transformation.

Distances decreased with the increasing pro-
portion of stands with full information, with the 
greatest gain from 20% to 50%, and less gain 
from 50% to 80%. This result is similar to that 
noted by LeMay and Temesgen (2005) for imput-
ing tree-lists. As a result, 50% (≈ 1142 reference 
polygons) of the stands with full information 
would be preferred for imputing the number of 
cavity trees in western Oregon and western Wash-
ington forests.

3.5 Average Differences

For the original unit and square root transfor-
mations, the bias (average difference) for the 
combined Y variables averaged over the 200 
sampling replications (mean bias) was close to 
zero for the 80% reference sets, while the bias 
was higher for 20% reference sets. For the 20% 
and 80% reference sets, original unit and square 
root transformations gave lower (absolute value) 
mean biases using all three methods, indicating an 
improvement via weighting the X variables using 
correlations with the Y variables. For both vari-
able sets (slope and BA), there was no noticeable 
reduction in the absolute value of mean bias in 
using the KNN or WKNN methods over using a 
single neighbor (NN), nor in using the 50% over 
the 20% reference sets.

For the variables of interest, the number of 
cavity trees per ha (Y variable), the mean biases 
were not close to zero. In their simulations, Moeur 
and Stage (1995) showed percent biases of –4.0 
to 0.6% using Eq. 2 and NN to impute volume 
variables from land classification variables. For 
imputing diameter distributions, Maltamo and 
Kangas (1998) also obtained non-zero biases. 
Mean biases in the Y variables tended to increase 
with an increase in the proportion represented in 
the reference sets. For variable set 1 (slope), mean 
biases were nearly zero for the 20% reference 
sets, for all methods. Also, mean biases tended 
to be lower using square root transformation, as 
might be expected, because the canonical cor-
relations between the X and Y variables are used 
to weight the distance metric. Using square root 
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transformation, some reduction in mean bias was 
obtained through using the KNN and WKNN 
approaches, over the NN approach. For variable 
set 2 (BA), mean biases were again lower using 
square root transformation, and some reduction in 
mean bias occurred using the KNN and WKNN 
approaches.

3.6 Mean, Minimum, and Maximum RMSEs

The RMSE for the Y variables, generally there 
were some reductions in mean RMSE values, 
although this varied with variable transforma-
tion and weighting alternatives (Tables 5 and 
6). Generally, lower mean RMSE values were 
obtained using KNN and WKNN over NN for 
square root transformation, with no large differ-
ence between KNN and WKNN. For variable 
set 1 (slope CART), square root transformation 
was slightly better, particularly for KNN and 
WKNN. For variable set 2 (BA CART), square 
root transformation performed slightly better than 
original unit. Because the stems per ha values 
are very large compared to the basal area per ha 
values, the mean RMSE total number of cavity 
trees per ha better reflects the observed number 
of cavity trees per ha.

Generally, the minimum of the 200 RMSE 
values for each Y variable decreased with increas-
ing proportions of stands with full information 
for all simulations, indicating improvements with 
an increase in the number of reference stands 
(Tables 5 and 6). However, the maximum of the 
200 RMSE values decreased for 50% over 20% 
of stands with full information, but then increased 
for the 80%. Because the RMSE is calculated 
using target stands only, a large squared differ-
ence between observed and estimated values for 
one target stand would have more impact on the 
RMSE for the 80% proportion. For example, 
given a hypothetical number of cavity trees per 
ha values of 30, 30, 35, 35, 40, 40, 38, 38, 80, 
and 80, eight stands would be selected as the 
reference set and two stands as the target stands 
using the 80% proportion. RMSE values would 
be small, except when the two stands of 80 cavity 
tree per ha were selected as the target stands in 
the simulation. Using 50%, the large maximum 
RMSE value obtained with the 80% proportion 

would not occur, because the RMSE values would 
be averaged over five stands. In application, this 
would translate into a situation where the number 
of target stands is few, and these differ greatly 
from the reference stands. As noted by Moeur 
and Stage (1995), the distance metric should 
indicate this problem. In this case, approaches 
other than nearest neighbor methods might give 
better results. While the minimum RMSE may 
be useful in comparing methods, the maximum 
RMSE value must, therefore, be interpreted with 
caution.

