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Highlights
•	 Harvester-mounted LiDAR consistently estimated low vegetation height and volume com-

parable to handheld and drone LiDAR.
•	 Enhancing LiDAR range could improve harvester LiDAR efficiency, reducing processing 

time and increasing accuracy beyond 20 m.

Abstract
Evaluating the potential of a harvester-mounted LiDAR system in monitoring biodiversity indi-
cators such as low vegetation during forest harvesting could enhance sustainable forest manage-
ment and habitat conservation including dense forest areas for game. However, there is a lack 
of understanding on the capabilities and limitations of these systems to detect low vegetation 
characteristics. To address this knowledge gap, this study investigated the performance of a har-
vester-mounted LiDAR system for measuring low vegetation (height <5 m) attributes in a boreal 
forest in Finland, by comparing it with handheld mobile laser scanning (HMLS) and drone laser 
scanning (DLS) systems. LiDAR point cloud data was collected in September 2023 to quantify the 
low vegetation height (maximum, mean, and percentiles), volume (voxel-based and mean height-
based) and cover (grid method). Depending on the system, LiDAR point cloud data was collected 
either before (HMLS and DLS), during (harvester LiDAR) or after (HMLS and DLS) harvesting 
operations. A total of 46 fixed-sized (5 m × 5 m) grid cells were studied and analyzed. Results 
showed harvester-mounted LiDAR provided consistent estimates with HMLS and DLS for maxi-
mum height, 99th height percentile, and volume across various grids (5 cm, 10 cm, 20 cm) and 
voxel (20 cm) sizes. High correlation was observed between the systems used for these attributes. 
This study demonstrated that harvester-mounted LiDAR is comparable to HMLS and DLS for 
assessing low vegetation height and volume. The findings could assist forest harvester operators 
in identifying potential low vegetation and dense areas for conservation and game management.
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1	 Introduction

A forest stand includes different stratum of vegetation, broadly categorized into low, medium, and 
high vegetation (Szostak and Pająk 2023). Low vegetation includes grasses, herbs, shrubs, and 
small trees (Frankenstein and Koenig 2004; Fu 2019). However, the definition of low vegetation 
varies in research, for example, up to 5 meters (m) (Fu 2019), 7 m (Szostak and Pająk 2023), and 
8 m (Huo et al. 2022) from ground level. The terms of undergrowth, understorey, and understory 
(Kärhä 2006; Kärhä and Bergström 2020; Song et al. 2021; Adhikari et al. 2023; Ferrara et al. 
2023; Penman et al. 2023; Yang et al. 2023) are also commonly used to describe the low veg-
etation between the forest floor and the dominant canopy layer. Low vegetation is essential for 
forest ecosystems contributing to biodiversity conservation and forest regeneration (George and 
Bazzaz 2014). Low vegetation participates in carbon, nutrient, and water cycling (Muller 2014; 
Elliott et al. 2015; Thrippleton et al. 2018; Landuyt et al. 2019; Balandier et al. 2022). Addition-
ally, it provides food, shelter, and habitat for soil arthropods and large herbivores (Huffman et al. 
2009; Boch et al. 2013).

To comprehensively quantify the structural characteristics such as vegetation density, cover, 
height, and volume of the low vegetation within a forest is challenging, time-consuming, and thus 
costly task to conduct with conventional field surveys (Tuanmu et al. 2010; Eskelson et al. 2020; 
Adhikari et al. 2023). These structural attributes are essential for estimating low vegetation biomass 
(Cooper et al. 2017; Sumnall et al. 2017; Adhikari et al. 2023), a fundamental indicator of forest 
ecosystem, forest productivity and carbon storage (Ma et al. 2024). Remote sensing technologies 
such as satellite imaging sensors offer a promising alternative for large-scale data collection with 
high temporal resolution but detecting the low vegetation characteristics is hindered by the domi-
nant canopy layer interference and complex interactions affecting sensor signals (Eriksson et al. 
2006; Tuanmu et al. 2010).

Active sensor technologies with light detection and ranging (LiDAR) technology have shown 
strong potential for accurately capturing the three-dimensional structure of low vegetation. Different 
LiDAR acquisition systems such as airborne laser scanning (ALS) (Sumnall et al. 2017; Campbell 
et al. 2018; Venier et al. 2019), terrestrial laser scanning (TLS) (Adhikari et al. 2023; Penman 
et al. 2023; Tienaho et al. 2024), integration of TLS with ALS (Ferrara et al. 2023), and mobile 
laser scanning (MLS) (Lin et al. 2014) have demonstrated the capability to quantify understory 
vegetation structure. Point cloud data, derived from these systems enable the extraction of key 
structural metrics, including height, volume, and cover. By capturing the three-dimensional (3D) 
distribution of vegetation, LiDAR data support the calculation of height metrics (e.g., maximum 
height, mean height, and height percentiles), voxel-based and area-weighted estimates of volume 
occupancy, and horizontal projections used to derive vegetation cover. Notably, Adhikari et al. 
(2023) reported a strong predictability (R2adj = 0.80) between LiDAR-derived volume occupancy 
and field-measured biomass of low vegetation, indicating that LiDAR point clouds are a reliable 
estimator of low vegetation volume.

While ALS is widely used for large-area data acquisition, MLS can serve as a comple-
mentary or alternative approach when high-resolution data over smaller areas are needed. MLS 
is particularly suitable for applications requiring very high point densities (e.g., 7000 points m⁻2; 
Nardinocchi and Esposito 2024). MLS is based on mobile platforms where LiDAR sensors 
and positioning systems, such as Global Navigation Satellite Systems (GNSSs) and Inertial 
Measurement Units (IMUs), are implemented to capture 3D point cloud data over forested 
areas (Kukko et al. 2017). MLS technology can also utilize automatic co-registration methods 
such as simultaneous localization and mapping (SLAM) to align point clouds without relying 
solely on GNSS system to provide sufficient position accuracy (Donager et al. 2021). However, 
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MLS also has some limitations, such as lower point density and precision compared to TLS. 
For example, in diameter at breast height (DBH) measurement, MLS has a standard deviation 
of 3.7 cm, whereas TLS achieves 1.1 cm (Bienert et al. 2018). TLS typically provides a much 
higher point density, with values around 37 000 points m⁻2 (Torralba et al. 2022), which enhances 
the level of detail in measurements (Hyyppä et al. 2020; Stovall et al. 2023). MLS may strug-
gle with occlusion issues in dense forest stands, potentially leading to incomplete data capture 
(shadowing effect) for upper canopy structures. Additionally, MLS systems may face challenges 
in maintaining consistent data quality across varying forest conditions and may require sophis-
ticated algorithms for accurate tree detection and measurement (Hunčaga et al. 2020). Despite 
these limitations, ongoing advancements in MLS technology continue to improve data quality 
and processing methodologies, making it an increasingly valuable tool for forestry applications 
that require a balance between coverage area and data precision (Hyyppä et al. 2020; Faitli et 
al. 2024; Muhojoki et al. 2024).

