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The spatial dependence present in a natural stand of Eucalyptus pilularis (Smith) dominated 
mixed species forest was characterised and modelled. Two wildfires imposed a significant 
spatial dependence on the post disturbance stand. It was hypothesised that spatial variation 
in the intensity of the wildfires generated the observed structures. The influence of patch 
formation, micro-site variability and competitive influences were also noted in the residuals 
of a distance-dependent individual-tree growth model. A methodology capable of modelling 
these complicated patterns of observed dependence was sought, and candidates included the 
spatial interaction, direct specification and Papadakis methods. The spatial interaction method 
with a moving average autoregression was identified as the most appropriate method for 
explicitly modelling spatial dependence. Both the direct specification and Papadakis methods 
failed to capture the influence of competition. This study highlights the possibility that stand 
disturbances such as natural and artificial fires, insect and fungal attacks, and wind and snow 
damage are capable of imposing powerful spatial dependencies on the post disturbance stand. 
These dependencies need to be considered if individual tree growth models are to provide 
valid predictions in disturbed stands.
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1 Introduction

There is growing agreement among forest growth 
modellers that the individual trees of forests 
can no longer be considered independent units 
(Tomppo 1986, Fox et al. 2001, Garcia 2006). 
Independence has traditionally been assumed to 
facilitate the use of classical statistical methods 
such as ordinary least squares. Several recent 
studies in even-aged stands (Fox et al. 2007a, 
Fajardo and McIntire 2007) have indicated that 
individual trees are spatially dependent, and in 
Fox et al. (2007b), this spatial dependence was 
incorporated in an individual tree growth model. 
In this study we depart from the relatively simple 
spatial scenario of evenly-aged and evenly-spaced 
stands to an irregular naturally occurring mixed 
species stand dominated by Eucalytpus pilularis. 
Irregularly structured E. pilularis is charactersised 
by complex spatial patterns (Florence 1996) and 
in this instance patterns are further confounded by 
spatially heterogeneous disturbance due to wild-
fire and harvesting. The challenge is to character-
ise and model these complicated spatial structures 
so they can be incorporated in an individual-tree 
growth model.

The study of spatial dependence in forests has 
diverged into two distinct literatures in the last 
20 years; studies that examine spatial pattern in 
even-aged stands (Samra et al. 1990, Magnussen 
1994, Fox et al. 2007a), and studies in irregularly 
structured stands (Sakai and Oden 1983, Biondi et 
al. 1994, Zhang et al. 2004). The two scenarios are 
quite distinct; spatial patterns in even-aged stands 
are predictable through stand development (Fox et 
al. 2001, Fajardo and McIntire 2007), whilst those 
in irregular stands are rarely predictable and are 
subject to multiple confounded spatial influences 
(Kenkel et al. 1997). This contribution examines 
the later scenario, and intends to advance this 
literature by explicitly modelling complicated 
patterns of spatial dependence in an individual-
tree growth model.

Characterisation of the spatial dependance 
affecting forest growth and yield models is rarely 
done (Dennis et al. 1985, Gregoire et al. 1995), 
even though it may be having a significant influ-
ence on the estimation and prediction properties 
of individual-tree growth models (Garcia 1992, 

Fox et al. 2001). In this study residuals from a 
distance-dependent, individual-tree model devel-
oped for irregular E. pilularis are examined for 
the presence of spatial dependence. An observed 
significant residual spatial dependence would 
make it desirable to model the dependence for 
inclusion in growth models. Possible methodolo-
gies include the spatial interaction methodology 
(Cressie and Hartfield 1996), the direct specifi-
cation methodology (Zimmerman and Harville 
1991), and the Papadakis method (Bartlett 1978). 
These methods were applied to even-aged forests 
in Fox et al. (2007b), but have not been applied 
to irregularly structured forests.