Slightly smaller minimum and maximum 
RMSE values were consistently obtained using 
KNN and WKNN over NN. The smallest mini-
mum RMSE values were obtained using square 
root transformation, WKNN, 80% of stands with 
full information. Using the average of three stands 
to impute stems per ha and basal area per ha 
reduced the possibility of a poor match when 
the target stands were quite different than the 
remainder of the stands.

3.7 Overall Discussion

The size and density of cavity trees indicate the 
suitability of a forest stand for wildlife habi-
tat (Ohmann et al. 1994, Ganey 1999) and are 
important in managing habitat for some wildlife 
species. For example, Thomas et al. (1979) sug-
gested that American kestrels (Falco sparverius) 
and northern flickers (Colaptes aurtus) require 
nest trees with a minimum diameter of 30 cm in 
the Pacific Northwest region of North America. 
Forest managers need insight into sampling inten-
sities and methods that can incorporate cavity tree 
estimation into their forest plans.

Compared to parametric approach, such as 
regression analysis, NNI approaches do not 
require distributional assumptions. For cavity 
tree abundance, NNI provides the advantage of 
predicting total number of cavity trees by species 
group in one step. Imputation also allows spa-
tial modeling of cavity tree densities, which can 
be important to assessment of potential wildlife 
home ranges. The approaches examined in this 
study can estimate cavity abundance from map 
labels or aerial attributes and can used in other 
applications such as landscape modeling or 3-D 
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visualization (McGaughey 1998, McCarter et al. 
1998).

Imputation methods can fill in cavity tree abun-
dance by species and tree size classes for non-
sampled polygons or panels. The results from this 
study indicated that generally MSN performed 
better at this than KNN and WKNN. Using CART 
to separate observations by basal area or slope 
classes may not be optimal. However, the sampled 
polygon areas used in this study were small (≤0.4 
hectares) and results may differ when larger areas 
are used for sampling.

The approaches used in this study can be tailored 
to meet unique sustainable resource management 
by selecting or emphasizing on given tree, stand 
and landscape level variables. For example, if the 
objective of a management intervention is timber, 
emphasis can be given to attributes such as total 
basal area and stand volume. If an objective of 
a management intervention focuses on tree-size 
dependent wildlife species, then emphasis can 
be given to the number of wildlife and large-
diameter trees.

It is also important for forest managers to 
understand the limitations of different modeling 
techniques. Our study found that cavity trees were 
only 0.25 percent of live trees and 13.8 percent of 
dead trees in the forests of western Oregon and 
western Washington, thus rarer and more difficult 
to predict than many other forest attributes. This 
research found that while significant relationships 
do exist between stand variables and cavity tree 
presence, correlations were low, an indication 
of the high variability of cavity trees and low 
predictive ability from ancillary variables. While 
it is becoming increasingly common for manag-
ers to use nearest neighbor imputation to link 
forest inventories with forest planning, cavity tree 
abundance may be one of the more difficult forest 
attributes to model well.

4 Conclusions

Increased knowledge of cavity tree abundance 
on every parcel of land provides flexibility for 
forest management systems and provides tools 
for resource managers to analyze information 
from limited data sources, integrate available 
resource data, and visualize and model ecosys-
tems functioning. The approaches used to esti-
mate cavity-tree abundance offer several potential 
advantages over classical estimation procedures 
for sustainable resource management, as some of 
these methods can preserve spatial and attributes 
of natural resource data, including their relation-
ships and natural variability. When these methods 
are employed, projections will always be within 
the bounds of biological reality, and scenario 
analysis can account for the inherent correlations 
between resource attributes. However, like most 
other methods, the accuracy of the CART and 
imputation methods is dependent on the repre-
sentativeness of the sample and the similarity of 
the target and reference polygons. Further studies 
to relate cavity tree abundance with cavity nest-
ing birds, flying squirrels, and snag conditions 
including decay classes are warranted.
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