Application of MLS in different mobile platforms such as vehicle-mounted (Bienert et al. 
2018), backpack-mounted (Hyyppä et al. 2020; Hartley et al. 2022), handheld (Hyyppä et al. 2020; 
Jones et al. 2022), unmanned aerial vehicle (UAV) for under-canopy and above-canopy (Jaakkola 
et al. 2010; Torresan et al. 2017; Hyyppä et al. 2020) have been utilized in previous research. 
Sagar et al. (2024) demonstrated that a LiDAR system with an MLS sensor, mounted on a Cut-
to-Length (CTL) harvester, achieved 100% accuracy in detecting tree stems. They also reported 
a Root Mean Square Error (RMSE) of 0.77% in detecting stem defects, indicating the strong 
potential of the MLS-CTL system for accurately assessing tree stem quality. Faitli et al. (2024) 
also demonstrated the effectiveness of an MLS-equipped forest harvester in measuring DBH and 
stem curves. They reported RMSE values of 3.2 cm for DBH and 3.6 cm for stem curves, suc-
cessfully detecting approximately 90% of reference trees with a DBH greater than 20 cm within 
a 15-meter range of the harvester’s path. Integrating LiDAR sensors into CTL forest machines 
has some challenges with management of large data volume, sensor durability, and optimal place-
ment of sensor (Sagar et al. 2024). The research on application of MLS-mounted CTL harvester 
for further investigations on forest biodiversity indicators such as low vegetation characteristics, 
species composition, deadwood volume and structural complexity of forests might be useful to 
comprehensively understand the capabilities of these technologies which are currently limited 
(Korhonen et al. 2024).

Viewing the fact that MLS-mounted on harvesters has not been used yet to detect and 
quantify low vegetation characteristics, this study aimed to address this knowledge gap. The 
main objective was to investigate whether the harvester-mounted LiDAR point clouds produce 
consistent low vegetation characteristics such as height, volume and cover with high-quality 
backpack and handheld mobile laser scanning (HMLS) and drone laser scanning (DLS) point 
clouds. MLS and ALS have been used for measuring low vegetation (Lin et al. 2014; Sumnall et 
al. 2017; Campbell et al. 2018; Venier et al. 2019) characteristics, highlighting the importance of 
comparing harvester-mounted LiDAR point clouds to these methods for consistency. This study 
employed an area-based (grid-based) processing method, widely adopted by researchers (Cooper 
et al. 2017; Adhikari et al. 2023; Tienaho et al. 2024), to estimate low vegetation characteristics. 
It aimed to identify both the potential and challenges of harvester-mounted LiDAR in quantify-
ing low vegetation characteristics, providing insights to guide the future application of LiDAR 
sensors installed on harvesters.
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2	 Methodology

2.1	 Study area

The study site, Evo, was located within the Hämeenlinna municipality in southern Finland at coor-
dinates 61°11´N, 25°06´E. This area includes a mix of managed and conserved southern boreal 
forests, characterized by dominant tree species such as Scots pine (Pinus sylvestris L.) and Norway 
spruce (Picea abies (L.) Karst.). Other species include downy birch (Betula pubescens Ehrh.) and 
silver birch (Betula pendula Roth) (Kuzmin et al. 2021), with the understorey mainly composed 
of spruces. Our study area covers around 1 ha of single forest stand where thinning and further 
clear-cutting operations were carried out during 5–6 September 2023. The harvest plan was deter-
mined by Häme University of Applied Sciences, Evo Campus, which is responsible for maintaining 
the forest. Thinning was carried out based on this plan. First, the southern part of the forest stand 
was thinned, followed by a clear cutting. Then, the northern part was thinned and subsequently 
clear-cutting. The thinned area represented approximately 15–20% of the clear-cutting area.

2.2 LiDAR systems and point clouds

2.2.1	Drone laser scanning

Forest vegetation of the study area was scanned by DLS in three phases: around seven weeks before 
actual harvesting (19 July 2023), after thinning (5 September 2023), and after clear-cutting operation 
(6 September 2023). For pre-harvest scanning, 1550 nm Riegl VUX-1HA laser scanner and for after 
thinning and post-harvest (clear cutting) scanning, 1550 nm Riegl VUX-120 laser scanners (Riegl 
2024) were used. The recorded point cloud densities (points m–2) were: 864.6 (724.1 pulses m–2) 
for the 1550 nm Riegl VUX-1HA, 2170.9 (1327.7 pulses m–2) for the 1550 nm Riegl VUX-120 
following thinning, and 1630.7 (1080.1 pulses m–2) clear cutting. The Riegl VUX-1HA operated at 
a lower measurement speed compared to the Riegl VUX-120 leading to a reduced point density in 
the pre-harvest dataset. The Riegl VUX-120 used a 1500 kHz point frequency. The clear-cutting area 
exhibited a lower number of canopies returns due to the absence of vegetation, resulting in lower 
recorded points per emitted laser pulse. The laser scanner and the sensor, Novatel CPT7 GNSS-IMU 
(Global Navigation Satellite System with Inertial Measurement Unit) were mounted on Avartek 
Boxer drone to scan the study site. The drone flew at 100 m above ground level at a velocity of 
8 m s–1, with a maximum scan angle of ±50°, following a grid flight pattern with 40 m line separation 
and 200% overlap. Point cloud preprocessing was performed using the software RiPROCESS 1.9.2.

The DLS data were georeferenced using the GNSS-IMU trajectory of the scanner. For the 
pre-harvest DLS LiDAR data, we co-registered and merged two datasets: one acquired seven 
weeks before harvesting in July and another taken after thinning, using the Iterative Closest Point 
(ICP) tool and merge function in CloudCompare (Version 2.13.2, 64-bit) (CloudCompare 2024). 
The first dataset was collected earlier and did not capture recent stand changes, while the second, 
although more recent, was missing trees removed during thinning. Merging both provided a more 
complete representation of the stand prior to thinning. For post-harvest DLS LiDAR data, we used 
the DLS LiDAR scanned after the end of harvesting operations on 6 September 2023.