This study examines spatial growth dynamics 
over 50 years of measurement of the Burrawan 
native forest growth plot. The Burrawan plot 
is historically significant, representing the first 
effort to collect growth information on the coastal 
eucalypt resource of New South Wales, Australia. 
Coastal E. pilularis does not form reliable annual 
growth rings, therefore long-term measurements 
of individual tree growth were required to esti-
mate volume tables. In 1948, the Burrawan plot 
was measured for individual tree diameter and 
height. In 1951, measurements from the Burrawan 
plot were used to compile one of the first scientifi-
cally credible volume tables for the New South 
Wales coastal eucalypt resource, and an optimal 
rotation age of 80 years was identified (Henry 
1955). The Burrawan growth plot was measured 
16 times between 1948 and 1998, representing a 
rare insight into the growth and spatial dynamics 
of a naturally occurring stand. There is a paucity 
of long-term, spatially-mapped growth experi-
ments (Biondi et al. 1994), and the Burrawan 
growth plot is a rare exception. This contribution 
represents the first published account of the spa-
tial growth dynamics in this historical plot.

Studies in irregular forests have predominantly 
observed positive spatial dependence among 
individual-tree attributes (e.g. Sakai and Oden 
1983, Geburek and Tripp-Knowles 1994, Biondi 
et al. 1994, Kuuluvainen et al. 1996, Kenkel et 
al. 1997, Kuuluvainen et al. 1998, Zhang et al. 
2004). Positive dependence has been associated 
with structural irregularities such as patches of 
similarly sized trees (e.g. Sakai and Oden 1983, 
Geburek and Tripp-Knowles 1994, Biondi et al. 
1994, Kenkel et al. 1997). In addition to struc-



37

Fox, Bi and Ades Modelling Spatial Dependence in an Irregular Natural Forest

tural irregularities, micro-site variability may be 
amplifying positive spatial dependence among 
individual trees (Matern 1960). Spatial varia-
tion is further complicated by competition that 
induces a confounding negative dependence over 
short inter-tree distances (Matern 1960). This 
confounding influence has been observed in a 
mature mixed scots pine (Pinus sylvestris L.) 
and silver birch (Betula pendula Roth) stand in 
Northern Finland by Penttinen et al. (1992). Fur-
ther, the existence of a persistent sub-canopy in 
an irregular forest may strengthen negative spatial 
dependence (Kenkel et al. 1997). The presence of 
multiple spatial influences can generate compli-
cated patterns of spatial dependence in natural 
forests. If these complicated patterns can be char-
acterised and modelled they can be incorporated 
in forest growth models for improved estimation 
and prediction (Fox et al. 2001).

Previous studies in natural forests have quan-
tified spatial dependence for a number of indi-
vidual tree attributes including diameter (Sakai 
and Oden 1983, Penttinen et al. 1992, Geburek 
and Tripp-Knowles 1994, Biondi et al. 1994, 
Kuuluvainen et al. 1996, Kenkel et al. 1997, 
Kuuluvainen et al. 1998), diameter increment 
(e.g. Biondi et al. 1994), height (e.g. Penttinen et 
al. 1992, Geburek and Tripp-Knowles 1994, Kuu-
luvainen et al. 1996, Kuuluvainen et al. 1998) and 
diameter-height relationships (Zhang et al. 2004). 
Nearly all these studies observed positive spatial 
dependence in the attributes of individual trees. 
Biondi et al. (1994) observed consistent positive 
spatial dependence in diameter through 70 years 
of measurement for an old growth forest, which 
they attributed to a constant patch size. Biondi et 
al. (1994) also observed that spatial dependence in 
diameter increment was more variable across the 
70 years of measurement. Spatial dependence in 
diameter increment is more variable because it is 
more sensitive to seasonal climatic influences and 
the confounding influence of competition.

Competition, micro-site influences, and struc-
tural irregularities such as patches have been 
recognised as key factors that influence the spatial 
structure of natural forests. However, they are 
not the only factors affecting spatial structure, 
and other less recognised factors include genetic 
architecture and a variety of natural and artificial 
disturbance events. Spatial genetic architecture, 

which is only prevalent in natural forests, has been 
found to produce negligible spatial dependence 
with respect to the presence of particular genetic 
characteristics (e.g. Epperson and Allard 1989, 
Xie and Knowles 1991, Knowles 1991, Geburek 
1993, and Leonardi et al. 1996). It is therefore 
unlikely that it will exert a significant influence on 
spatial patterns of tree size and growth in natural 
forests (Sakai and Oden 1983).

Disturbance events affecting forests include 
artificial and natural fire, insect attacks, fungal 
attacks, and the impacts of environmental factors 
such as wind and snow damage. Most of these 
disturbances are spatially heterogeneous with 
respect to their intensity. When the intensity of 
such disturbances is spatially structured it could 
be hypothesised that the size and growth of trees 
in the post-disturbance forest will follow this 
structure (Miller and Urban 1999). Disturbance 
from fire is an example of an event that is strongly 
spatially heterogeneous; the intensity of a fire at 
any point in the stand is dependent on topography, 
fuel load, vegetation mosaic, moisture, and wind 
gusts (Williams et al. 1994). Disturbances from 
insect attack have also been shown to be spa-
tially heterogeneous (Preisler 1993, Preisler et al. 
1997). Disturbances from wind, snow and some 
pathogens would be expected to exhibit simi-
lar heterogeneity over space. Disturbance events 
should impose strong spatial dependencies on the 
post disturbance stand suggesting that models 
explicitly incorporating spatial dependence may 
be required in disturbed stands. The Burrawan 
plot is subject to two wildfire events and two 
harvesting events, and examination of post dis-
turbance spatial patterns can test the hypothesised 
strengthening of spatial dependence, and possi-
bilities for its explicit modelling.

The objectives of this study were to charac-
terise and model the spatial dependence among 
individual trees in an irregular E. pilularis forest, 
and examine whether spatially heterogeneous dis-
turbance events induce spatial dependence in the 
post disturbance stand.
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2 Materials and Methods

2.1 The Burrawan Native Forest 
Growth Plot

The Burrawan growth plot is located in the Bur-
rawan State Forest in proximity to Wauchope, 
New South Wales, Australia. The large plot (4.047 
ha) is located in a E. pilularis dominated regrowth 
forest on a fertile, well drained site. Regenerated 
from about 1900, this regrowth forest is repre-
sentative of much of the native forest prevalent on 
central New South Wales’s coastal sites. The plot 
consists of 70% E. pilularis with the remaining 
30% made up of tolerant species including Red 
mahogany (E. resinifera Smith), Tallowwood (E. 
microcorys F. Muell.), Red bloodwood (E. gum-
mifera (Sol. ex Gaertner) Hochr.), and Turpentine 
(Syncarpia glomulifera (Smith) Niedenzu). All 
species were included in the following analy-
sis, and complex spatial structures may evolve 
in these forests because of this mix of species 
(Florence 1996). The growth plot has a long 
measurement history commencing in 1948, and 
was originally established to satisfy a need for 
growth data in coastal forests (Henry 1955). 
Between 1948 and 1998 the Burrawan plot was 
measured for individual tree diameters 16 times. 
The spatial positions of individual stems were 
also recorded in 1948, 1960, and 1983. In 1998 
the diameter, height, and spatial positions of all 
remaining stems and stumps were measured by 
the primary author.

The Burrawan plot was subject to two impor-
tant disturbance events. The plot was severely 
burnt in 1952 by a wildfire that affected a large 
area of coastal eucalypt forest around Wauchope. 
Some areas of the plot were severely affected and 
trees from these areas were subsequently removed 
by a salvage operation in 1960. Wildfire again 
affected the plot in 1978. Although this fire was 
less intense, in some areas of the plot trees were 
scorched to a height of 20 metres. These two 
wildfires would be expected to exhibit spatially 
heterogeneous intensity across the large Burrawan 
plot. We could therefore expect an expression of 
this spatial heterogeneity in individual tree growth 
in the post disturbance stand.

2.2 Individual-Tree Growth Model

A distance-dependent, individual-tree growth 
model was developed for irregular E. pilularis 
(Fox 2000):

ADIi = α + β Di + χ APASWCi + δ TRVRBi + εi (1)

where ADIi is the annual diameter increment, Di 
the diameter, APASWCi the squared weighted 
and constrained area potentially available index 
(Nance et al. 1987), and TRVRBi the change in 
the RB competition index as a result of a thinning 
event for tree i. RB is the distance-independent 
index of Glover and Hool (1979) and εi is the 
residual term.