2.2.2	Handheld mobile laser scanning

HMLS point cloud data was collected using the GeoSLAM Zeb Horizon RT LiDAR, which 
employed a Velodyne Puck Lite (VLP-16 Lite) scanner, both before harvesting (5 September 
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2023) and after the clear cutting (6 September 2023). This scanner with Micro-Electro-Mechan-
ical Systems (MEMSs) based IMU processes raw data into point clouds in a compressed LiDAR 
data format (LAZ format) using GeoSLAM Connect software (version 2.3.0). The scanner has a 
100-meter range, a 30° vertical field of view (16 profiles at 2° intervals), and a final angular field 
of view of 360° horizontally and 270° vertically. It captures 300 000 points s–1 with a ranging 
accuracy of ±3 cm (Gollob et al. 2020; GeoSLAM Ltd 2022). The HMLS data were georeferenced 
by matching them to the DLS data using the Iterative Closest Point (ICP) tool in CloudCompare. 
The process started by importing HMLS and DLS data, followed by an initial manual alignment 
using the Translate/Rotate tool. A precise alignment was achieved through Point Pair Registration, 
where corresponding points in both datasets were selected to compute a transformation matrix. For 
further refinement, ICP registration was applied to minimize alignment errors. Finally, accuracy 
was validated using Cloud-to-Cloud distance tools, and the georeferenced point cloud was exported 
in LAS format. The point cloud densities of HMLS were 5223.9 points m–2 before harvesting and 
2978.1 points m–2 after the clear-cutting operation.

2.2.3	Harvester LiDAR

The harvester LiDAR system included two identical LiDARs (Ouster OS0, Rev 7) to improve 
the field of view around the machine. The LiDARs were mounted on both sides of the Ponsse 
Scorpion CTL harvester’s boom (Fig.1a) and were used to collect real-world point cloud data. 
They were both mounted at a 45° angle sideways with respect to the crane (Fig. 1b). The sensors 
provided wide-ranging coverage, including a 360° horizontal and a 90.8° vertical field of view 
(Ouster 2024). The Ouster scanners have a range of 35 m, which prevented full visibility of the 
harvesting area at once, necessitating continuous scanning to address potential blind spots. The 
sampling frequency for each Ouster lidar was calculated by multiplying its horizontal resolution 
(1024 points per rotation), number of channels (128), and spinning rate (10 rotations per second), 
resulting in 1.31 billion points per second (1.31 GHz) per sensor. Since the system used two lidars, 
the total sampling frequency doubled to 2.62 billion points per second (2.62 GHz). This means 
the entire setup captured data at an extremely high rate, ensuring detailed and rapid 3D scanning.

The harvester LiDAR point cloud data consisted of multiple separate point cloud data files 
(LAS files), recorded during different sessions of thinning and clear-cutting operations. The point 
clouds recorded by the Ouster sensors were reconstructed to a global frame using trajectory infor-
mation obtained using Novatel CPT7 GNSS/INS positioning system. The point cloud densities of 

Fig. 1. Study site and the Ponsse Scorpion harvester used for the study (a), and the position of the two Ouster LiDARs, 
one GNSS antenna, and Novatel CPT7 installed on the boom of the Ponsse harvester (b). The Novatel CPT7 was behind 
the black box attached to the aluminium frame, not inside the black box.
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harvester LiDAR ranged from 7400 to 20 430 points m–2 within a 30 m of the harvester’s trajectory. 
All the LiDAR systems used in this study were time-of-flight (ToF) and capable of multi-return 
measurements, allowing for the detection of multiple surfaces from a single laser pulse. Some 
important technical features of the LiDAR systems used in this study are presented in Table 1.

2.3	 LiDAR data processing

In the preprocessing of LiDAR point clouds (Fig. 2), noise removal (using lasnoise, Isenburg 2019), 
ground classification (lasground, Isenburg 2019) and height normalization (lasheight, Isenburg 
2019), and co-registration of HMLS and harvester LiDAR data to DLS data were performed. The 
settings for noise removal included a grid resolution of 2 meters in the horizontal plane, a vertical 
resolution of 1 meter, and points with fewer than 10 neighbors are considered isolated and poten-
tially removed. The Lasground settings included a 2-meter grid step, a 1.5-meter bulge threshold, 
a spike value of 1, a downspike threshold of 0.3, a 0.05-meter offset, and ultrafine resolution for 
more precise ground classification. The setting for lasheight we used was to compute height above 
ground and key points, and to replace Z-values, which produced height-normalized point clouds 
classified into ground and vegetation points (Fig. 3). The co-registration of HMLS with DLS was 
conducted using the Iterative Closest Point (ICP) algorithm at 50% overlap on CloudCompare to 
mitigate possible positional inaccuracies between the different LiDAR systems.

Table 1. Technical specifications of the LiDAR systems used in this study.

LiDAR system Lasers wavelength (nm) Beam radius at exit (mm) Divergence (mrad)

Riegl VUX-1HA 1550 4.5 0.5
Riegl VUX-120 1550 NA 0.4
GeoSLAM Zeb Horizon RT 903 12.7 (horizontal) × 9.5 (vertical) 3.0 × 1.2, 300 kHz
Ouster OS0 (Rev 7) 865 5 6

Fig. 2. Workflow for the plot level analysis and comparing consistencies among HMLS, DLS and harvester LiDAR 
points for low vegetation quantification in this study.
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Registration of HMLS generated cloud points with DLS generated cloud points was con-
ducted using the iterative closest point (ICP) algorithm at 50% overlap on CloudCompare tool 
to mitigate positional inaccuracies arising from different sensor systems and collection methods. 
Height normalized DLS cloud points containing the harvested area, and its periphery was segmented 
and clipped with CloudCompare tool and then processed in ArcGIS Pro to create a 5 m × 5 m 
grids shapefile (Esri 2024). Individual plots from the LAS files were extracted using the Lasclip 
function of LAStools tool.

Preprocessing of the harvester LiDAR point cloud data included additional steps as the 
data was collected continuously during harvesting operation. The main challenge was caused 
by the lack of clear pre- and post-harvest time points in the continuous flow of point cloud data. 
Therefore, the harvester’s route (Fig. 4) timestamps (trajectory) and point cloud data from each 
recording session were first used to identify LiDAR data collected during three harvesting phases: 
pre-thinning, thinning, and clear-cutting operations. However, to precisely isolate pre- and post-
harvest LiDAR data from the harvester, we cross-referenced it with HMLS or DLS point clouds 
within small, fixed plots (e.g., 25 m2 sample plot).

Fig. 3. LiDAR point clouds showing vegetation points (a–d, i) by canopy height and ground points (e–h, j) by intensity 
values: DLS preharvest (a, e), DLS postharvest (b, f), HMLS preharvest (c, g), HMLS postharvest (d, h), and harvester 
LiDAR (i, j).
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Fig. 4. Harvester trajectory. During the harvest-
ing operations, the trajectory of the harvester 
was monitored using a robotic total station.