Model (Eq. 1) was fitted to each individual 
measurement of the Burrawan plot and a set 
of residuals estimated. Boundary trees (trees 
within 15 metres of the plot boundary) were 
excluded, thus preventing the errors associated 
with a boundary effect (Monserud and Ek 1974). 
Residuals were then subject to analysis for the 
presence of spatial dependence.

2.3 Characterising Spatial Dependence in 
Model Residuals

Spatial dependence in model residuals was char-
acterised using correlograms based on standard-
ised Moran’s I (Moran 1950, Cliff and Ord 1981). 
Moran’s I was converted into a standard normal 
deviate using the expected value and variance 
under the normality assumption, as defined by 
Cliff and Ord (1972). The application of cor-
relograms is dependent on the assumption of 
spatial stationarity, i.e., directional and locational 
invariance. This was confirmed for measurements 
of the Burrawan plot using median polish and 
directional semivariograms (Cressie 1986).

For investigating residual dependence for the 
candidate methodologies, Moran’s I was used 
to construct unstandardised correlograms. The 
candidate methods alter the variance-covariance 
matrix to incorporate spatial dependence. With 
off-diagonal terms in the matrix, standardised 
Moran’s I is not longer valid (Anselin and Kel-
ejian 1997), and instead an unstandardised cor-
relogram is used.
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2.4 Modelling Spatial Dependence

Several candidate methodologies exist including 
the spatial interaction method, the direct specifica-
tion method, and the Papadakis method (Fox et al. 
2007b). The intention of these methods is to amel-
iorate residual spatial dependence. Because Equa-
tion 1 already includes deterministic structures for 
tree size, competition and thinning, residuals will 
include adjustments to these structures. Caution 
needs to be practiced when interpreting these 
confounded residual spatial structures. A brief 
description of their application on the Burrawan 
plot is included below.

2.4.1 Spatial Interaction Models

Spatial interaction models employ probability 
distributions to model the spatial dependence 
prevalent among a set of points in space. The 
simultaneous autoregression (SAR) uses a joint 
probability distribution to model the autoregres-
sive process in the response (Whittle 1954) while 
the conditional autoregression (CAR) uses a 
conditional probability distribution to model the 
autoregressive process in the response (Besag 
1974). The moving average autoregression (MA) 
uses a joint probability distribution to model the 
autoregressive process in the error term (Haining 
1978).

Implementation of the three autoregressive 
models requires a correctly designed spatial 
dependence matrix. A design capable of simul-
taneously modelling spatial dependence induced 
by competitive and micro-site influences (Fox et 
al. 2007b) was adapted for the Burrawan plot. 
This design used two matrices and facilitated a 

separate spatial dependence parameter for the two 
influences. Each element (sij) of the final spatial 
dependence matrix S for the SAR specification 
was generated using the sum of elements from 
the two matrices WC and WM:

sij = θcwcij + θmwmij (2)

where θc and θm are the spatial dependence param-
eters and wcij and wmij are elements of the spatial 
weights matrices characterising competitive and 
micro-site influences respectively. Similar defini-
tions of the spatial dependence matrix for the MA 
and CAR specifications were also used.

Residual correlograms were examined to iden-
tify the scale of spatial dependence, and each 
element of the competitive matrix (wcij) and the 
micro-site matrix (wmij) for the various measure-
ments of the Burrawan plot were calculated as in 
Table 1. The 1952 measurement did not exhibit 
any negative dependence over short inter-tree 
distances, therefore the competitive matrix was 
omitted. Residual correlograms for the 1952 and 
1978 measurements showed a slow decline in 
positive spatial dependence for larger inter-tree 
distances. To effectively model this decline, the 
distance over which trees were included was 
expanded to 20 metres, and the inverse square 
root of inter-tree distance was used as the weight, 
thus providing a slower decline in wmij for larger 
inter-tree distances.

Estimation of spatial interaction models was 
carried out by maximum likelihood methods 
(Mardia 1990, Cressie 1993). The S-plus function 
slm was used to estimate the spatial interaction 
models (Kaluzny et al. 1997).

Table 1. Definition of the competitive and micro-site matrices.