Fig. 5. Harvested area divided into 5 m × 5 m plots (grid cells) 
and selected plots for study containing point clouds (DLS 
post-harvest LiDAR point clouds).
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A total of 46 sample plots of 25 m2 were selected (Fig. 5) based on three key criteria. First, 
all plots were located within 20 meters of the harvester’s trajectory to ensure optimal harvester 
LiDAR coverage of the forest vegetation structure and to avoid grids with occlusions. Second, 
each plot had to have both pre- and post-harvest LiDAR data from the harvester that could be 
accurately matched and compared with the HMLS or DLS datasets. Third, any grid containing point 
clouds from the harvester itself (considered noise) was excluded from selection. In such cases, an 
alternative plot without harvester-related point clouds was chosen to maintain data integrity. Then 
all the different point cloud data were clipped based on the selected sample plot border for further 
processing separately for (1) pre-harvest and (2) post-harvest (i.e. after clear cutting) point cloud.

The mid-height (5–10 m) and high (>10 m) forest trees (Goodwin et al. 2018) in the pre-
harvest LiDAR data were detected and removed from the point cloud, as suggested by Adhikari 
et al. (2023). Tree stem detection of the dominant trees was performed manually using Cloud-
Compare, as the CloudCompare plugins 3DFin and TreeIso did not perform well with our point 
clouds. Stem detection in CloudCompare, using intensity-based filtering to isolate stem points, 
was more accurate than those tools for both our harvester and HMLS LiDAR data. Once the stem 
point clouds were identified, the stem location (X and Y coordinates) was assigned by using point 
list picking function of CloudCompare. We created buffers of 20 cm, 25 cm, and 30 cm around 
each tree location using ArcGIS Pro software (Zhang et al. 2023). We evaluated the effectiveness 
of different buffer sizes and found that the 25 cm buffer did not successfully remove all stem 
points in the harvester LiDAR data, while the 30 cm buffer was effective. Therefore, we applied 
the 30 cm buffer to remove stem point clouds using LAStools (Lasclip and las2las functions). 
The remaining parts of the stem, for example branches and leaves were removed manually using 
CloudCompare.

Our tree stem detection and removal method performed well in plots with simple vegetation 
(only low and high vegetation) but struggled in dense areas containing low, mid-height, and high 
vegetation. Due to difficulties in distinguishing and removing branches and leaves in mid-height 
vegetation (even with a 30 cm buffer), we skipped stem removal for mid-height vegetation and 
treated all mid-height vegetation below 5 m as low vegetation.

The harvester LiDAR point clouds for each plot were processed using Statistical Outlier 
Removal (SOR) in CloudCompare (k = 6, σ = 1). Selective outlier removal was applied to HMLS 
data where needed, while DLS data required no such processing. Post-harvest processing was 
simplified as stem and medium vegetation removal became unnecessary, though harvester LiDAR 
data still required outlier filtering.

2.4	 Quantifying low vegetation attributes

Low vegetation attributes have been quantified in previous studies using various metrics, including 
height (Sumnall et al. 2017), height percentiles (Friedli et al. 2016; Malambo et al. 2018; Adhikari 
et al. 2023), and volume (Adhikari et al. 2023; Tienaho et al. 2024). Vegetation density has been 
assessed using voxel-grid approaches to indicate the presence or absence of vegetation points, as 
well as through detailed vertical density profiles (Sumnall et al. 2017). Other metrics include cover 
(Adhikari et al. 2023), plant density index (PDI) profiles for different low vegetation layers such 
as the forest floor (0.5–1 m), shrubs (1–2 m), and lower understory (2–5 m) (Ferrara et al. 2023), 
and biomass (Adhikari et al. 2023). For our study, we selected low vegetation attributes related to 
height variation, volume, and cover as these represent the vertical, three dimensional and horizontal 
structure of low vegetation. Low vegetation attributes using LiDAR points were estimated using 
lidR program (Roussel et al. 2024).
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2.4.1	Height

Vegetation height, in meters, was determined by removing ground points and calculating the 
height of vegetation points relative to the ground (height at zero meters) within a plot (Fig. 6a). 
Height variables such as maximum height, 99th height percentile, 95th height percentile, 90th 
height percentile, mean height, and median height were calculated. Friedli et al. (2016) demon-
strated 99th height percentile with a higher R2 value compared to maximum height between field 
data and TLS data for height measurement of maize (Zea mays), wheat (Triticum aestivum) and 
soybean (Glycine max). Similarly, Malambo et al. (2018) reported that 90th, 95th, and 99th height 
percentiles showed higher correlations compared to maximum height to field measurements of 
maize and sorghum (Sorghum bicolor). Height percentiles were used in our study because they 
reduce the effect of noise and outliers, making them more reliable for measuring low vegetation 
after harvesting trees.

2.4.2	Volume

Volume was calculated by two different methods: mean height and voxel (cubic bin; Fig. 6b) 
in cubic meter (m3) per plot (25 m2). The mean height-based volume calculation used the mean 
height of low vegetation in each square bin (grid cell) of three different sizes on each side: 5 cm, 
10 cm, and 20 cm. To calculate the total volume, the mean height in each occupied grid (containing 
at least one vegetation point) was first calculated, and then the volume for each grid was calcu-
lated by multiplying its mean height and grid size. The total volume in a plot was calculated by 
summing the volumes of all occupied grids. As suggested by Adhikari et al. (2023), this method 
is more accurate for understory biomass calculation compared to the voxel-based and alpha hull 
methods. Quantification of change in low vegetation by volumetric method using height and grid 
area (m3 ha–1) was also done in a previous study by Tienaho et al. (2024). Three voxel sizes (5 cm, 
10 cm and 20 cm on each side) were fitted to calculate vegetation volume. The total volume in a 
plot was calculated by summing the volumes of all fitted voxels occupied by low vegetation, as 
suggested by Enterkine et al. (2025). A voxel was considered occupied if it contained at least one 
vegetation point. This threshold was adopted because the maximum average number of vegetation 
points per voxel in some study plots was less than 1.5, 1.5, and 2.5 for voxel sizes of 5 cm, 10 cm, 
and 20 cm, respectively.

Fig. 6. Visualization of low vegetation structure: Point clouds (a), 10 cm voxels (b), and canopy height with grid size 
10 cm (c) (Plot code: Plot 102: harvester LiDAR before harvesting operations).
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2.4.3	Cover

The same grid sizes as used for volume calculation by mean height method (5 cm, 10 cm, and 
20 cm) were employed to calculate low vegetation cover using the canopy height model (CHM) 
(Fig. 6c) (algorithm: points to raster). Low vegetation cover was calculated by dividing the number 
of occupied grids in that plot. Since the low vegetation cover is calculated as a ratio, the maximum 
value is 1 if all the grids are occupied.