Measurement Competitive matrix Micro-site matrix

1952 –  wmij = 1 / h
ij
 For hij < 20

   wmij = 0 For hij ≥ 20

1978 wcij = 1 For hij < 3 wmij = 1 / h
ij
 For hij < 20

 wcij = 0 For hij ≥ 3 wmij = 0 For hij ≥ 20

Other wcij = 1 For hij < 3 wmij = 1 / hij For hij < 15
 wcij = 0 For hij ≥ 3 wmij = 0 For hij ≥ 15

hij is the physical distance in metres separating trees i and j
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2.4.2 Direct Specification Methods

Direct specification methods use a mathematical 
function to directly specify the variance-covari-
ance matrix (Zimmerman and Harville 1991) thus 
spatial dependence is explicitly incorporated. Pos-
sible functions are restricted in that they must 
preserve the symmetry and positive definite form 
of the variance-covariance matrix (Ripley 1981). 
Permissible functions applied to the Burrawan 
plot included the spherical (Eq. 3), exponential 
(Eq. 4), and Gaussian (Eq. 5) models:

C(h) = σn + σ2(1 – (3h / 2ρ) + (h3 / 2ρ3) For h < ρ
C(h) = σn For h ≥ ρ
	 	 (3)

C(h) = σn + σ2(exp(–h / ρ)) (4)

C(h) = σn + σ2(exp(–h2 / ρ2)) (5)

where C(h) is the covariance at distance h, σn 
is the nugget variance which captures random 
spatial variation, and ρ is the spatial dependence 
parameter.

Direct specification models are estimated using 
maximum likelihood methods (Mardia and Mar-
shall 1984, Zimmerman and Harville 1991), and 
in this instance The MIXED (SAS Institute Inc. 
1996) procedure in SAS was used to estimate 
parameters.

2.4.3 Papadakis Method

The Papadakis method (Papadakis 1937, 1984) 
is perhaps the simplest means of incorporat-
ing spatial dependence in model estimation. 
The Papadakis method uses the average model 
residual for trees in spatial proximity as a cov-
ariate in the model, and has been confirmed as 
being approximately valid (Bartlett 1978, Taye 
and Njuho 2007). Residual correlograms were 
examined to identify the scale of spatial depend-
ence, and based on this the average residual was 
generated for all trees less than 10 metres from the 
subject. For the growth periods during which fire 
disturbances occurred (1952, 1978), the distance 
over which residuals were averaged was expanded 

to 25 metres. This was done in response to the 
larger scale of spatial dependence observed for 
these measurements.

When applied to the earlier developed dis-
tance-dependent, individual-tree model (Eq. 1) 
the Papadakis method can be described as:

ADIi = α + β Di + χ APASWCi + δ TRVRBi + γ pi + εi

Where    p
N ji j

j

N j

=
=

∑1

1( )

( )

ε  (6)

where pi is the Papadakis covariate, N(j) denotes 
the number of neighbours of the subject i, εj is 
the residual from the fitted regression (excluding 
term γ pi) for tree j, which is a spatial neighbour 
of tree i.

3 Results

3.1 Characterising Spatial Dependence

Spatial correlograms for diameter for all measure-
ments of the Burrawan plot are provided in Fig. 1. 
Patterns of spatial dependence for individual tree 
diameter are relatively consistent across the 15 
measurement periods of the Burrawan plot. A sig-
nificant positive spatial dependence is observed 
for inter-tree distances less than 4 metres. This 
initially significant dependence declines to zero 
for increasing inter-tree distance. Structured spa-
tial variation to inter-tree distances of 40 metres is 
an indication that patches of similarly sized trees 
are present on the Burrawan plot. The salvage 
logging of 1960 altered patterns of spatial depend-
ence for diameter. Most noticeably the positive 
spatial dependence prevalent over short inter-tree 
distances became more significant.

Spatial correlograms for diameter increment 
are provided in Fig. 2. Patterns of spatial depend-
ence for diameter increment are far more erratic 
across the 15 measurement periods than those for 
diameter. Early measurements (1948, and 1950) 
exhibit a negative spatial dependence for inter-
tree distances less than 4 metres that may reflect 
competition between trees in spatial proximity. 
Later measurements exhibit a significant posi-
tive spatial dependence for the smallest distance 
class. The wildfires of 1952 and 1978 (both fires 
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Fig. 1. Spatial correlograms for diameter for the Burrawan plot. The upper two-sided 95% confidence limit 
is also included.

Fig. 2. Spatial correlograms for diameter increment.
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occurred before measurement) induce strongly 
structured spatial variation in diameter increment 
in 1952 and 1978. Several measurements (such 
as 1953) exhibit negligible spatial dependence. 
The influence of the salvage logging in 1960 
can be observed with altered patterns of spatial 
dependence after 1960. The salvage logging of 
1960 may have reduced competitive pressures 
with positive dependence emerging over short 
inter-tree distances after this event. The emerg-
ing positive dependence may also be caused by 
the strengthened positive spatial dependence in 
diameter after 1960, as can be observed in Fig. 
1. The influence of a thinning event in 1990 can 
be noted with strong positive dependence over 
small inter-tree distances for 1990.

Spatial correlograms of standardised residual 
Moran’s I against inter-tree distance for residu-
als from model (Eq. 1) are provided in Fig. 3. 
The influence of wildfires in 1952 and 1979 
can be observed, with strong patterns of posi-
tive spatial dependence for the 1952 and 1978 
measurements. For several measurements there 

is a significant negative spatial dependence for 
inter-tree distances less than 4 metres, possibly an 
expression of competition between trees in close 
spatial proximity. Several measurements exhibit 
a significant positive spatial dependence for small 
inter-tree distances. The presence of significant 
spatial dependence in residuals indicates a need 
for explicit models of spatial dependence.

3.2 Modelling Spatial Dependence

Possible spatial interaction models included the 
simultaneous, moving average, and conditional 
autoregressions. The distance-dependent, individ-
ual-tree model (Eq. 1) constituted the determinis-
tic structure. Examination of likelihood ratio tests 
(LRT) for the significance of spatial dependence 
parameters and Akaike’s information criterion 
(AIC) identified the moving average autoregres-
sion as best. Spatial dependence parameters for 
the moving average autoregression are shown 
in Table 2. The spatial dependence parameters 

Fig. 3. Spatial correlograms for growth model residuals for the Burrawan plot. The two-sided 95% confidence 
limits are also included.
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Table 2. Spatial dependence parameters for the moving 
average autoregression.

Measurement θc LRT θm LRT

1948 –0.0675 0.7 0.1829 3.5
1950 –0.1708 2.8 0.1139 1.6
1952 – – 0.2149 60.3**
1953 0.0095 0 0.0696 0.4
1956 –0.3061 2.2 0.3058 4.4*
1960 –0.0907 0.1 0.1845 1.3
1962 –0.2987 1.8 0.3380 1.7
1964 –0.3302 0.7 0.3147 2.2
1966 –0.2574 1.9 0.0128 0
1968 –0.3271 3.2 –0.0144 0
1970 –0.2502 1.3 0.2109 3.2
1974 –0.2536 1.8 0.4968 13.8*
1978 –0.0939 0.3 0.4300 51.9**
1983 –0.2441 1.5 0.2321 0.7
1990 0.0122 1.7 0.1530 0.5

* LRT χ2 test significant at the 0.05 level
** LRT χ2 test significant at the 0.0001 level

Table 3. Assessment of the Papadakis method.

 R2-no Papadakis R2-Papadakis Parameter estimate Partial-F PRMSE

1948 0.357 0.360 0.276 5.2* 1.36
1950 0.212 0.212 0.127 1.0 0.27
1952 0.020 0.026 0.978 124.2** 24.63
1953 0.051 0.051 –0.098 0.6 0.15
1956 0.176 0.180 0.544 7.3* 3.23
1960 0.203 0.205 0.286 2.9 1.37
1962 0.132 0.132 0.074 0.2 0.08
1964 0.230 0.234 0.362 4.6* 2.20
1966 0.369 0.371 0.171 1.2 0.56
1968 0.168 0.168 0.092 0.4 0.17
1970 0.576 0.581 0.335 4.7* 2.24
1974 0.357 0.378 0.572 19.3** 8.63
1978 0.218 0.307 1.077 120.8** 37.19
1983 0.594 0.594 –0.021 0 0.01
1990 0.304 0.305 –0.192 0.2 0.47
Average 0.264 0.274   5.50