2.5	 Comparison of LiDAR systems: relationships and consistency

This study compared the consistency of harvester LiDAR, HMLS and DLS point clouds for esti-
mating low vegetation attributes through pre- and post-harvest analyses, using the same method 
for both analyses. DLS data served as the reference for calculating the coefficient of determination 
(R2) and mean difference (MD) between harvester LiDAR and DLS data, as well as between HMLS 
and DLS data. However, when comparing harvester LiDAR and HMLS data, HMLS LiDAR data 
were used as a reference.

To assess statistical differences or similarities among the LiDAR datasets, one-way analysis 
of variance (ANOVA) or non-parametric tests were conducted based on the results of normality 
and homogeneity tests. The Shapiro–Wilk test was applied to assess the normality of residuals, 
with the null hypothesis that the data are normally distributed and the alternative hypothesis that 
they are not. This test is suitable for small to moderate sample sizes and was used in accordance 
with Gyawali et al. (2022). Levene’s test was used to assess the homogeneity of variances, assum-
ing under the null hypothesis that all groups have equal variances. Both tests were conducted at a 
significance level of p < 0.05.

For low vegetation attributes that met both normality and homogeneity criteria (p > 0.05), a 
one-way ANOVA was performed to test whether there were any statistically significant differences 
among group means. The null hypothesis for ANOVA is that all group means are equal, while 
the alternative hypothesis is that at least one group differs. If significant differences were found, 
Tukey’s honestly significant difference (HSD) post-hoc test was used to identify which pairs of 
datasets differed.

For attributes where variance was homogeneous, but residuals were not normally distributed, 
we attempted data transformations (log, square root, or Box-Cox) to meet normality assumptions. 
These transformations adjust the scale or distribution of the data without changing the relative 
ranking of values, which can stabilize variance and make the data more suitable for parametric 
testing. If the transformations failed to achieve normality, we applied the Kruskal–Wallis test, a 
non-parametric alternative to ANOVA that does not assume normality or equal variances. The null 
hypothesis for Kruskal–Wallis is that all group medians are equal, and the alternative hypothesis 
is that at least one group differs. When normality assumptions, or both the normality and homo-
geneity assumptions were violated (p < 0.05), the Kruskal–Wallis test was also used, followed by 
Dunn’s post-hoc test to determine which groups differed significantly. Although post-hoc tests are 
typically used after finding significant differences, Tukey’s HSD and Dunn’s tests were applied 
here for exploratory purposes across all comparisons.

The maximum height of low vegetation points before harvesting in our study fell into two 
categories: (1) a maximum height of 5 m, which was derived from a mix of low, mid-height, 
and high vegetation, and (2) a maximum height below 5 m, which was observed in forest stands 
containing only low and high vegetation, with no mid-height vegetation. We found that 17 plots 
contained mid-height vegetation, while 29 plots did not. For the comparison of maximum height 
using R2 analysis and one-way ANOVA or Kruskal–Wallis tests, we considered only the plots con-
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taining low and high vegetation without mid-height vegetation (n = 29). This selection was made 
to minimize the influence of mid-height trees, where the maximum height was less variable and 
fixed at 5 m. This approach reduced the risk of bias and ensured that the analysis focused solely 
on the low vegetation category.

3	 Results

3.1	 Low vegetation attributes

The maximum vegetation height across all LiDAR datasets was 5 m, reflecting the maximum height 
limit of low vegetation in the study (Fig. 7a). Before harvesting, the lowest maximum height was 
2.94 m (HMLS data), indicating a mix of low and high vegetation but no mid-height vegetation. 

Fig. 7. Low vegetation height metrics (in meters) derived from three LiDAR systems (harvester LiDAR (Harv), HMLS, 
and DLS) before harvest (BH) and after harvest (AH): (a) maximum height, (b) 99th height percentile, (c) 95th height 
percentile, (d) 90th height percentile, (e) mean height, and (f) median height. Red points and red numerical values 
indicate the mean values.
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After harvesting, this value dropped to 0.59 m (DLS data), suggesting that some low trees or shrubs 
(<5 m) were also removed. The mean maximum height decreased by 1.15–1.23 m due to harvesting.

A similar pattern of reduction was observed in the mean values of the 99th (Fig. 7b), 95th 
(Fig. 7c), and 90th (Fig. 7d) height percentile across all LiDAR systems. Mean and median heights 
showed smaller decreases in absolute height (Fig. 7e and Fig. 7f), but larger percentage reduc-
tions compared to the higher percentile metrics, highlighting significant changes in low vegeta-
tion structure. These consistent declines across all systems confirm the effectiveness of LiDAR in 
quantifying vegetation height dynamics associated with harvesting activities.

The 20 cm voxels produced the highest low vegetation points occupied volume before har-
vesting (63.65 m3 by HMLS, Fig. 8f) and after harvesting (49.37 m3 by DLS, Fig. 8f). The lowest 
volume was recorded with the 5 cm voxel, measuring 0.55 m3 before harvesting and 1.28 m3 after 
harvesting by DLS (Fig. 8d). Using a 5 cm voxel slightly overestimated post-harvest low vegetation 
volume compared to pre-harvest for HMLS and DLS. However, for harvester LiDAR, pre-harvest 
volume is higher than post-harvest at this voxel size (Fig. 8d).

For larger voxel sizes (10 cm and 20 cm, Figs. 8e, 8f) and the mean height-based method 
(Figs. 8a–c), all three LiDAR systems showed a reduction in low vegetation volume after harvesting. 
Volume reductions are more consistent across systems when using the mean height-based method 
(6.8–10.9 m3) compared to the voxel method (0.77–11.79 m3).

Fig. 8. Low vegetation points-occupied volume metrics (m3 per plot of 25 m2) from three LiDAR systems before and 
after harvesting. Volumes were estimated using the mean height method with 5 cm (a), 10 cm (b), and 20 cm (c) grids, 
and by fitting voxels of 5 cm (d), 10 cm (e), and 20 cm (f).
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Low vegetation cover ranged from 0.55 to 1 for harvester LiDAR, 0.61 to 1 for HMLS 
LiDAR, and 0.66 to 1 for DLS LiDAR, indicating a similarity among these LiDAR datasets in 
estimating vegetation cover and highlighting high vegetation cover based on LiDAR vegetation 
points (Fig. 9). It was also observed that the low vegetation cover was slightly higher for post-
harvest (for harvester LiDAR, HMLS and DLS with 5 cm grid) than for pre-harvest. This could 
be due to better coverage or improved capture of low vegetation by LiDAR sensors in the absence 
of trees and in areas with sparse vegetation.

3.2	 Relationship among LiDAR systems

Maximum height and higher height percentiles (99th, 95th, and 90th) showed strong correlations 
among LiDAR systems, with R2 values ranging from 0.76 to 0.98, and correlations were stronger 
post-harvest compared to pre-harvest (Supplementary file S1: Figs. S1a, S1b, S1c, and S1d, avail-
able at https://doi.org/10.14214/sf.25013). Mean height showed moderate to high correlations 
(R2 0.56–0.88) (Suppl. file S1: Fig. S1d). Weak correlations were found for median height between 
DLS and HMLS (R2 0.28–0.34); however, there was a moderate correlation between harvester 
LiDAR and HMLS before harvest (R2 0.57) and a strong correlation after harvest (R2 0.8) (Suppl. 
file S1: Fig. S1f).

Mean height-based volume estimates exhibited strong correlations before harvesting 
(R2 0.87–0.93) and remained high post-harvest (R2 0.90–0.98) (Suppl. file S1: Figs. S2a, S2b, 
and S2c). Volume estimates based on voxels showed poor correlations, especially for 5 cm voxels 
where R2 ranged from 0.01 to 0.24 (Suppl. file S1: Fig. S2d) before harvesting, improving only 
slightly post-harvest to 0.56 for 10 cm voxels (Suppl. file S1: Fig. S2e) and 0.83 for 20 cm voxels 
(Suppl. file S1: Fig. S2f).

Low vegetation cover estimates showed very weak agreement among all three LiDAR sys-
tems across all grid sizes and harvest conditions, with R2 values close to zero, except for a slight 
improvement post-harvest between HMLS and DLS reaching 0.57 (Suppl. file S1: Figs. S3a, S3b, 

Fig. 9. Low vegetation cover metrics from three LiDAR systems before and after harvesting. Cover was estimated  
using 5 cm (a), 10 cm (b), and 20 cm grids (c).

https://doi.org/10.14214/sf.25013
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and S3c). These low R2 values indicate very weak linear relationships between LiDAR systems 
for estimating low vegetation cover.

3.3	 Consistencies among LiDAR systems

Only the 90th height percentile preharvest met the normality criteria (W = 0.98, p-value = 0.129). 
Levene’s test showed that some pre-harvest (volume with 5 cm and 10 cm voxels, cover attributes) 
and post-harvest attributes (mean height, median height, volume with 5 cm voxel, cover attributes) 
did not meet the homogeneity of variance criteria and were analyzed using the Kruskal–Wallis 
test. For attributes that met homogeneity but not normality, data transformation was attempted on 
99th height percentile, 95th height percentile, and various volume estimates. Transformation was 
successful for volume estimated with 20 cm voxels and volume calculated using the mean height 
method for pre- and post-harvest, as well as post-harvest volume with 10 cm voxels, allowing 

Table 2. Results of ANOVA and Kruskal–Wallis test on harvester, HMLS and DLS LiDAR for quantifying low vege-
tation attributes. Test values for one way ANOVA is F-statistic value (F) and for Kruskal–Wallis test Chi-square value 
(χ2). Short form written in the Test columns: K–W indicate Kruskal–Wallis test, ANOVA indicate one-way ANOVA, 
and logt, Sqrt, and Box-Cox represent the data transfomation process used to proceeed with one-way ANOVA test.  
p-values in bold indicate statistical significance (p < 0.05).

Low vegetation 
attributes

Pre-harvest Post-harvest
Test 

value
p-value Adjusted p-value Test Test 

value
p-value Adjusted p-value Test

Har-
vester 
– DLS

HMLS  
– DLS

HMLS 
– Har-
vester

Har-
vester 
– DLS

HMLS  
– DLS

HMLS 
– Har-
vester

Maximum height 
(m) 0.682 0.718 0.632 0.853 1.000 K–W 0.405 0.820 1.000 0.796 1.000 K–W

99th height  
percentile (m) 3.809 0.149 0.320 0.081 0.744 K–W 4.863 0.087 0.198 0.047 0.779 K–W

95th height  
percentile (m) 8.948 0.011 0.037 0.006 0.825 K–W 11.870 0.0026 0.0096 0.0021 0.960 K–W

90th height  
percentile (m) 8.138 0.0004 0.004 0.0008 0.855 ANOVA 18.570 9.25e-05 0.0005 0.0002 1.000 K–W

Mean height  
(m) 19.75 3.01e-08 0.0000 0.0000 0.716 Box-Cox 21.810 1.83e-05 0.0004 0.0000 0.771 K–W

Median height 
(m) 39.092 3.24e-09 0.0000 0.0000 0.669 K–W 40.517 1.59e-09 0.0000 0.0000 0.250 K–W

Volume with  
5 cm grid (m3) 0.721 0.488 0.500 0.624 0.978 Sqrt 0.984 0.377 0.816 0.708 0.344 logt

Volume with  
10 cm grid (m3) 0.058 0.943 0.999 0.948 0.958 Sqrt 1.343 0.264 0.951 0.428 0.273 Box-Cox

Volume with  
20 cm grid (m3) 0.209 0.812 0.959 0.795 0.927 logt 1.611 0.204 0.980 0.232 0.317 Box-Cox

Volume with  
5 cm voxel (m3) 75.229 2.2e-16 0.0000 0.0001 0.0000 K–W 66.027 4.59e-15 0.0000 0.0000 0.058 K–W

Volume with  
10 cm voxel (m3) 38.793 3.76e-09 0.0000 0.0132 0.0005 K–W 4.618 0.0115 0.036 0.018 0.966 Box-Cox

Volume with  
20 cm voxel (m3) 2.674 0.072 0.059 0.613 0.366 logt 0.755 0.472 0.993 0.507 0.573 Box-Cox

Cover with  
5 cm grid 18.511 9.55e-05 0.0001 0.0010 0.846 K–W 42.358 6.33e-10 0.0000 0.0003 0.0085 K–W

Cover with  
10 cm grid 47.828 4.11e-11 0.0000 0.0000 0.079 K–W 48.547 2.87e-11 0.0000 0.0021 0.0003 K–W

Cover with  
20 cm grid 48.470 2.97e-11 0.0000 0.0000 0.025 K–W 42.812 5.05e-10 0.0000 0.082 0.0000 K–W
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one way ANOVA test to compare the harvester, HMLS, and DLS LiDAR systems. Attributes that 
remained non-normal after transformation were analyzed using the Kruskal–Wallis test (Table 2).