* F-test significant at the 0.05 level; ** F-test significant at the 0.0001 level
PRMSE is the Percentage Reduction in Mean Squared Error

displayed in Table 2 show that θc was either 
negative or almost zero. This is consistent with 
this component modelling dependence induced 
by competition, although no estimate was signifi-
cantly different from zero. θm was positive for all 
but one of the measurement periods, which indi-
cates that this component modelled dependence 
induced by factors other than competition such 
as the presence of patches, micro-site influences 
or wild fire disturbance.

Possible direct specification models include the 
spherical, exponential, and Gaussian models. A 
graphical comparison of each model against the 
empirical semivariogram, as well as examination 
of Akaike’s information criterion identified the 
spherical model as best.

The Papadakis method is the third possible 
methodology for modelling observed spatial 
dependence on the Burrawan plot. Table 3 pro-
vides information on the change in model fit 
when the Papadakis covariate is included in the 
model. Information on the parameter for the 
Papadakis covariate as well as its significance 
are also provided. From Table 3 it can be noted 
that the Papadakis method is providing significant 
improvements in model fit for several measure-
ments of the Burrawan plot. In particular, the 1952 
and 1978 measurements, which were affected by 
wildfires, exhibit marked improvement in model 
R-square, and reductions in mean squared error 
of 25% and 37% respectively. The parameter for 
the Papadakis covariate is predominantly posi-
tive, indicating that positive spatial dependence 
is being modelled by the covariate.

Residual correlograms for the original deter-
ministic model (Eq. 1) and the optimal model of 
each candidate methodology (moving average, 
Papadakis, and spherical model) are shown in 
Figs. 4 and 5. Only the 1966 to 1990 measures 
are shown, as residual correlograms for earlier 
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Fig. 4. Spatial correlograms for residuals from the original model (Eq. 1) and the model including a moving aver-
age autoregressive (MA) component for the 1966–1990 measurements of the Burrawan plot.

Fig. 5. Spatial correlograms for residuals from the model including the Papadakis covariate (PAP), and the model 
including a variance-covariance matrix based on the spherical function (SPH) for the 1966–1990 measure-
ments of the Burrawan plot.
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measures gave similar results. The three meth-
odologies successfully extract positive spatial 
dependence whenever it is present in the residu-
als of the original deterministic model. This can 
be most noticeably observed for the measurement 
affected by wildfire (1978), as well as for the 
1970 and 1974 measurements. Negative spatial 
dependence is observed in the residuals of the 
original model over short inter-tree distances. 
This dependence is effectively extracted by the 
moving average autoregression. This can be most 
notably observed for measurements 1966, 1968, 
and 1983. The Papadakis method and the spheri-
cal direct specification model both fail to extract 
this negative dependence. The more desirable 
residual correlogram for the moving average 
autoregression identifies it as the most appropriate 
methodology for modelling spatial dependence on 
the Burrawan plot.

4 Discussion

Individual tree diameters on the Burrawan plot 
exhibited consistently structured spatial variation 
over 50 years of measurement. A significant posi-
tive spatial dependence was observed for small 
inter-tree distances that declined and became neg-
ligible for trees separated by more than 40 metres. 
This structure was indicative of the presence of 
patches of similarly sized trees (Sakai and Oden 
1983, Geburek and Tripp-Knowles 1994, Biondi 
et al. 1994, Kenkel et al. 1997). Because spatial 
dependence extended to inter-tree distances of 40 
metres it could be inferred that the average patch 
size on the Burrawan plot is approximately 40 
metres in diameter (Biondi et al. 1994, Geburek 
and Tripp-Knowles 1994). This average patch size 
is more likely a composite of several irregular 
patches and should not be taken as an indication 
that patch size is regular or consistent across the 
Burrawan plot. Other studies in natural forests 
have observed similarly structured spatial varia-
tion in tree diameter (e.g. Sakai and Oden 1983, 
Biondi et al. 1994, and Geburek and Tripp-Know-
les 1994 observed positive spatial dependence to 
50, 30, and 20 metres respectively).