The Kruskal–Wallis test results showed that for maximum height and the 99th height per-
centile, both pre- and post-harvest, there were no significant differences among the three LiDAR 
systems, indicating high consistency in estimating low vegetation maximum height (p = 0.718 pre-
harvest, p = 0.82 post-harvest) and the 99th height percentile (p = 0.149 pre-harvest, p = 0.087 post-
harvest). However, for other height attributes (90th height percentile, mean, and median height), 
significant differences were observed both pre- and post-harvest. The post-hoc tests (Tukey’s HSD 
for ANOVA and Dunn’s test for the Kruskal–Wallis test) revealed significant differences between 
DLS and harvester LiDAR, as well as between DLS and HMLS. harvester LiDAR and HMLS 
consistently estimated all height attributes for both pre- and post-harvest low vegetation, with 
p-values ranging from 0.25 to 1.

Consistency among the three LiDAR systems was observed in estimating low vegetation 
volume using the mean height method with 5 cm, 10 cm, and 20 cm grids, as well as in volume 
estimations using large voxels (20 cm) for both pre- and post-harvest low vegetation (Table 2). 
However, there was no consistency among the three LiDAR systems in estimating pre-harvest low 
vegetation volume using smaller voxels (5 cm and 10 cm). The post-hoc analyses, using Dunn’s test 
for the Kruskal–Wallis test and Tukey’s HSD for ANOVA, yielded varying results depending on 
the voxel size used to calculate post-harvest low vegetation volume. At the 10 cm voxel resolution, 
the p-value was 0.966, indicating no statistically significant difference between harvester LiDAR 
and HMLS. At the 5 cm resolution, the p-value was 0.058, which also does not meet the threshold 
for statistical significance but is close to the conventional cutoff of 0.05. Although both voxel sizes 
showed no statistically significant differences, the 5 cm result should be interpreted with greater 
caution due to its proximity to the significance threshold, which may suggest a potential trend or 
sensitivity to data variability.

The Kruskal–Wallis test results indicated a very high significant difference among the LiDAR 
systems in estimating low vegetation cover for both pre- and post-harvest (p < 0.0001). Dunn’s post-
hoc test for the Kruskal–Wallis analysis revealed that harvester LiDAR and HMLS were consistent 
in estimating low vegetation cover at smaller resolutions (5 cm and 10 cm, p-values: 0.846 and 
0.079, respectively) for pre-harvest. Additionally, consistency was observed between HMLS and 
DLS for estimating low vegetation cover at higher resolutions (20 cm grid, p-value 0.082). Post-hoc 
tests from Kruskal–Wallis or ANOVA indicated general consistency between LiDAR systems in 
estimating low vegetation cover and volume using the voxel method; however, the corresponding 
R2 values were low and inconsistent. For example, high consistency between the harvester and 
HMLS systems before harvesting for estimating cover using a 5 cm grid (p = 0.846) corresponded 
with a very low R2 value (R2 0.05) (Suppl. file S1: Fig. S3a). Similarly, for the 10 cm grid, which 
also showed consistency (p = 0.079), the R2 value was only 0.08 (Suppl. file S1: Fig. S3b). For the 
cover estimated using 20 cm grid after harvest, the comparison between HMLS and DLS resulted 
in an R2 of 0.57 (Suppl. file S1: Fig. S3a), with a p-value of 0.082 (Table 2) indicating consistency. 
A very high consistency was observed between HMLS and harvester for estimating volume using a 
10 cm voxel size after harvest (p = 0.966), yet the R2 value was moderate (R2 0.52) (Suppl. file S1: 
Fig. S2e). For the 5 cm voxel size, the R2 was 0.24 (Suppl. file S1: Fig. S2d) despite a relatively 
consistent result (p = 0.058) (Table 2). These findings suggest that although there is statistical agree-
ment at the group level, voxel-based and cover-based estimates, particularly at finer resolutions, 
have limited ability to explain variability across LiDAR systems.

In summary, harvester LiDAR, HMLS, and DLS demonstrated consistency in estimating 
low vegetation maximum height, volume calculated using a 20 cm voxel, and volume calculated 
using the mean height and cover methods with 5 cm, 10 cm, and 20 cm grids.
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4	 Discussion

Quantifying the vegetation characteristics using LiDAR technology requires careful consideration 
of several important factors, including the selection of reference data, standardized methodology, 
appropriate LiDAR metrics (Campbell et al. 2018; Adhikari et al. 2023), and explanatory variables 
(Adhikari et al. 2023; Enterkine et al. 2023), all of which we considered in our study. We selected 
DLS and HMLS (rather than field data) for comparison with harvester LiDAR due to their non-de-
structive sampling advantages and widespread use in forest inventory as ALS has shown higher 
precision for structure, cover, and maximum height (Sumnall et al. 2017; Venier et al. 2019) of low 
vegetation. MLS applications for low vegetation remain limited but are well-established for forest 
inventory and understory trees (Lin et al. 2014) and excels in DBH measurement (Hyyppä et al. 
2020; Stal et al. 2021; Vatandaşlar and Zeybek 2021) and used for below-canopy structural attri-
bute extraction (Ryding et al. 2015) and individual tree mapping (Tupinambá-Simões et al. 2023).

To achieve our study objectives, we quantified low vegetation characteristics including 
height, volume, and cover through an area-based grid processing of point cloud data. To under-
stand harvesting impacts on low vegetation, we compared these vegetation metrics before and after 
clear-cutting operations. Furthermore, we systematically evaluated the performance consistency 
between harvester LiDAR, HMLS, and DLS systems for estimating low vegetation parameters.

It is not logical to directly compare our results on quantified low vegetation attributes with 
those from previous studies, as low vegetation characteristics vary between forest stands due to 
factors such as vegetation condition, the maximum height threshold considered, estimation method 
and the defining criteria of low vegetation based on study objectives. This is particularly evident in 
volume estimates, where different methods yield varying results. In our study, we did not consider 
the stems of dominant trees (high vegetation) as low vegetation. In contrast, Tienaho et al. (2024) 
included tree stems in their assessment of fire-induced ground vegetation changes (vegetation <2 m). 
Adhikari et al. (2023) reported that different methods with varying resolutions produced different 
volume estimates for the same plot. While we acknowledge these methodological differences, our 
focus is not on the absolute quantity of volume estimated but rather on the comparative patterns 
of estimation between voxel-based and mean height-based approaches. Our findings revealed both 
consistency and discrepancies with their results. Adhikari et al. (2023) reported that the highest 
mean volume was obtained using a 20 cm voxel, followed by the mean height method (20 cm 
grid), then the 10 cm grid, and finally the 10 cm voxel, which yielded the lowest volume. Our study 
aligned with theirs in that the 20 cm voxel produced the highest mean volume. However, the pattern 
diverges in that the lowest volume in our case was estimated using either the 10 cm voxel or the 
10 cm grid, depending on LiDAR type and pre- or post-harvest conditions. These differences may 
stem from variations in vegetation structure, plot size, and LiDAR systems. Adhikari et al. (2023) 
analyzed low vegetation up to 3 m in height within a well-managed pine forest in Florida, USA, 
using TLS in 1 m × 1 m subplots. In contrast, our study considered vegetation up to 5 m in a mixed 
boreal forest, with larger 5 m × 5 m plots, which likely contributed to the observed discrepancies.

A key limitation of voxelization is the risk of volume overestimation when voxels are con-
sidered occupied based on just one or a few points, especially in sparse vegetation and with larger 
voxel sizes. To address this issue, we employed relatively small voxel resolutions (5 cm, 10 cm, 
and 20 cm) and established a minimum point threshold to determine voxel occupancy. In our study, 
pre-harvest data in certain plots exhibited low point densities, with fewer than two vegetation 
points per voxel for the 5 cm and 10 cm sizes, and fewer than 2.5 points for the 20 cm voxels. We 
adopted a conservative threshold of one point per voxel to define occupancy. While this criterion 
may have introduced some degree of overestimation, it provided a consistent basis for comparison. 
Future research could enhance volume estimation accuracy by implementing more sophisticated 
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approaches, such as adaptive point thresholds or alternative metrics suited for low-density vegeta-
tion and understory characterization beneath dense canopy cover.

After quantifying low vegetation characteristics, this study assessed the consistency among 
three LiDAR systems in measuring low vegetation before and after harvest. We assessed agreement 
and discrepancies using the coefficient of determination (R2), mean difference values, one-way 
ANOVA, and the Kruskal–Wallis test. The harvester LiDAR data showed both agreements and 
discrepancies with HMLS and DLS in estimating low vegetation attributes. For height variables 
such as maximum height and the 99th height percentile, results were consistent across the systems. 
Similarly, volume estimation using the mean height method and higher voxel size (20 cm) also 
demonstrated consistency. Previous studies support the effectiveness of volume-based metrics (e.g., 
voxel-based and mean height-based approaches) for low vegetation volume and biomass estimation. 
Adhikari et al. (2023) reported that the mean height-based volumetric method at 10 cm resolution 
had the highest predictability (adjusted R2 0.80), followed by 20 cm resolution (adjusted R2 0.78). 
In contrast, Cooper et al. (2017) observed lower prediction accuracy (R2 0.42–0.54) using a mean 
height and area-based method. Enterkine et al. (2023) revealed that voxel sizes of 0.5 cm best 
represented biomass (R2 0.42), while Li et al. (2021) demonstrated high predictability (R2 0.69) 
for shrub biomass using a mean height-based method. This study did not explore comparisons 
between voxel-based and mean-height-based volume metrics in terms of their strengths, limita-
tions, and suitability for specific research objectives. Nevertheless, findings from both this study 
and Adhikari et al. (2023) suggest that volume is significantly influenced by voxel size than by grid 
size in the mean-height method. This presents another area for future investigation, particularly in 
optimizing volume metrics for low vegetation analysis.

Post-hoc test results of our study indicated that harvester LiDAR aligned with HMLS in 
estimating other height variables (95th height percentile, 90th height percentile), voxel-based 
volume (post-harvest), and cover attribute relationships not observed between harvester LiDAR 
and DLS or between HMLS and DLS. This suggests that harvester LiDAR and HMLS are compa-
rable for estimating low vegetation attributes. However, despite a consistent relationship (p > 0.05) 
between harvester LiDAR and HMLS, low R2 values (<0.1) indicate a non-normal distribution of 
vegetation LiDAR points and a non-linear relationship between the two systems, as the coefficient 
of determination (R2) primarily quantifies the strength of linear relationships (Pennsylvania State 
University 2018).

Our study faced specific challenges in point cloud processing and low vegetation detec-
tion, presenting opportunities for further research and methodological improvements. Rather than 
directly identifying low vegetation, which is inherently difficult as noted by Huo et al. (2022), we 
adopted an approach based on detecting medium and high vegetation by their stems and remov-
ing them using a 30 cm linear buffer, as suggested by Zhang et al. (2023). Huo et al. (2022) par-
tially addressed this issue through their Symmetrical Structure Detection (SSD) algorithm, which 
successfully separated overstory and understory LiDAR points. However, their study excluded 
vegetation below 1 m due to validation constraints, whereas our research considers all vegetation 
under 5 m. This methodological difference highlights a persistent gap in low vegetation detection 
frameworks and underscores a promising avenue for future studies. Additionally, the complex 
vegetation structure comprising low, medium, and high strata posed a significant challenge in 
completely removing medium vegetation, including branches and leaves, without inadvertently 
eliminating low vegetation point clouds. As outlined in our methodology, this limitation neces-
sitated distinct processing approaches for medium and high vegetation. While a unified method 
for both categories would have been ideal, practical constraints made this infeasible. Addressing 
these issues in future studies could lead to more refined methodologies for low vegetation detec-
tion in complex forest environments.
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Another challenge in data processing arose from the limitations of the harvester LiDAR, 
particularly when handling over 600 LAS files due to the system’s limited range. While effective 
within 15 m of its trajectory, point density declined markedly beyond 20 m (Faitli et al. 2024), 
necessitating labor-intensive manual processing. Future improvements should focus on extending 
LiDAR range to enhance data accuracy for distant vegetation and developing automated process-
ing techniques to boost efficiency. Addressing these gaps could refine low vegetation detection 
methods, advancing forest monitoring and management practices.

5	 Conclusion

This study demonstrated the reliable performance of harvester-mounted LiDAR compared to 
handheld and drone-based systems in accurately estimating key low vegetation attributes using 
area-based point cloud processing techniques. These attributes include maximum height, the 99th 
height percentile, and volume derived using the mean height and cover methods, particularly at 
smaller grid sizes (5 cm, 10 cm, and 20 cm) and with 20 cm voxel resolution. Inconsistencies 
appeared for other low vegetation metrics, such as cover estimated with 5 cm, 10 cm, and 20 cm 
grids, volume calculated using smaller voxels (5 cm and 10 cm), and height metrics including 
the 90th and 95th percentiles, mean height, and median height. Consistent results underscore the 
potential to integrate harvester-mounted LiDAR into routine forestry operations for efficient and 
accurate low vegetation assessment. Accurate quantification of low vegetation using this technol-
ogy offers valuable opportunities to support sustainable harvesting practices, enhance wildlife 
habitat identification, and contribute to biodiversity conservation by providing precise data on key 
indicators such as dense vegetation patches favoured by game species.
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