Salvage logging in 1960 appeared to strengthen 
positive spatial dependence in diameter. This is 

a likely result of the removal of suppressed trees 
or the smaller tolerant species in the logging of 
1960. Removal of suppressed trees should extin-
guish any negative dependence prevalent over 
short inter-tree distances, and should produce 
patches of similarly sized trees structured at the 
scale of micro-site influences. The influence of 
the 1960 logging was also expressed in diameter 
increments with significant positive dependence 
emerging after the event.

Spatial variation in diameter increment was 
far more erratic across the 50 years of measure-
ment of the Burrawan plot. Several measurements 
exhibited negative spatial dependence over short 
inter-tree distances, which is a likely consequence 
of competition (Penttinen et al. 1992) and the 
presence of a persistent sub-canopy of tolerant 
species (Kenkel et al. 1989). For other measure-
ments a significant positive spatial dependence 
existed over short inter-tree distances, which is an 
expression of micro-site influences (Matern 1960) 
and patches of similarly sized trees (Biondi et al. 
1994). For several measurements a complicated 
pattern of spatial dependence emerged because 
processes inducing positive spatial dependence 
were confounded by processes inducing nega-
tive spatial dependence. This complicated pattern 
was characterised by increasing positive spatial 
dependence over small inter-tree distances which 
reached a maximum in the vicinity of 10 metres 
before declining for larger inter-tree distances. 
Those measurements affected by disturbance 
events, in this instance wildfire, exhibited a strong 
positive spatial dependence to inter-tree distances 
up to 80 metres. This observation confirms that a 
spatially heterogeneous disturbance event such as 
a wildfire is capable of inducing a strong spatial 
dependence in the growth of the post disturbance 
stand.

Characterisation of spatial dependence for 
growth model residuals confirmed that signifi-
cant dependence were present in the residuals. 
Spatial variation in model residuals was similar to 
that exhibited by diameter increment, indicating 
that the deterministic model structure is failing 
to effectively model the spatial variation present 
on the Burrawan plot. This is occurring despite 
the inclusion of a spatially-explicit competition 
index.

All the methods for modelling spatial depend-
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ence effectively modelled positive spatial 
dependence, however, only the moving average 
autoregression was capable of modelling negative 
spatial dependence. This capability was intro-
duced by manipulating the spatial dependence 
matrix into two components; one component 
modelled the positive dependence and the other 
component modelled the negative dependence. 
The moving average autoregression was the most 
appropriate methodology for modelling the com-
plicated patterns of spatial dependence observed 
on the Burrawan plot. This study confirms the 
applicability of the moving average autoregres-
sion to natural forests of irregular structure. For 
the Burrawan plot the competitive component (θc) 
was not significantly different to zero. Despite it 
being not significant, the competitive component 
prevented the expression of negative dependence 
in model residuals. Studies in more competition 
tolerant species, such as the temperate hardwoods 
of the United States, are required to identify the 
wider applicability of the identified model.

Disturbance events on the Burrawan plot 
induced a significant spatial dependence among 
the growth rates of individual trees. Two wildfires 
in 1952 and 1979 generated very similar patterns 
of spatial dependence in the post disturbance 
stand. A strong positive spatial dependence was 
observed to inter-tree distances of 80 metres. 
This indicates that individual trees responded to 
the disturbance more similarly when in spatial 
proximity. This is an expression of strong spatial 
heterogeneity in the intensity of the disturbance 
across the Burrawan plot. Although resultant 
patterns of spatial dependence were similar, the 
actual spatial heterogeneity of fire intensity may 
have been quite different for the two fires. The 
structural complexity of the mixed species Bur-
rawan plot may have exaggerated the spatial het-
erogeneity of the two disturbance events.

Disturbance events continually affect forests. 
Examples include artificial and natural fires, 
insect and fungal attack, and wind and snow 
damage. The findings of this study alert us to the 
possibility that disturbance events impose strong 
spatial dependence on the stand. This dependence 
can threaten the validity of individual-tree growth 
model estimation for disturbed stands. Examina-
tion of other disturbance events is warranted to 
expose the generality of this result.
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